src/HOL/Isar_Examples/Higher_Order_Logic.thy
changeset 71924 e5df9c8d9d4b
parent 71923 7b34a932eeb6
child 71925 bf085daea304
--- a/src/HOL/Isar_Examples/Higher_Order_Logic.thy	Sat Jun 06 10:58:13 2020 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,520 +0,0 @@
-(*  Title:      HOL/Isar_Examples/Higher_Order_Logic.thy
-    Author:     Makarius
-*)
-
-section \<open>Foundations of HOL\<close>
-
-theory Higher_Order_Logic
-  imports Pure
-begin
-
-text \<open>
-  The following theory development illustrates the foundations of Higher-Order
-  Logic. The ``HOL'' logic that is given here resembles @{cite
-  "Gordon:1985:HOL"} and its predecessor @{cite "church40"}, but the order of
-  axiomatizations and defined connectives has be adapted to modern
-  presentations of \<open>\<lambda>\<close>-calculus and Constructive Type Theory. Thus it fits
-  nicely to the underlying Natural Deduction framework of Isabelle/Pure and
-  Isabelle/Isar.
-\<close>
-
-
-section \<open>HOL syntax within Pure\<close>
-
-class type
-default_sort type
-
-typedecl o
-instance o :: type ..
-instance "fun" :: (type, type) type ..
-
-judgment Trueprop :: "o \<Rightarrow> prop"  ("_" 5)
-
-
-section \<open>Minimal logic (axiomatization)\<close>
-
-axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longrightarrow>" 25)
-  where impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
-    and impE [dest, trans]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
-
-axiomatization All :: "('a \<Rightarrow> o) \<Rightarrow> o"  (binder "\<forall>" 10)
-  where allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
-    and allE [dest]: "\<forall>x. P x \<Longrightarrow> P a"
-
-lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)"
-  by standard (fact impI, fact impE)
-
-lemma atomize_all [atomize]: "(\<And>x. P x) \<equiv> Trueprop (\<forall>x. P x)"
-  by standard (fact allI, fact allE)
-
-
-subsubsection \<open>Derived connectives\<close>
-
-definition False :: o
-  where "False \<equiv> \<forall>A. A"
-
-lemma FalseE [elim]:
-  assumes "False"
-  shows A
-proof -
-  from \<open>False\<close> have "\<forall>A. A" by (simp only: False_def)
-  then show A ..
-qed
-
-
-definition True :: o
-  where "True \<equiv> False \<longrightarrow> False"
-
-lemma TrueI [intro]: True
-  unfolding True_def ..
-
-
-definition not :: "o \<Rightarrow> o"  ("\<not> _" [40] 40)
-  where "not \<equiv> \<lambda>A. A \<longrightarrow> False"
-
-lemma notI [intro]:
-  assumes "A \<Longrightarrow> False"
-  shows "\<not> A"
-  using assms unfolding not_def ..
-
-lemma notE [elim]:
-  assumes "\<not> A" and A
-  shows B
-proof -
-  from \<open>\<not> A\<close> have "A \<longrightarrow> False" by (simp only: not_def)
-  from this and \<open>A\<close> have "False" ..
-  then show B ..
-qed
-
-lemma notE': "A \<Longrightarrow> \<not> A \<Longrightarrow> B"
-  by (rule notE)
-
-lemmas contradiction = notE notE'  \<comment> \<open>proof by contradiction in any order\<close>
-
-
-definition conj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<and>" 35)
-  where "A \<and> B \<equiv> \<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
-
-lemma conjI [intro]:
-  assumes A and B
-  shows "A \<and> B"
-  unfolding conj_def
-proof
-  fix C
-  show "(A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
-  proof
-    assume "A \<longrightarrow> B \<longrightarrow> C"
-    also note \<open>A\<close>
-    also note \<open>B\<close>
-    finally show C .
-  qed
-qed
-
-lemma conjE [elim]:
-  assumes "A \<and> B"
-  obtains A and B
-proof
-  from \<open>A \<and> B\<close> have *: "(A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C" for C
-    unfolding conj_def ..
-  show A
-  proof -
-    note * [of A]
-    also have "A \<longrightarrow> B \<longrightarrow> A"
-    proof
-      assume A
-      then show "B \<longrightarrow> A" ..
-    qed
-    finally show ?thesis .
-  qed
-  show B
-  proof -
-    note * [of B]
-    also have "A \<longrightarrow> B \<longrightarrow> B"
-    proof
-      show "B \<longrightarrow> B" ..
-    qed
-    finally show ?thesis .
-  qed
-qed
-
-
-definition disj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<or>" 30)
-  where "A \<or> B \<equiv> \<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
-
-lemma disjI1 [intro]:
-  assumes A
-  shows "A \<or> B"
-  unfolding disj_def
-proof
-  fix C
-  show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
-  proof
-    assume "A \<longrightarrow> C"
-    from this and \<open>A\<close> have C ..
-    then show "(B \<longrightarrow> C) \<longrightarrow> C" ..
-  qed
-qed
-
-lemma disjI2 [intro]:
-  assumes B
-  shows "A \<or> B"
-  unfolding disj_def
-proof
-  fix C
-  show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
-  proof
-    show "(B \<longrightarrow> C) \<longrightarrow> C"
-    proof
-      assume "B \<longrightarrow> C"
-      from this and \<open>B\<close> show C ..
-    qed
-  qed
-qed
-
-lemma disjE [elim]:
-  assumes "A \<or> B"
-  obtains (a) A | (b) B
-proof -
-  from \<open>A \<or> B\<close> have "(A \<longrightarrow> thesis) \<longrightarrow> (B \<longrightarrow> thesis) \<longrightarrow> thesis"
-    unfolding disj_def ..
-  also have "A \<longrightarrow> thesis"
-  proof
-    assume A
-    then show thesis by (rule a)
-  qed
-  also have "B \<longrightarrow> thesis"
-  proof
-    assume B
-    then show thesis by (rule b)
-  qed
-  finally show thesis .
-qed
-
-
-definition Ex :: "('a \<Rightarrow> o) \<Rightarrow> o"  (binder "\<exists>" 10)
-  where "\<exists>x. P x \<equiv> \<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
-
-lemma exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
-  unfolding Ex_def
-proof
-  fix C
-  assume "P a"
-  show "(\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
-  proof
-    assume "\<forall>x. P x \<longrightarrow> C"
-    then have "P a \<longrightarrow> C" ..
-    from this and \<open>P a\<close> show C ..
-  qed
-qed
-
-lemma exE [elim]:
-  assumes "\<exists>x. P x"
-  obtains (that) x where "P x"
-proof -
-  from \<open>\<exists>x. P x\<close> have "(\<forall>x. P x \<longrightarrow> thesis) \<longrightarrow> thesis"
-    unfolding Ex_def ..
-  also have "\<forall>x. P x \<longrightarrow> thesis"
-  proof
-    fix x
-    show "P x \<longrightarrow> thesis"
-    proof
-      assume "P x"
-      then show thesis by (rule that)
-    qed
-  qed
-  finally show thesis .
-qed
-
-
-subsubsection \<open>Extensional equality\<close>
-
-axiomatization equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"  (infixl "=" 50)
-  where refl [intro]: "x = x"
-    and subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
-
-abbreviation not_equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"  (infixl "\<noteq>" 50)
-  where "x \<noteq> y \<equiv> \<not> (x = y)"
-
-abbreviation iff :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longleftrightarrow>" 25)
-  where "A \<longleftrightarrow> B \<equiv> A = B"
-
-axiomatization
-  where ext [intro]: "(\<And>x. f x = g x) \<Longrightarrow> f = g"
-    and iff [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<longleftrightarrow> B"
-  for f g :: "'a \<Rightarrow> 'b"
-
-lemma sym [sym]: "y = x" if "x = y"
-  using that by (rule subst) (rule refl)
-
-lemma [trans]: "x = y \<Longrightarrow> P y \<Longrightarrow> P x"
-  by (rule subst) (rule sym)
-
-lemma [trans]: "P x \<Longrightarrow> x = y \<Longrightarrow> P y"
-  by (rule subst)
-
-lemma arg_cong: "f x = f y" if "x = y"
-  using that by (rule subst) (rule refl)
-
-lemma fun_cong: "f x = g x" if "f = g"
-  using that by (rule subst) (rule refl)
-
-lemma trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
-  by (rule subst)
-
-lemma iff1 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
-  by (rule subst)
-
-lemma iff2 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> B \<Longrightarrow> A"
-  by (rule subst) (rule sym)
-
-
-subsection \<open>Cantor's Theorem\<close>
-
-text \<open>
-  Cantor's Theorem states that there is no surjection from a set to its
-  powerset. The subsequent formulation uses elementary \<open>\<lambda>\<close>-calculus and
-  predicate logic, with standard introduction and elimination rules.
-\<close>
-
-lemma iff_contradiction:
-  assumes *: "\<not> A \<longleftrightarrow> A"
-  shows C
-proof (rule notE)
-  show "\<not> A"
-  proof
-    assume A
-    with * have "\<not> A" ..
-    from this and \<open>A\<close> show False ..
-  qed
-  with * show A ..
-qed
-
-theorem Cantor: "\<not> (\<exists>f :: 'a \<Rightarrow> 'a \<Rightarrow> o. \<forall>A. \<exists>x. A = f x)"
-proof
-  assume "\<exists>f :: 'a \<Rightarrow> 'a \<Rightarrow> o. \<forall>A. \<exists>x. A = f x"
-  then obtain f :: "'a \<Rightarrow> 'a \<Rightarrow> o" where *: "\<forall>A. \<exists>x. A = f x" ..
-  let ?D = "\<lambda>x. \<not> f x x"
-  from * have "\<exists>x. ?D = f x" ..
-  then obtain a where "?D = f a" ..
-  then have "?D a \<longleftrightarrow> f a a" using refl by (rule subst)
-  then have "\<not> f a a \<longleftrightarrow> f a a" .
-  then show False by (rule iff_contradiction)
-qed
-
-
-subsection \<open>Characterization of Classical Logic\<close>
-
-text \<open>
-  The subsequent rules of classical reasoning are all equivalent.
-\<close>
-
-locale classical =
-  assumes classical: "(\<not> A \<Longrightarrow> A) \<Longrightarrow> A"
-  \<comment> \<open>predicate definition and hypothetical context\<close>
-begin
-
-lemma classical_contradiction:
-  assumes "\<not> A \<Longrightarrow> False"
-  shows A
-proof (rule classical)
-  assume "\<not> A"
-  then have False by (rule assms)
-  then show A ..
-qed
-
-lemma double_negation:
-  assumes "\<not> \<not> A"
-  shows A
-proof (rule classical_contradiction)
-  assume "\<not> A"
-  with \<open>\<not> \<not> A\<close> show False by (rule contradiction)
-qed
-
-lemma tertium_non_datur: "A \<or> \<not> A"
-proof (rule double_negation)
-  show "\<not> \<not> (A \<or> \<not> A)"
-  proof
-    assume "\<not> (A \<or> \<not> A)"
-    have "\<not> A"
-    proof
-      assume A then have "A \<or> \<not> A" ..
-      with \<open>\<not> (A \<or> \<not> A)\<close> show False by (rule contradiction)
-    qed
-    then have "A \<or> \<not> A" ..
-    with \<open>\<not> (A \<or> \<not> A)\<close> show False by (rule contradiction)
-  qed
-qed
-
-lemma classical_cases:
-  obtains A | "\<not> A"
-  using tertium_non_datur
-proof
-  assume A
-  then show thesis ..
-next
-  assume "\<not> A"
-  then show thesis ..
-qed
-
-end
-
-lemma classical_if_cases: classical
-  if cases: "\<And>A C. (A \<Longrightarrow> C) \<Longrightarrow> (\<not> A \<Longrightarrow> C) \<Longrightarrow> C"
-proof
-  fix A
-  assume *: "\<not> A \<Longrightarrow> A"
-  show A
-  proof (rule cases)
-    assume A
-    then show A .
-  next
-    assume "\<not> A"
-    then show A by (rule *)
-  qed
-qed
-
-
-section \<open>Peirce's Law\<close>
-
-text \<open>
-  Peirce's Law is another characterization of classical reasoning. Its
-  statement only requires implication.
-\<close>
-
-theorem (in classical) Peirce's_Law: "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
-proof
-  assume *: "(A \<longrightarrow> B) \<longrightarrow> A"
-  show A
-  proof (rule classical)
-    assume "\<not> A"
-    have "A \<longrightarrow> B"
-    proof
-      assume A
-      with \<open>\<not> A\<close> show B by (rule contradiction)
-    qed
-    with * show A ..
-  qed
-qed
-
-
-section \<open>Hilbert's choice operator (axiomatization)\<close>
-
-axiomatization Eps :: "('a \<Rightarrow> o) \<Rightarrow> 'a"
-  where someI: "P x \<Longrightarrow> P (Eps P)"
-
-syntax "_Eps" :: "pttrn \<Rightarrow> o \<Rightarrow> 'a"  ("(3SOME _./ _)" [0, 10] 10)
-translations "SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)"
-
-text \<open>
-  \<^medskip>
-  It follows a derivation of the classical law of tertium-non-datur by
-  means of Hilbert's choice operator (due to Berghofer, Beeson, Harrison,
-  based on a proof by Diaconescu).
-  \<^medskip>
-\<close>
-
-theorem Diaconescu: "A \<or> \<not> A"
-proof -
-  let ?P = "\<lambda>x. (A \<and> x) \<or> \<not> x"
-  let ?Q = "\<lambda>x. (A \<and> \<not> x) \<or> x"
-
-  have a: "?P (Eps ?P)"
-  proof (rule someI)
-    have "\<not> False" ..
-    then show "?P False" ..
-  qed
-  have b: "?Q (Eps ?Q)"
-  proof (rule someI)
-    have True ..
-    then show "?Q True" ..
-  qed
-
-  from a show ?thesis
-  proof
-    assume "A \<and> Eps ?P"
-    then have A ..
-    then show ?thesis ..
-  next
-    assume "\<not> Eps ?P"
-    from b show ?thesis
-    proof
-      assume "A \<and> \<not> Eps ?Q"
-      then have A ..
-      then show ?thesis ..
-    next
-      assume "Eps ?Q"
-      have neq: "?P \<noteq> ?Q"
-      proof
-        assume "?P = ?Q"
-        then have "Eps ?P \<longleftrightarrow> Eps ?Q" by (rule arg_cong)
-        also note \<open>Eps ?Q\<close>
-        finally have "Eps ?P" .
-        with \<open>\<not> Eps ?P\<close> show False by (rule contradiction)
-      qed
-      have "\<not> A"
-      proof
-        assume A
-        have "?P = ?Q"
-        proof (rule ext)
-          show "?P x \<longleftrightarrow> ?Q x" for x
-          proof
-            assume "?P x"
-            then show "?Q x"
-            proof
-              assume "\<not> x"
-              with \<open>A\<close> have "A \<and> \<not> x" ..
-              then show ?thesis ..
-            next
-              assume "A \<and> x"
-              then have x ..
-              then show ?thesis ..
-            qed
-          next
-            assume "?Q x"
-            then show "?P x"
-            proof
-              assume "A \<and> \<not> x"
-              then have "\<not> x" ..
-              then show ?thesis ..
-            next
-              assume x
-              with \<open>A\<close> have "A \<and> x" ..
-              then show ?thesis ..
-            qed
-          qed
-        qed
-        with neq show False by (rule contradiction)
-      qed
-      then show ?thesis ..
-    qed
-  qed
-qed
-
-text \<open>
-  This means, the hypothetical predicate \<^const>\<open>classical\<close> always holds
-  unconditionally (with all consequences).
-\<close>
-
-interpretation classical
-proof (rule classical_if_cases)
-  fix A C
-  assume *: "A \<Longrightarrow> C"
-    and **: "\<not> A \<Longrightarrow> C"
-  from Diaconescu [of A] show C
-  proof
-    assume A
-    then show C by (rule *)
-  next
-    assume "\<not> A"
-    then show C by (rule **)
-  qed
-qed
-
-thm classical
-  classical_contradiction
-  double_negation
-  tertium_non_datur
-  classical_cases
-  Peirce's_Law
-
-end