src/HOL/BNF/Equiv_Relations_More.thy
changeset 55022 eeba3ba73486
parent 55021 e40090032de9
child 55023 38db7814481d
--- a/src/HOL/BNF/Equiv_Relations_More.thy	Thu Jan 16 18:37:37 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,161 +0,0 @@
-(*  Title:      HOL/BNF/Equiv_Relations_More.thy
-    Author:     Andrei Popescu, TU Muenchen
-    Copyright   2012
-
-Some preliminaries on equivalence relations and quotients.
-*)
-
-header {* Some Preliminaries on Equivalence Relations and Quotients *}
-
-theory Equiv_Relations_More
-imports Equiv_Relations Hilbert_Choice
-begin
-
-
-(* Recall the following constants and lemmas:
-
-term Eps
-term "A//r"
-lemmas equiv_def
-lemmas refl_on_def
- -- note that "reflexivity on" also assumes inclusion of the relation's field into r
-
-*)
-
-definition proj where "proj r x = r `` {x}"
-
-definition univ where "univ f X == f (Eps (%x. x \<in> X))"
-
-lemma proj_preserves:
-"x \<in> A \<Longrightarrow> proj r x \<in> A//r"
-unfolding proj_def by (rule quotientI)
-
-lemma proj_in_iff:
-assumes "equiv A r"
-shows "(proj r x \<in> A//r) = (x \<in> A)"
-apply(rule iffI, auto simp add: proj_preserves)
-unfolding proj_def quotient_def proof clarsimp
-  fix y assume y: "y \<in> A" and "r `` {x} = r `` {y}"
-  moreover have "y \<in> r `` {y}" using assms y unfolding equiv_def refl_on_def by blast
-  ultimately have "(x,y) \<in> r" by blast
-  thus "x \<in> A" using assms unfolding equiv_def refl_on_def by blast
-qed
-
-lemma proj_iff:
-"\<lbrakk>equiv A r; {x,y} \<subseteq> A\<rbrakk> \<Longrightarrow> (proj r x = proj r y) = ((x,y) \<in> r)"
-by (simp add: proj_def eq_equiv_class_iff)
-
-(*
-lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x"
-unfolding proj_def equiv_def refl_on_def by blast
-*)
-
-lemma proj_image: "(proj r) ` A = A//r"
-unfolding proj_def[abs_def] quotient_def by blast
-
-lemma in_quotient_imp_non_empty:
-"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<noteq> {}"
-unfolding quotient_def using equiv_class_self by fast
-
-lemma in_quotient_imp_in_rel:
-"\<lbrakk>equiv A r; X \<in> A//r; {x,y} \<subseteq> X\<rbrakk> \<Longrightarrow> (x,y) \<in> r"
-using quotient_eq_iff[THEN iffD1] by fastforce
-
-lemma in_quotient_imp_closed:
-"\<lbrakk>equiv A r; X \<in> A//r; x \<in> X; (x,y) \<in> r\<rbrakk> \<Longrightarrow> y \<in> X"
-unfolding quotient_def equiv_def trans_def by blast
-
-lemma in_quotient_imp_subset:
-"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<subseteq> A"
-using assms in_quotient_imp_in_rel equiv_type by fastforce
-
-lemma equiv_Eps_in:
-"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> Eps (%x. x \<in> X) \<in> X"
-apply (rule someI2_ex)
-using in_quotient_imp_non_empty by blast
-
-lemma equiv_Eps_preserves:
-assumes ECH: "equiv A r" and X: "X \<in> A//r"
-shows "Eps (%x. x \<in> X) \<in> A"
-apply (rule in_mono[rule_format])
- using assms apply (rule in_quotient_imp_subset)
-by (rule equiv_Eps_in) (rule assms)+
-
-lemma proj_Eps:
-assumes "equiv A r" and "X \<in> A//r"
-shows "proj r (Eps (%x. x \<in> X)) = X"
-unfolding proj_def proof auto
-  fix x assume x: "x \<in> X"
-  thus "(Eps (%x. x \<in> X), x) \<in> r" using assms equiv_Eps_in in_quotient_imp_in_rel by fast
-next
-  fix x assume "(Eps (%x. x \<in> X),x) \<in> r"
-  thus "x \<in> X" using in_quotient_imp_closed[OF assms equiv_Eps_in[OF assms]] by fast
-qed
-
-(*
-lemma Eps_proj:
-assumes "equiv A r" and "x \<in> A"
-shows "(Eps (%y. y \<in> proj r x), x) \<in> r"
-proof-
-  have 1: "proj r x \<in> A//r" using assms proj_preserves by fastforce
-  hence "Eps(%y. y \<in> proj r x) \<in> proj r x" using assms equiv_Eps_in by auto
-  moreover have "x \<in> proj r x" using assms in_proj by fastforce
-  ultimately show ?thesis using assms 1 in_quotient_imp_in_rel by fastforce
-qed
-
-lemma equiv_Eps_iff:
-assumes "equiv A r" and "{X,Y} \<subseteq> A//r"
-shows "((Eps (%x. x \<in> X),Eps (%y. y \<in> Y)) \<in> r) = (X = Y)"
-proof-
-  have "Eps (%x. x \<in> X) \<in> X \<and> Eps (%y. y \<in> Y) \<in> Y" using assms equiv_Eps_in by auto
-  thus ?thesis using assms quotient_eq_iff by fastforce
-qed
-
-lemma equiv_Eps_inj_on:
-assumes "equiv A r"
-shows "inj_on (%X. Eps (%x. x \<in> X)) (A//r)"
-unfolding inj_on_def proof clarify
-  fix X Y assume X: "X \<in> A//r" and Y: "Y \<in> A//r" and Eps: "Eps (%x. x \<in> X) = Eps (%y. y \<in> Y)"
-  hence "Eps (%x. x \<in> X) \<in> A" using assms equiv_Eps_preserves by auto
-  hence "(Eps (%x. x \<in> X), Eps (%y. y \<in> Y)) \<in> r"
-  using assms Eps unfolding quotient_def equiv_def refl_on_def by auto
-  thus "X= Y" using X Y assms equiv_Eps_iff by auto
-qed
-*)
-
-lemma univ_commute:
-assumes ECH: "equiv A r" and RES: "f respects r" and x: "x \<in> A"
-shows "(univ f) (proj r x) = f x"
-unfolding univ_def proof -
-  have prj: "proj r x \<in> A//r" using x proj_preserves by fast
-  hence "Eps (%y. y \<in> proj r x) \<in> A" using ECH equiv_Eps_preserves by fast
-  moreover have "proj r (Eps (%y. y \<in> proj r x)) = proj r x" using ECH prj proj_Eps by fast
-  ultimately have "(x, Eps (%y. y \<in> proj r x)) \<in> r" using x ECH proj_iff by fast
-  thus "f (Eps (%y. y \<in> proj r x)) = f x" using RES unfolding congruent_def by fastforce
-qed
-
-(*
-lemma univ_unique:
-assumes ECH: "equiv A r" and
-        RES: "f respects r" and  COM: "\<forall> x \<in> A. G (proj r x) = f x"
-shows "\<forall> X \<in> A//r. G X = univ f X"
-proof
-  fix X assume "X \<in> A//r"
-  then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
-  have "G X = f x" unfolding X using x COM by simp
-  thus "G X = univ f X" unfolding X using ECH RES x univ_commute by fastforce
-qed
-*)
-
-lemma univ_preserves:
-assumes ECH: "equiv A r" and RES: "f respects r" and
-        PRES: "\<forall> x \<in> A. f x \<in> B"
-shows "\<forall> X \<in> A//r. univ f X \<in> B"
-proof
-  fix X assume "X \<in> A//r"
-  then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
-  hence "univ f X = f x" using assms univ_commute by fastforce
-  thus "univ f X \<in> B" using x PRES by simp
-qed
-
-end