src/HOL/Lifting_Set.thy
changeset 55938 f20d1db5aa3c
parent 55564 e81ee43ab290
child 55945 e96383acecf9
--- a/src/HOL/Lifting_Set.thy	Thu Mar 06 14:25:55 2014 +0100
+++ b/src/HOL/Lifting_Set.thy	Thu Mar 06 14:57:14 2014 +0100
@@ -10,90 +10,90 @@
 
 subsection {* Relator and predicator properties *}
 
-definition set_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"
-  where "set_rel R = (\<lambda>A B. (\<forall>x\<in>A. \<exists>y\<in>B. R x y) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. R x y))"
+definition rel_set :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"
+  where "rel_set R = (\<lambda>A B. (\<forall>x\<in>A. \<exists>y\<in>B. R x y) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. R x y))"
 
-lemma set_relI:
+lemma rel_setI:
   assumes "\<And>x. x \<in> A \<Longrightarrow> \<exists>y\<in>B. R x y"
   assumes "\<And>y. y \<in> B \<Longrightarrow> \<exists>x\<in>A. R x y"
-  shows "set_rel R A B"
-  using assms unfolding set_rel_def by simp
+  shows "rel_set R A B"
+  using assms unfolding rel_set_def by simp
 
-lemma set_relD1: "\<lbrakk> set_rel R A B; x \<in> A \<rbrakk> \<Longrightarrow> \<exists>y \<in> B. R x y"
-  and set_relD2: "\<lbrakk> set_rel R A B; y \<in> B \<rbrakk> \<Longrightarrow> \<exists>x \<in> A. R x y"
-by(simp_all add: set_rel_def)
+lemma rel_setD1: "\<lbrakk> rel_set R A B; x \<in> A \<rbrakk> \<Longrightarrow> \<exists>y \<in> B. R x y"
+  and rel_setD2: "\<lbrakk> rel_set R A B; y \<in> B \<rbrakk> \<Longrightarrow> \<exists>x \<in> A. R x y"
+by(simp_all add: rel_set_def)
 
-lemma set_rel_conversep [simp]: "set_rel A\<inverse>\<inverse> = (set_rel A)\<inverse>\<inverse>"
-  unfolding set_rel_def by auto
+lemma rel_set_conversep [simp]: "rel_set A\<inverse>\<inverse> = (rel_set A)\<inverse>\<inverse>"
+  unfolding rel_set_def by auto
 
-lemma set_rel_eq [relator_eq]: "set_rel (op =) = (op =)"
-  unfolding set_rel_def fun_eq_iff by auto
+lemma rel_set_eq [relator_eq]: "rel_set (op =) = (op =)"
+  unfolding rel_set_def fun_eq_iff by auto
 
-lemma set_rel_mono[relator_mono]:
+lemma rel_set_mono[relator_mono]:
   assumes "A \<le> B"
-  shows "set_rel A \<le> set_rel B"
-using assms unfolding set_rel_def by blast
+  shows "rel_set A \<le> rel_set B"
+using assms unfolding rel_set_def by blast
 
-lemma set_rel_OO[relator_distr]: "set_rel R OO set_rel S = set_rel (R OO S)"
+lemma rel_set_OO[relator_distr]: "rel_set R OO rel_set S = rel_set (R OO S)"
   apply (rule sym)
   apply (intro ext, rename_tac X Z)
   apply (rule iffI)
   apply (rule_tac b="{y. (\<exists>x\<in>X. R x y) \<and> (\<exists>z\<in>Z. S y z)}" in relcomppI)
-  apply (simp add: set_rel_def, fast)
-  apply (simp add: set_rel_def, fast)
-  apply (simp add: set_rel_def, fast)
+  apply (simp add: rel_set_def, fast)
+  apply (simp add: rel_set_def, fast)
+  apply (simp add: rel_set_def, fast)
   done
 
 lemma Domainp_set[relator_domain]:
   assumes "Domainp T = R"
-  shows "Domainp (set_rel T) = (\<lambda>A. Ball A R)"
-using assms unfolding set_rel_def Domainp_iff[abs_def]
+  shows "Domainp (rel_set T) = (\<lambda>A. Ball A R)"
+using assms unfolding rel_set_def Domainp_iff[abs_def]
 apply (intro ext)
 apply (rule iffI) 
 apply blast
 apply (rename_tac A, rule_tac x="{y. \<exists>x\<in>A. T x y}" in exI, fast)
 done
 
-lemma left_total_set_rel[reflexivity_rule]: 
-  "left_total A \<Longrightarrow> left_total (set_rel A)"
-  unfolding left_total_def set_rel_def
+lemma left_total_rel_set[reflexivity_rule]: 
+  "left_total A \<Longrightarrow> left_total (rel_set A)"
+  unfolding left_total_def rel_set_def
   apply safe
   apply (rename_tac X, rule_tac x="{y. \<exists>x\<in>X. A x y}" in exI, fast)
 done
 
-lemma left_unique_set_rel[reflexivity_rule]: 
-  "left_unique A \<Longrightarrow> left_unique (set_rel A)"
-  unfolding left_unique_def set_rel_def
+lemma left_unique_rel_set[reflexivity_rule]: 
+  "left_unique A \<Longrightarrow> left_unique (rel_set A)"
+  unfolding left_unique_def rel_set_def
   by fast
 
-lemma right_total_set_rel [transfer_rule]:
-  "right_total A \<Longrightarrow> right_total (set_rel A)"
-using left_total_set_rel[of "A\<inverse>\<inverse>"] by simp
+lemma right_total_rel_set [transfer_rule]:
+  "right_total A \<Longrightarrow> right_total (rel_set A)"
+using left_total_rel_set[of "A\<inverse>\<inverse>"] by simp
 
-lemma right_unique_set_rel [transfer_rule]:
-  "right_unique A \<Longrightarrow> right_unique (set_rel A)"
-  unfolding right_unique_def set_rel_def by fast
+lemma right_unique_rel_set [transfer_rule]:
+  "right_unique A \<Longrightarrow> right_unique (rel_set A)"
+  unfolding right_unique_def rel_set_def by fast
 
-lemma bi_total_set_rel [transfer_rule]:
-  "bi_total A \<Longrightarrow> bi_total (set_rel A)"
-by(simp add: bi_total_conv_left_right left_total_set_rel right_total_set_rel)
+lemma bi_total_rel_set [transfer_rule]:
+  "bi_total A \<Longrightarrow> bi_total (rel_set A)"
+by(simp add: bi_total_conv_left_right left_total_rel_set right_total_rel_set)
 
-lemma bi_unique_set_rel [transfer_rule]:
-  "bi_unique A \<Longrightarrow> bi_unique (set_rel A)"
-  unfolding bi_unique_def set_rel_def by fast
+lemma bi_unique_rel_set [transfer_rule]:
+  "bi_unique A \<Longrightarrow> bi_unique (rel_set A)"
+  unfolding bi_unique_def rel_set_def by fast
 
 lemma set_invariant_commute [invariant_commute]:
-  "set_rel (Lifting.invariant P) = Lifting.invariant (\<lambda>A. Ball A P)"
-  unfolding fun_eq_iff set_rel_def Lifting.invariant_def Ball_def by fast
+  "rel_set (Lifting.invariant P) = Lifting.invariant (\<lambda>A. Ball A P)"
+  unfolding fun_eq_iff rel_set_def Lifting.invariant_def Ball_def by fast
 
 subsection {* Quotient theorem for the Lifting package *}
 
 lemma Quotient_set[quot_map]:
   assumes "Quotient R Abs Rep T"
-  shows "Quotient (set_rel R) (image Abs) (image Rep) (set_rel T)"
+  shows "Quotient (rel_set R) (image Abs) (image Rep) (rel_set T)"
   using assms unfolding Quotient_alt_def4
-  apply (simp add: set_rel_OO[symmetric])
-  apply (simp add: set_rel_def, fast)
+  apply (simp add: rel_set_OO[symmetric])
+  apply (simp add: rel_set_def, fast)
   done
 
 subsection {* Transfer rules for the Transfer package *}
@@ -104,143 +104,143 @@
 begin
 interpretation lifting_syntax .
 
-lemma empty_transfer [transfer_rule]: "(set_rel A) {} {}"
-  unfolding set_rel_def by simp
+lemma empty_transfer [transfer_rule]: "(rel_set A) {} {}"
+  unfolding rel_set_def by simp
 
 lemma insert_transfer [transfer_rule]:
-  "(A ===> set_rel A ===> set_rel A) insert insert"
-  unfolding fun_rel_def set_rel_def by auto
+  "(A ===> rel_set A ===> rel_set A) insert insert"
+  unfolding fun_rel_def rel_set_def by auto
 
 lemma union_transfer [transfer_rule]:
-  "(set_rel A ===> set_rel A ===> set_rel A) union union"
-  unfolding fun_rel_def set_rel_def by auto
+  "(rel_set A ===> rel_set A ===> rel_set A) union union"
+  unfolding fun_rel_def rel_set_def by auto
 
 lemma Union_transfer [transfer_rule]:
-  "(set_rel (set_rel A) ===> set_rel A) Union Union"
-  unfolding fun_rel_def set_rel_def by simp fast
+  "(rel_set (rel_set A) ===> rel_set A) Union Union"
+  unfolding fun_rel_def rel_set_def by simp fast
 
 lemma image_transfer [transfer_rule]:
-  "((A ===> B) ===> set_rel A ===> set_rel B) image image"
-  unfolding fun_rel_def set_rel_def by simp fast
+  "((A ===> B) ===> rel_set A ===> rel_set B) image image"
+  unfolding fun_rel_def rel_set_def by simp fast
 
 lemma UNION_transfer [transfer_rule]:
-  "(set_rel A ===> (A ===> set_rel B) ===> set_rel B) UNION UNION"
+  "(rel_set A ===> (A ===> rel_set B) ===> rel_set B) UNION UNION"
   unfolding SUP_def [abs_def] by transfer_prover
 
 lemma Ball_transfer [transfer_rule]:
-  "(set_rel A ===> (A ===> op =) ===> op =) Ball Ball"
-  unfolding set_rel_def fun_rel_def by fast
+  "(rel_set A ===> (A ===> op =) ===> op =) Ball Ball"
+  unfolding rel_set_def fun_rel_def by fast
 
 lemma Bex_transfer [transfer_rule]:
-  "(set_rel A ===> (A ===> op =) ===> op =) Bex Bex"
-  unfolding set_rel_def fun_rel_def by fast
+  "(rel_set A ===> (A ===> op =) ===> op =) Bex Bex"
+  unfolding rel_set_def fun_rel_def by fast
 
 lemma Pow_transfer [transfer_rule]:
-  "(set_rel A ===> set_rel (set_rel A)) Pow Pow"
-  apply (rule fun_relI, rename_tac X Y, rule set_relI)
+  "(rel_set A ===> rel_set (rel_set A)) Pow Pow"
+  apply (rule fun_relI, rename_tac X Y, rule rel_setI)
   apply (rename_tac X', rule_tac x="{y\<in>Y. \<exists>x\<in>X'. A x y}" in rev_bexI, clarsimp)
-  apply (simp add: set_rel_def, fast)
+  apply (simp add: rel_set_def, fast)
   apply (rename_tac Y', rule_tac x="{x\<in>X. \<exists>y\<in>Y'. A x y}" in rev_bexI, clarsimp)
-  apply (simp add: set_rel_def, fast)
+  apply (simp add: rel_set_def, fast)
   done
 
-lemma set_rel_transfer [transfer_rule]:
-  "((A ===> B ===> op =) ===> set_rel A ===> set_rel B ===> op =)
-    set_rel set_rel"
-  unfolding fun_rel_def set_rel_def by fast
+lemma rel_set_transfer [transfer_rule]:
+  "((A ===> B ===> op =) ===> rel_set A ===> rel_set B ===> op =)
+    rel_set rel_set"
+  unfolding fun_rel_def rel_set_def by fast
 
 lemma SUPR_parametric [transfer_rule]:
-  "(set_rel R ===> (R ===> op =) ===> op =) SUPR (SUPR :: _ \<Rightarrow> _ \<Rightarrow> _::complete_lattice)"
+  "(rel_set R ===> (R ===> op =) ===> op =) SUPR (SUPR :: _ \<Rightarrow> _ \<Rightarrow> _::complete_lattice)"
 proof(rule fun_relI)+
   fix A B f and g :: "'b \<Rightarrow> 'c"
-  assume AB: "set_rel R A B"
+  assume AB: "rel_set R A B"
     and fg: "(R ===> op =) f g"
   show "SUPR A f = SUPR B g"
-    by(rule SUPR_eq)(auto 4 4 dest: set_relD1[OF AB] set_relD2[OF AB] fun_relD[OF fg] intro: rev_bexI)
+    by(rule SUPR_eq)(auto 4 4 dest: rel_setD1[OF AB] rel_setD2[OF AB] fun_relD[OF fg] intro: rev_bexI)
 qed
 
 lemma bind_transfer [transfer_rule]:
-  "(set_rel A ===> (A ===> set_rel B) ===> set_rel B) Set.bind Set.bind"
+  "(rel_set A ===> (A ===> rel_set B) ===> rel_set B) Set.bind Set.bind"
 unfolding bind_UNION[abs_def] by transfer_prover
 
 subsubsection {* Rules requiring bi-unique, bi-total or right-total relations *}
 
 lemma member_transfer [transfer_rule]:
   assumes "bi_unique A"
-  shows "(A ===> set_rel A ===> op =) (op \<in>) (op \<in>)"
-  using assms unfolding fun_rel_def set_rel_def bi_unique_def by fast
+  shows "(A ===> rel_set A ===> op =) (op \<in>) (op \<in>)"
+  using assms unfolding fun_rel_def rel_set_def bi_unique_def by fast
 
 lemma right_total_Collect_transfer[transfer_rule]:
   assumes "right_total A"
-  shows "((A ===> op =) ===> set_rel A) (\<lambda>P. Collect (\<lambda>x. P x \<and> Domainp A x)) Collect"
-  using assms unfolding right_total_def set_rel_def fun_rel_def Domainp_iff by fast
+  shows "((A ===> op =) ===> rel_set A) (\<lambda>P. Collect (\<lambda>x. P x \<and> Domainp A x)) Collect"
+  using assms unfolding right_total_def rel_set_def fun_rel_def Domainp_iff by fast
 
 lemma Collect_transfer [transfer_rule]:
   assumes "bi_total A"
-  shows "((A ===> op =) ===> set_rel A) Collect Collect"
-  using assms unfolding fun_rel_def set_rel_def bi_total_def by fast
+  shows "((A ===> op =) ===> rel_set A) Collect Collect"
+  using assms unfolding fun_rel_def rel_set_def bi_total_def by fast
 
 lemma inter_transfer [transfer_rule]:
   assumes "bi_unique A"
-  shows "(set_rel A ===> set_rel A ===> set_rel A) inter inter"
-  using assms unfolding fun_rel_def set_rel_def bi_unique_def by fast
+  shows "(rel_set A ===> rel_set A ===> rel_set A) inter inter"
+  using assms unfolding fun_rel_def rel_set_def bi_unique_def by fast
 
 lemma Diff_transfer [transfer_rule]:
   assumes "bi_unique A"
-  shows "(set_rel A ===> set_rel A ===> set_rel A) (op -) (op -)"
-  using assms unfolding fun_rel_def set_rel_def bi_unique_def
+  shows "(rel_set A ===> rel_set A ===> rel_set A) (op -) (op -)"
+  using assms unfolding fun_rel_def rel_set_def bi_unique_def
   unfolding Ball_def Bex_def Diff_eq
   by (safe, simp, metis, simp, metis)
 
 lemma subset_transfer [transfer_rule]:
   assumes [transfer_rule]: "bi_unique A"
-  shows "(set_rel A ===> set_rel A ===> op =) (op \<subseteq>) (op \<subseteq>)"
+  shows "(rel_set A ===> rel_set A ===> op =) (op \<subseteq>) (op \<subseteq>)"
   unfolding subset_eq [abs_def] by transfer_prover
 
 lemma right_total_UNIV_transfer[transfer_rule]: 
   assumes "right_total A"
-  shows "(set_rel A) (Collect (Domainp A)) UNIV"
-  using assms unfolding right_total_def set_rel_def Domainp_iff by blast
+  shows "(rel_set A) (Collect (Domainp A)) UNIV"
+  using assms unfolding right_total_def rel_set_def Domainp_iff by blast
 
 lemma UNIV_transfer [transfer_rule]:
   assumes "bi_total A"
-  shows "(set_rel A) UNIV UNIV"
-  using assms unfolding set_rel_def bi_total_def by simp
+  shows "(rel_set A) UNIV UNIV"
+  using assms unfolding rel_set_def bi_total_def by simp
 
 lemma right_total_Compl_transfer [transfer_rule]:
   assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
-  shows "(set_rel A ===> set_rel A) (\<lambda>S. uminus S \<inter> Collect (Domainp A)) uminus"
+  shows "(rel_set A ===> rel_set A) (\<lambda>S. uminus S \<inter> Collect (Domainp A)) uminus"
   unfolding Compl_eq [abs_def]
   by (subst Collect_conj_eq[symmetric]) transfer_prover
 
 lemma Compl_transfer [transfer_rule]:
   assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
-  shows "(set_rel A ===> set_rel A) uminus uminus"
+  shows "(rel_set A ===> rel_set A) uminus uminus"
   unfolding Compl_eq [abs_def] by transfer_prover
 
 lemma right_total_Inter_transfer [transfer_rule]:
   assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
-  shows "(set_rel (set_rel A) ===> set_rel A) (\<lambda>S. Inter S \<inter> Collect (Domainp A)) Inter"
+  shows "(rel_set (rel_set A) ===> rel_set A) (\<lambda>S. Inter S \<inter> Collect (Domainp A)) Inter"
   unfolding Inter_eq[abs_def]
   by (subst Collect_conj_eq[symmetric]) transfer_prover
 
 lemma Inter_transfer [transfer_rule]:
   assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
-  shows "(set_rel (set_rel A) ===> set_rel A) Inter Inter"
+  shows "(rel_set (rel_set A) ===> rel_set A) Inter Inter"
   unfolding Inter_eq [abs_def] by transfer_prover
 
 lemma filter_transfer [transfer_rule]:
   assumes [transfer_rule]: "bi_unique A"
-  shows "((A ===> op=) ===> set_rel A ===> set_rel A) Set.filter Set.filter"
-  unfolding Set.filter_def[abs_def] fun_rel_def set_rel_def by blast
+  shows "((A ===> op=) ===> rel_set A ===> rel_set A) Set.filter Set.filter"
+  unfolding Set.filter_def[abs_def] fun_rel_def rel_set_def by blast
 
-lemma bi_unique_set_rel_lemma:
-  assumes "bi_unique R" and "set_rel R X Y"
+lemma bi_unique_rel_set_lemma:
+  assumes "bi_unique R" and "rel_set R X Y"
   obtains f where "Y = image f X" and "inj_on f X" and "\<forall>x\<in>X. R x (f x)"
 proof
   let ?f = "\<lambda>x. THE y. R x y"
   from assms show f: "\<forall>x\<in>X. R x (?f x)"
-    apply (clarsimp simp add: set_rel_def)
+    apply (clarsimp simp add: rel_set_def)
     apply (drule (1) bspec, clarify)
     apply (rule theI2, assumption)
     apply (simp add: bi_unique_def)
@@ -248,13 +248,13 @@
     done
   from assms show "Y = image ?f X"
     apply safe
-    apply (clarsimp simp add: set_rel_def)
+    apply (clarsimp simp add: rel_set_def)
     apply (drule (1) bspec, clarify)
     apply (rule image_eqI)
     apply (rule the_equality [symmetric], assumption)
     apply (simp add: bi_unique_def)
     apply assumption
-    apply (clarsimp simp add: set_rel_def)
+    apply (clarsimp simp add: rel_set_def)
     apply (frule (1) bspec, clarify)
     apply (rule theI2, assumption)
     apply (clarsimp simp add: bi_unique_def)
@@ -269,41 +269,41 @@
 qed
 
 lemma finite_transfer [transfer_rule]:
-  "bi_unique A \<Longrightarrow> (set_rel A ===> op =) finite finite"
-  by (rule fun_relI, erule (1) bi_unique_set_rel_lemma,
+  "bi_unique A \<Longrightarrow> (rel_set A ===> op =) finite finite"
+  by (rule fun_relI, erule (1) bi_unique_rel_set_lemma,
     auto dest: finite_imageD)
 
 lemma card_transfer [transfer_rule]:
-  "bi_unique A \<Longrightarrow> (set_rel A ===> op =) card card"
-  by (rule fun_relI, erule (1) bi_unique_set_rel_lemma, simp add: card_image)
+  "bi_unique A \<Longrightarrow> (rel_set A ===> op =) card card"
+  by (rule fun_relI, erule (1) bi_unique_rel_set_lemma, simp add: card_image)
 
 lemma vimage_parametric [transfer_rule]:
   assumes [transfer_rule]: "bi_total A" "bi_unique B"
-  shows "((A ===> B) ===> set_rel B ===> set_rel A) vimage vimage"
+  shows "((A ===> B) ===> rel_set B ===> rel_set A) vimage vimage"
 unfolding vimage_def[abs_def] by transfer_prover
 
 lemma setsum_parametric [transfer_rule]:
   assumes "bi_unique A"
-  shows "((A ===> op =) ===> set_rel A ===> op =) setsum setsum"
+  shows "((A ===> op =) ===> rel_set A ===> op =) setsum setsum"
 proof(rule fun_relI)+
   fix f :: "'a \<Rightarrow> 'c" and g S T
   assume fg: "(A ===> op =) f g"
-    and ST: "set_rel A S T"
+    and ST: "rel_set A S T"
   show "setsum f S = setsum g T"
   proof(rule setsum_reindex_cong)
     let ?f = "\<lambda>t. THE s. A s t"
     show "S = ?f ` T"
-      by(blast dest: set_relD1[OF ST] set_relD2[OF ST] bi_uniqueDl[OF assms] 
+      by(blast dest: rel_setD1[OF ST] rel_setD2[OF ST] bi_uniqueDl[OF assms] 
            intro: rev_image_eqI the_equality[symmetric] subst[rotated, where P="\<lambda>x. x \<in> S"])
 
     show "inj_on ?f T"
     proof(rule inj_onI)
       fix t1 t2
       assume "t1 \<in> T" "t2 \<in> T" "?f t1 = ?f t2"
-      from ST `t1 \<in> T` obtain s1 where "A s1 t1" "s1 \<in> S" by(auto dest: set_relD2)
+      from ST `t1 \<in> T` obtain s1 where "A s1 t1" "s1 \<in> S" by(auto dest: rel_setD2)
       hence "?f t1 = s1" by(auto dest: bi_uniqueDl[OF assms])
       moreover
-      from ST `t2 \<in> T` obtain s2 where "A s2 t2" "s2 \<in> S" by(auto dest: set_relD2)
+      from ST `t2 \<in> T` obtain s2 where "A s2 t2" "s2 \<in> S" by(auto dest: rel_setD2)
       hence "?f t2 = s2" by(auto dest: bi_uniqueDl[OF assms])
       ultimately have "s1 = s2" using `?f t1 = ?f t2` by simp
       with `A s1 t1` `A s2 t2` show "t1 = t2" by(auto dest: bi_uniqueDr[OF assms])
@@ -311,7 +311,7 @@
 
     fix t
     assume "t \<in> T"
-    with ST obtain s where "A s t" "s \<in> S" by(auto dest: set_relD2)
+    with ST obtain s where "A s t" "s \<in> S" by(auto dest: rel_setD2)
     hence "?f t = s" by(auto dest: bi_uniqueDl[OF assms])
     moreover from fg `A s t` have "f s = g t" by(rule fun_relD)
     ultimately show "g t = f (?f t)" by simp