src/HOL/Hyperreal/HSEQ.thy
changeset 27471 f7aa166d9559
parent 27470 84526c368a58
child 27472 47bc28e011d5
--- a/src/HOL/Hyperreal/HSEQ.thy	Thu Jul 03 17:53:39 2008 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,531 +0,0 @@
-(*  Title       : HSEQ.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Description : Convergence of sequences and series
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-    Additional contributions by Jeremy Avigad and Brian Huffman
-*)
-
-header {* Sequences and Convergence (Nonstandard) *}
-
-theory HSEQ
-imports SEQ NatStar
-begin
-
-definition
-  NSLIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
-    ("((_)/ ----NS> (_))" [60, 60] 60) where
-    --{*Nonstandard definition of convergence of sequence*}
-  [code func del]: "X ----NS> L = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
-
-definition
-  nslim :: "(nat => 'a::real_normed_vector) => 'a" where
-    --{*Nonstandard definition of limit using choice operator*}
-  "nslim X = (THE L. X ----NS> L)"
-
-definition
-  NSconvergent :: "(nat => 'a::real_normed_vector) => bool" where
-    --{*Nonstandard definition of convergence*}
-  "NSconvergent X = (\<exists>L. X ----NS> L)"
-
-definition
-  NSBseq :: "(nat => 'a::real_normed_vector) => bool" where
-    --{*Nonstandard definition for bounded sequence*}
-  [code func del]: "NSBseq X = (\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite)"
-
-definition
-  NSCauchy :: "(nat => 'a::real_normed_vector) => bool" where
-    --{*Nonstandard definition*}
-  [code func del]: "NSCauchy X = (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. ( *f* X) M \<approx> ( *f* X) N)"
-
-subsection {* Limits of Sequences *}
-
-lemma NSLIMSEQ_iff:
-    "(X ----NS> L) = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_I:
-  "(\<And>N. N \<in> HNatInfinite \<Longrightarrow> starfun X N \<approx> star_of L) \<Longrightarrow> X ----NS> L"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_D:
-  "\<lbrakk>X ----NS> L; N \<in> HNatInfinite\<rbrakk> \<Longrightarrow> starfun X N \<approx> star_of L"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_const: "(%n. k) ----NS> k"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_add:
-      "[| X ----NS> a; Y ----NS> b |] ==> (%n. X n + Y n) ----NS> a + b"
-by (auto intro: approx_add simp add: NSLIMSEQ_def starfun_add [symmetric])
-
-lemma NSLIMSEQ_add_const: "f ----NS> a ==> (%n.(f n + b)) ----NS> a + b"
-by (simp only: NSLIMSEQ_add NSLIMSEQ_const)
-
-lemma NSLIMSEQ_mult:
-  fixes a b :: "'a::real_normed_algebra"
-  shows "[| X ----NS> a; Y ----NS> b |] ==> (%n. X n * Y n) ----NS> a * b"
-by (auto intro!: approx_mult_HFinite simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_minus: "X ----NS> a ==> (%n. -(X n)) ----NS> -a"
-by (auto simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_minus_cancel: "(%n. -(X n)) ----NS> -a ==> X ----NS> a"
-by (drule NSLIMSEQ_minus, simp)
-
-(* FIXME: delete *)
-lemma NSLIMSEQ_add_minus:
-     "[| X ----NS> a; Y ----NS> b |] ==> (%n. X n + -Y n) ----NS> a + -b"
-by (simp add: NSLIMSEQ_add NSLIMSEQ_minus)
-
-lemma NSLIMSEQ_diff:
-     "[| X ----NS> a; Y ----NS> b |] ==> (%n. X n - Y n) ----NS> a - b"
-by (simp add: diff_minus NSLIMSEQ_add NSLIMSEQ_minus)
-
-lemma NSLIMSEQ_diff_const: "f ----NS> a ==> (%n.(f n - b)) ----NS> a - b"
-by (simp add: NSLIMSEQ_diff NSLIMSEQ_const)
-
-lemma NSLIMSEQ_inverse:
-  fixes a :: "'a::real_normed_div_algebra"
-  shows "[| X ----NS> a;  a ~= 0 |] ==> (%n. inverse(X n)) ----NS> inverse(a)"
-by (simp add: NSLIMSEQ_def star_of_approx_inverse)
-
-lemma NSLIMSEQ_mult_inverse:
-  fixes a b :: "'a::real_normed_field"
-  shows
-     "[| X ----NS> a;  Y ----NS> b;  b ~= 0 |] ==> (%n. X n / Y n) ----NS> a/b"
-by (simp add: NSLIMSEQ_mult NSLIMSEQ_inverse divide_inverse)
-
-lemma starfun_hnorm: "\<And>x. hnorm (( *f* f) x) = ( *f* (\<lambda>x. norm (f x))) x"
-by transfer simp
-
-lemma NSLIMSEQ_norm: "X ----NS> a \<Longrightarrow> (\<lambda>n. norm (X n)) ----NS> norm a"
-by (simp add: NSLIMSEQ_def starfun_hnorm [symmetric] approx_hnorm)
-
-text{*Uniqueness of limit*}
-lemma NSLIMSEQ_unique: "[| X ----NS> a; X ----NS> b |] ==> a = b"
-apply (simp add: NSLIMSEQ_def)
-apply (drule HNatInfinite_whn [THEN [2] bspec])+
-apply (auto dest: approx_trans3)
-done
-
-lemma NSLIMSEQ_pow [rule_format]:
-  fixes a :: "'a::{real_normed_algebra,recpower}"
-  shows "(X ----NS> a) --> ((%n. (X n) ^ m) ----NS> a ^ m)"
-apply (induct "m")
-apply (auto simp add: power_Suc intro: NSLIMSEQ_mult NSLIMSEQ_const)
-done
-
-text{*We can now try and derive a few properties of sequences,
-     starting with the limit comparison property for sequences.*}
-
-lemma NSLIMSEQ_le:
-       "[| f ----NS> l; g ----NS> m;
-           \<exists>N. \<forall>n \<ge> N. f(n) \<le> g(n)
-        |] ==> l \<le> (m::real)"
-apply (simp add: NSLIMSEQ_def, safe)
-apply (drule starfun_le_mono)
-apply (drule HNatInfinite_whn [THEN [2] bspec])+
-apply (drule_tac x = whn in spec)
-apply (drule bex_Infinitesimal_iff2 [THEN iffD2])+
-apply clarify
-apply (auto intro: hypreal_of_real_le_add_Infininitesimal_cancel2)
-done
-
-lemma NSLIMSEQ_le_const: "[| X ----NS> (r::real); \<forall>n. a \<le> X n |] ==> a \<le> r"
-by (erule NSLIMSEQ_le [OF NSLIMSEQ_const], auto)
-
-lemma NSLIMSEQ_le_const2: "[| X ----NS> (r::real); \<forall>n. X n \<le> a |] ==> r \<le> a"
-by (erule NSLIMSEQ_le [OF _ NSLIMSEQ_const], auto)
-
-text{*Shift a convergent series by 1:
-  By the equivalence between Cauchiness and convergence and because
-  the successor of an infinite hypernatural is also infinite.*}
-
-lemma NSLIMSEQ_Suc: "f ----NS> l ==> (%n. f(Suc n)) ----NS> l"
-apply (unfold NSLIMSEQ_def, safe)
-apply (drule_tac x="N + 1" in bspec)
-apply (erule HNatInfinite_add)
-apply (simp add: starfun_shift_one)
-done
-
-lemma NSLIMSEQ_imp_Suc: "(%n. f(Suc n)) ----NS> l ==> f ----NS> l"
-apply (unfold NSLIMSEQ_def, safe)
-apply (drule_tac x="N - 1" in bspec) 
-apply (erule Nats_1 [THEN [2] HNatInfinite_diff])
-apply (simp add: starfun_shift_one one_le_HNatInfinite)
-done
-
-lemma NSLIMSEQ_Suc_iff: "((%n. f(Suc n)) ----NS> l) = (f ----NS> l)"
-by (blast intro: NSLIMSEQ_imp_Suc NSLIMSEQ_Suc)
-
-subsubsection {* Equivalence of @{term LIMSEQ} and @{term NSLIMSEQ} *}
-
-lemma LIMSEQ_NSLIMSEQ:
-  assumes X: "X ----> L" shows "X ----NS> L"
-proof (rule NSLIMSEQ_I)
-  fix N assume N: "N \<in> HNatInfinite"
-  have "starfun X N - star_of L \<in> Infinitesimal"
-  proof (rule InfinitesimalI2)
-    fix r::real assume r: "0 < r"
-    from LIMSEQ_D [OF X r]
-    obtain no where "\<forall>n\<ge>no. norm (X n - L) < r" ..
-    hence "\<forall>n\<ge>star_of no. hnorm (starfun X n - star_of L) < star_of r"
-      by transfer
-    thus "hnorm (starfun X N - star_of L) < star_of r"
-      using N by (simp add: star_of_le_HNatInfinite)
-  qed
-  thus "starfun X N \<approx> star_of L"
-    by (unfold approx_def)
-qed
-
-lemma NSLIMSEQ_LIMSEQ:
-  assumes X: "X ----NS> L" shows "X ----> L"
-proof (rule LIMSEQ_I)
-  fix r::real assume r: "0 < r"
-  have "\<exists>no. \<forall>n\<ge>no. hnorm (starfun X n - star_of L) < star_of r"
-  proof (intro exI allI impI)
-    fix n assume "whn \<le> n"
-    with HNatInfinite_whn have "n \<in> HNatInfinite"
-      by (rule HNatInfinite_upward_closed)
-    with X have "starfun X n \<approx> star_of L"
-      by (rule NSLIMSEQ_D)
-    hence "starfun X n - star_of L \<in> Infinitesimal"
-      by (unfold approx_def)
-    thus "hnorm (starfun X n - star_of L) < star_of r"
-      using r by (rule InfinitesimalD2)
-  qed
-  thus "\<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
-    by transfer
-qed
-
-theorem LIMSEQ_NSLIMSEQ_iff: "(f ----> L) = (f ----NS> L)"
-by (blast intro: LIMSEQ_NSLIMSEQ NSLIMSEQ_LIMSEQ)
-
-(* Used once by Integration/Rats.thy in AFP *)
-lemma NSLIMSEQ_finite_set:
-     "!!(f::nat=>nat). \<forall>n. n \<le> f n ==> finite {n. f n \<le> u}"
-by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
-
-subsubsection {* Derived theorems about @{term NSLIMSEQ} *}
-
-text{*We prove the NS version from the standard one, since the NS proof
-   seems more complicated than the standard one above!*}
-lemma NSLIMSEQ_norm_zero: "((\<lambda>n. norm (X n)) ----NS> 0) = (X ----NS> 0)"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_norm_zero)
-
-lemma NSLIMSEQ_rabs_zero: "((%n. \<bar>f n\<bar>) ----NS> 0) = (f ----NS> (0::real))"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_rabs_zero)
-
-text{*Generalization to other limits*}
-lemma NSLIMSEQ_imp_rabs: "f ----NS> (l::real) ==> (%n. \<bar>f n\<bar>) ----NS> \<bar>l\<bar>"
-apply (simp add: NSLIMSEQ_def)
-apply (auto intro: approx_hrabs 
-            simp add: starfun_abs)
-done
-
-lemma NSLIMSEQ_inverse_zero:
-     "\<forall>y::real. \<exists>N. \<forall>n \<ge> N. y < f(n)
-      ==> (%n. inverse(f n)) ----NS> 0"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_zero)
-
-lemma NSLIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) ----NS> 0"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat)
-
-lemma NSLIMSEQ_inverse_real_of_nat_add:
-     "(%n. r + inverse(real(Suc n))) ----NS> r"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat_add)
-
-lemma NSLIMSEQ_inverse_real_of_nat_add_minus:
-     "(%n. r + -inverse(real(Suc n))) ----NS> r"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat_add_minus)
-
-lemma NSLIMSEQ_inverse_real_of_nat_add_minus_mult:
-     "(%n. r*( 1 + -inverse(real(Suc n)))) ----NS> r"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat_add_minus_mult)
-
-
-subsection {* Convergence *}
-
-lemma nslimI: "X ----NS> L ==> nslim X = L"
-apply (simp add: nslim_def)
-apply (blast intro: NSLIMSEQ_unique)
-done
-
-lemma lim_nslim_iff: "lim X = nslim X"
-by (simp add: lim_def nslim_def LIMSEQ_NSLIMSEQ_iff)
-
-lemma NSconvergentD: "NSconvergent X ==> \<exists>L. (X ----NS> L)"
-by (simp add: NSconvergent_def)
-
-lemma NSconvergentI: "(X ----NS> L) ==> NSconvergent X"
-by (auto simp add: NSconvergent_def)
-
-lemma convergent_NSconvergent_iff: "convergent X = NSconvergent X"
-by (simp add: convergent_def NSconvergent_def LIMSEQ_NSLIMSEQ_iff)
-
-lemma NSconvergent_NSLIMSEQ_iff: "NSconvergent X = (X ----NS> nslim X)"
-by (auto intro: theI NSLIMSEQ_unique simp add: NSconvergent_def nslim_def)
-
-
-subsection {* Bounded Monotonic Sequences *}
-
-lemma NSBseqD: "[| NSBseq X;  N: HNatInfinite |] ==> ( *f* X) N : HFinite"
-by (simp add: NSBseq_def)
-
-lemma Standard_subset_HFinite: "Standard \<subseteq> HFinite"
-unfolding Standard_def by auto
-
-lemma NSBseqD2: "NSBseq X \<Longrightarrow> ( *f* X) N \<in> HFinite"
-apply (cases "N \<in> HNatInfinite")
-apply (erule (1) NSBseqD)
-apply (rule subsetD [OF Standard_subset_HFinite])
-apply (simp add: HNatInfinite_def Nats_eq_Standard)
-done
-
-lemma NSBseqI: "\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite ==> NSBseq X"
-by (simp add: NSBseq_def)
-
-text{*The standard definition implies the nonstandard definition*}
-
-lemma Bseq_NSBseq: "Bseq X ==> NSBseq X"
-proof (unfold NSBseq_def, safe)
-  assume X: "Bseq X"
-  fix N assume N: "N \<in> HNatInfinite"
-  from BseqD [OF X] obtain K where "\<forall>n. norm (X n) \<le> K" by fast
-  hence "\<forall>N. hnorm (starfun X N) \<le> star_of K" by transfer
-  hence "hnorm (starfun X N) \<le> star_of K" by simp
-  also have "star_of K < star_of (K + 1)" by simp
-  finally have "\<exists>x\<in>Reals. hnorm (starfun X N) < x" by (rule bexI, simp)
-  thus "starfun X N \<in> HFinite" by (simp add: HFinite_def)
-qed
-
-text{*The nonstandard definition implies the standard definition*}
-
-lemma SReal_less_omega: "r \<in> \<real> \<Longrightarrow> r < \<omega>"
-apply (insert HInfinite_omega)
-apply (simp add: HInfinite_def)
-apply (simp add: order_less_imp_le)
-done
-
-lemma NSBseq_Bseq: "NSBseq X \<Longrightarrow> Bseq X"
-proof (rule ccontr)
-  let ?n = "\<lambda>K. LEAST n. K < norm (X n)"
-  assume "NSBseq X"
-  hence finite: "( *f* X) (( *f* ?n) \<omega>) \<in> HFinite"
-    by (rule NSBseqD2)
-  assume "\<not> Bseq X"
-  hence "\<forall>K>0. \<exists>n. K < norm (X n)"
-    by (simp add: Bseq_def linorder_not_le)
-  hence "\<forall>K>0. K < norm (X (?n K))"
-    by (auto intro: LeastI_ex)
-  hence "\<forall>K>0. K < hnorm (( *f* X) (( *f* ?n) K))"
-    by transfer
-  hence "\<omega> < hnorm (( *f* X) (( *f* ?n) \<omega>))"
-    by simp
-  hence "\<forall>r\<in>\<real>. r < hnorm (( *f* X) (( *f* ?n) \<omega>))"
-    by (simp add: order_less_trans [OF SReal_less_omega])
-  hence "( *f* X) (( *f* ?n) \<omega>) \<in> HInfinite"
-    by (simp add: HInfinite_def)
-  with finite show "False"
-    by (simp add: HFinite_HInfinite_iff)
-qed
-
-text{* Equivalence of nonstandard and standard definitions
-  for a bounded sequence*}
-lemma Bseq_NSBseq_iff: "(Bseq X) = (NSBseq X)"
-by (blast intro!: NSBseq_Bseq Bseq_NSBseq)
-
-text{*A convergent sequence is bounded: 
- Boundedness as a necessary condition for convergence. 
- The nonstandard version has no existential, as usual *}
-
-lemma NSconvergent_NSBseq: "NSconvergent X ==> NSBseq X"
-apply (simp add: NSconvergent_def NSBseq_def NSLIMSEQ_def)
-apply (blast intro: HFinite_star_of approx_sym approx_HFinite)
-done
-
-text{*Standard Version: easily now proved using equivalence of NS and
- standard definitions *}
-
-lemma convergent_Bseq: "convergent X ==> Bseq X"
-by (simp add: NSconvergent_NSBseq convergent_NSconvergent_iff Bseq_NSBseq_iff)
-
-subsubsection{*Upper Bounds and Lubs of Bounded Sequences*}
-
-lemma NSBseq_isUb: "NSBseq X ==> \<exists>U::real. isUb UNIV {x. \<exists>n. X n = x} U"
-by (simp add: Bseq_NSBseq_iff [symmetric] Bseq_isUb)
-
-lemma NSBseq_isLub: "NSBseq X ==> \<exists>U::real. isLub UNIV {x. \<exists>n. X n = x} U"
-by (simp add: Bseq_NSBseq_iff [symmetric] Bseq_isLub)
-
-subsubsection{*A Bounded and Monotonic Sequence Converges*}
-
-text{* The best of both worlds: Easier to prove this result as a standard
-   theorem and then use equivalence to "transfer" it into the
-   equivalent nonstandard form if needed!*}
-
-lemma Bmonoseq_NSLIMSEQ: "\<forall>n \<ge> m. X n = X m ==> \<exists>L. (X ----NS> L)"
-by (auto dest!: Bmonoseq_LIMSEQ simp add: LIMSEQ_NSLIMSEQ_iff)
-
-lemma NSBseq_mono_NSconvergent:
-     "[| NSBseq X; \<forall>m. \<forall>n \<ge> m. X m \<le> X n |] ==> NSconvergent (X::nat=>real)"
-by (auto intro: Bseq_mono_convergent 
-         simp add: convergent_NSconvergent_iff [symmetric] 
-                   Bseq_NSBseq_iff [symmetric])
-
-
-subsection {* Cauchy Sequences *}
-
-lemma NSCauchyI:
-  "(\<And>M N. \<lbrakk>M \<in> HNatInfinite; N \<in> HNatInfinite\<rbrakk> \<Longrightarrow> starfun X M \<approx> starfun X N)
-   \<Longrightarrow> NSCauchy X"
-by (simp add: NSCauchy_def)
-
-lemma NSCauchyD:
-  "\<lbrakk>NSCauchy X; M \<in> HNatInfinite; N \<in> HNatInfinite\<rbrakk>
-   \<Longrightarrow> starfun X M \<approx> starfun X N"
-by (simp add: NSCauchy_def)
-
-subsubsection{*Equivalence Between NS and Standard*}
-
-lemma Cauchy_NSCauchy:
-  assumes X: "Cauchy X" shows "NSCauchy X"
-proof (rule NSCauchyI)
-  fix M assume M: "M \<in> HNatInfinite"
-  fix N assume N: "N \<in> HNatInfinite"
-  have "starfun X M - starfun X N \<in> Infinitesimal"
-  proof (rule InfinitesimalI2)
-    fix r :: real assume r: "0 < r"
-    from CauchyD [OF X r]
-    obtain k where "\<forall>m\<ge>k. \<forall>n\<ge>k. norm (X m - X n) < r" ..
-    hence "\<forall>m\<ge>star_of k. \<forall>n\<ge>star_of k.
-           hnorm (starfun X m - starfun X n) < star_of r"
-      by transfer
-    thus "hnorm (starfun X M - starfun X N) < star_of r"
-      using M N by (simp add: star_of_le_HNatInfinite)
-  qed
-  thus "starfun X M \<approx> starfun X N"
-    by (unfold approx_def)
-qed
-
-lemma NSCauchy_Cauchy:
-  assumes X: "NSCauchy X" shows "Cauchy X"
-proof (rule CauchyI)
-  fix r::real assume r: "0 < r"
-  have "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. hnorm (starfun X m - starfun X n) < star_of r"
-  proof (intro exI allI impI)
-    fix M assume "whn \<le> M"
-    with HNatInfinite_whn have M: "M \<in> HNatInfinite"
-      by (rule HNatInfinite_upward_closed)
-    fix N assume "whn \<le> N"
-    with HNatInfinite_whn have N: "N \<in> HNatInfinite"
-      by (rule HNatInfinite_upward_closed)
-    from X M N have "starfun X M \<approx> starfun X N"
-      by (rule NSCauchyD)
-    hence "starfun X M - starfun X N \<in> Infinitesimal"
-      by (unfold approx_def)
-    thus "hnorm (starfun X M - starfun X N) < star_of r"
-      using r by (rule InfinitesimalD2)
-  qed
-  thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. norm (X m - X n) < r"
-    by transfer
-qed
-
-theorem NSCauchy_Cauchy_iff: "NSCauchy X = Cauchy X"
-by (blast intro!: NSCauchy_Cauchy Cauchy_NSCauchy)
-
-subsubsection {* Cauchy Sequences are Bounded *}
-
-text{*A Cauchy sequence is bounded -- nonstandard version*}
-
-lemma NSCauchy_NSBseq: "NSCauchy X ==> NSBseq X"
-by (simp add: Cauchy_Bseq Bseq_NSBseq_iff [symmetric] NSCauchy_Cauchy_iff)
-
-subsubsection {* Cauchy Sequences are Convergent *}
-
-text{*Equivalence of Cauchy criterion and convergence:
-  We will prove this using our NS formulation which provides a
-  much easier proof than using the standard definition. We do not
-  need to use properties of subsequences such as boundedness,
-  monotonicity etc... Compare with Harrison's corresponding proof
-  in HOL which is much longer and more complicated. Of course, we do
-  not have problems which he encountered with guessing the right
-  instantiations for his 'espsilon-delta' proof(s) in this case
-  since the NS formulations do not involve existential quantifiers.*}
-
-lemma NSconvergent_NSCauchy: "NSconvergent X \<Longrightarrow> NSCauchy X"
-apply (simp add: NSconvergent_def NSLIMSEQ_def NSCauchy_def, safe)
-apply (auto intro: approx_trans2)
-done
-
-lemma real_NSCauchy_NSconvergent:
-  fixes X :: "nat \<Rightarrow> real"
-  shows "NSCauchy X \<Longrightarrow> NSconvergent X"
-apply (simp add: NSconvergent_def NSLIMSEQ_def)
-apply (frule NSCauchy_NSBseq)
-apply (simp add: NSBseq_def NSCauchy_def)
-apply (drule HNatInfinite_whn [THEN [2] bspec])
-apply (drule HNatInfinite_whn [THEN [2] bspec])
-apply (auto dest!: st_part_Ex simp add: SReal_iff)
-apply (blast intro: approx_trans3)
-done
-
-lemma NSCauchy_NSconvergent:
-  fixes X :: "nat \<Rightarrow> 'a::banach"
-  shows "NSCauchy X \<Longrightarrow> NSconvergent X"
-apply (drule NSCauchy_Cauchy [THEN Cauchy_convergent])
-apply (erule convergent_NSconvergent_iff [THEN iffD1])
-done
-
-lemma NSCauchy_NSconvergent_iff:
-  fixes X :: "nat \<Rightarrow> 'a::banach"
-  shows "NSCauchy X = NSconvergent X"
-by (fast intro: NSCauchy_NSconvergent NSconvergent_NSCauchy)
-
-
-subsection {* Power Sequences *}
-
-text{*The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
-"x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
-  also fact that bounded and monotonic sequence converges.*}
-
-text{* We now use NS criterion to bring proof of theorem through *}
-
-lemma NSLIMSEQ_realpow_zero:
-  "[| 0 \<le> (x::real); x < 1 |] ==> (%n. x ^ n) ----NS> 0"
-apply (simp add: NSLIMSEQ_def)
-apply (auto dest!: convergent_realpow simp add: convergent_NSconvergent_iff)
-apply (frule NSconvergentD)
-apply (auto simp add: NSLIMSEQ_def NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfun_pow)
-apply (frule HNatInfinite_add_one)
-apply (drule bspec, assumption)
-apply (drule bspec, assumption)
-apply (drule_tac x = "N + (1::hypnat) " in bspec, assumption)
-apply (simp add: hyperpow_add)
-apply (drule approx_mult_subst_star_of, assumption)
-apply (drule approx_trans3, assumption)
-apply (auto simp del: star_of_mult simp add: star_of_mult [symmetric])
-done
-
-lemma NSLIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < (1::real) ==> (%n. \<bar>c\<bar> ^ n) ----NS> 0"
-by (simp add: LIMSEQ_rabs_realpow_zero LIMSEQ_NSLIMSEQ_iff [symmetric])
-
-lemma NSLIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < (1::real) ==> (%n. c ^ n) ----NS> 0"
-by (simp add: LIMSEQ_rabs_realpow_zero2 LIMSEQ_NSLIMSEQ_iff [symmetric])
-
-(***---------------------------------------------------------------
-    Theorems proved by Harrison in HOL that we do not need
-    in order to prove equivalence between Cauchy criterion
-    and convergence:
- -- Show that every sequence contains a monotonic subsequence
-Goal "\<exists>f. subseq f & monoseq (%n. s (f n))"
- -- Show that a subsequence of a bounded sequence is bounded
-Goal "Bseq X ==> Bseq (%n. X (f n))";
- -- Show we can take subsequential terms arbitrarily far
-    up a sequence
-Goal "subseq f ==> n \<le> f(n)";
-Goal "subseq f ==> \<exists>n. N1 \<le> n & N2 \<le> f(n)";
- ---------------------------------------------------------------***)
-
-end