src/HOL/IMP/Transition.thy
changeset 43145 faba4800b00b
parent 43139 9ed5d8ad8fa0
parent 43144 631dd866b284
child 43146 09f74fda1b1d
--- a/src/HOL/IMP/Transition.thy	Wed Jun 01 19:50:59 2011 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,644 +0,0 @@
-(*  Title:        HOL/IMP/Transition.thy
-    Author:       Tobias Nipkow & Robert Sandner, TUM
-    Isar Version: Gerwin Klein, 2001
-    Copyright     1996 TUM
-*)
-
-header "Transition Semantics of Commands"
-
-theory Transition imports Natural begin
-
-subsection "The transition relation"
-
-text {*
-  We formalize the transition semantics as in \cite{Nielson}. This
-  makes some of the rules a bit more intuitive, but also requires
-  some more (internal) formal overhead.
-
-  Since configurations that have terminated are written without
-  a statement, the transition relation is not
-  @{typ "((com \<times> state) \<times> (com \<times> state)) set"}
-  but instead:
-  @{typ "((com option \<times> state) \<times> (com option \<times> state)) set"}
-
-  Some syntactic sugar that we will use to hide the
-  @{text option} part in configurations:
-*}
-abbreviation
-  angle :: "[com, state] \<Rightarrow> com option \<times> state" ("<_,_>") where
-  "<c,s> == (Some c, s)"
-abbreviation
-  angle2 :: "state \<Rightarrow> com option \<times> state"  ("<_>") where
-  "<s> == (None, s)"
-
-notation (xsymbols)
-  angle  ("\<langle>_,_\<rangle>") and
-  angle2  ("\<langle>_\<rangle>")
-
-notation (HTML output)
-  angle  ("\<langle>_,_\<rangle>") and
-  angle2  ("\<langle>_\<rangle>")
-
-text {*
-  Now, finally, we are set to write down the rules for our small step semantics:
-*}
-inductive_set
-  evalc1 :: "((com option \<times> state) \<times> (com option \<times> state)) set"
-  and evalc1' :: "[(com option\<times>state),(com option\<times>state)] \<Rightarrow> bool"
-    ("_ \<longrightarrow>\<^sub>1 _" [60,60] 61)
-where
-  "cs \<longrightarrow>\<^sub>1 cs' == (cs,cs') \<in> evalc1"
-| Skip:    "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s\<rangle>"
-| Assign:  "\<langle>x :== a, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s[x \<mapsto> a s]\<rangle>"
-
-| Semi1:   "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'\<rangle> \<Longrightarrow> \<langle>c0;c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1,s'\<rangle>"
-| Semi2:   "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0',s'\<rangle> \<Longrightarrow> \<langle>c0;c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0';c1,s'\<rangle>"
-
-| IfTrue:  "b s \<Longrightarrow> \<langle>\<IF> b \<THEN> c1 \<ELSE> c2,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1,s\<rangle>"
-| IfFalse: "\<not>b s \<Longrightarrow> \<langle>\<IF> b \<THEN> c1 \<ELSE> c2,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c2,s\<rangle>"
-
-| While:   "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<IF> b \<THEN> c; \<WHILE> b \<DO> c \<ELSE> \<SKIP>,s\<rangle>"
-
-lemmas [intro] = evalc1.intros -- "again, use these rules in automatic proofs"
-
-text {*
-  More syntactic sugar for the transition relation, and its
-  iteration.
-*}
-abbreviation
-  evalcn :: "[(com option\<times>state),nat,(com option\<times>state)] \<Rightarrow> bool"
-    ("_ -_\<rightarrow>\<^sub>1 _" [60,60,60] 60)  where
-  "cs -n\<rightarrow>\<^sub>1 cs' == (cs,cs') \<in> evalc1^^n"
-
-abbreviation
-  evalc' :: "[(com option\<times>state),(com option\<times>state)] \<Rightarrow> bool"
-    ("_ \<longrightarrow>\<^sub>1\<^sup>* _" [60,60] 60)  where
-  "cs \<longrightarrow>\<^sub>1\<^sup>* cs' == (cs,cs') \<in> evalc1^*"
-
-(*<*)
-declare rel_pow_Suc_E2 [elim!]
-(*>*)
-
-text {*
-  As for the big step semantics you can read these rules in a
-  syntax directed way:
-*}
-lemma SKIP_1: "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 y = (y = \<langle>s\<rangle>)"
-  by (induct y, rule, cases set: evalc1, auto)
-
-lemma Assign_1: "\<langle>x :== a, s\<rangle> \<longrightarrow>\<^sub>1 y = (y = \<langle>s[x \<mapsto> a s]\<rangle>)"
-  by (induct y, rule, cases set: evalc1, auto)
-
-lemma Cond_1:
-  "\<langle>\<IF> b \<THEN> c1 \<ELSE> c2, s\<rangle> \<longrightarrow>\<^sub>1 y = ((b s \<longrightarrow> y = \<langle>c1, s\<rangle>) \<and> (\<not>b s \<longrightarrow> y = \<langle>c2, s\<rangle>))"
-  by (induct y, rule, cases set: evalc1, auto)
-
-lemma While_1:
-  "\<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>1 y = (y = \<langle>\<IF> b \<THEN> c; \<WHILE> b \<DO> c \<ELSE> \<SKIP>, s\<rangle>)"
-  by (induct y, rule, cases set: evalc1, auto)
-
-lemmas [simp] = SKIP_1 Assign_1 Cond_1 While_1
-
-
-subsection "Examples"
-
-lemma
-  "s x = 0 \<Longrightarrow> \<langle>\<WHILE> \<lambda>s. s x \<noteq> 1 \<DO> (x:== \<lambda>s. s x+1), s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s[x \<mapsto> 1]\<rangle>"
-  (is "_ \<Longrightarrow> \<langle>?w, _\<rangle> \<longrightarrow>\<^sub>1\<^sup>* _")
-proof -
-  let ?c  = "x:== \<lambda>s. s x+1"
-  let ?if = "\<IF> \<lambda>s. s x \<noteq> 1 \<THEN> ?c; ?w \<ELSE> \<SKIP>"
-  assume [simp]: "s x = 0"
-  have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1  \<langle>?if, s\<rangle>" ..
-  also have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?c; ?w, s\<rangle>" by simp
-  also have "\<langle>?c; ?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 1]\<rangle>" by (rule Semi1) simp
-  also have "\<langle>?w, s[x \<mapsto> 1]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s[x \<mapsto> 1]\<rangle>" ..
-  also have "\<langle>?if, s[x \<mapsto> 1]\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<SKIP>, s[x \<mapsto> 1]\<rangle>" by (simp add: update_def)
-  also have "\<langle>\<SKIP>, s[x \<mapsto> 1]\<rangle> \<longrightarrow>\<^sub>1 \<langle>s[x \<mapsto> 1]\<rangle>" ..
-  finally show ?thesis ..
-qed
-
-lemma
-  "s x = 2 \<Longrightarrow> \<langle>\<WHILE> \<lambda>s. s x \<noteq> 1 \<DO> (x:== \<lambda>s. s x+1), s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* s'"
-  (is "_ \<Longrightarrow> \<langle>?w, _\<rangle> \<longrightarrow>\<^sub>1\<^sup>* s'")
-proof -
-  let ?c = "x:== \<lambda>s. s x+1"
-  let ?if = "\<IF> \<lambda>s. s x \<noteq> 1 \<THEN> ?c; ?w \<ELSE> \<SKIP>"
-  assume [simp]: "s x = 2"
-  note update_def [simp]
-  have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1  \<langle>?if, s\<rangle>" ..
-  also have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?c; ?w, s\<rangle>" by simp
-  also have "\<langle>?c; ?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 3]\<rangle>" by (rule Semi1) simp
-  also have "\<langle>?w, s[x \<mapsto> 3]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s[x \<mapsto> 3]\<rangle>" ..
-  also have "\<langle>?if, s[x \<mapsto> 3]\<rangle> \<longrightarrow>\<^sub>1  \<langle>?c; ?w, s[x \<mapsto> 3]\<rangle>" by simp
-  also have "\<langle>?c; ?w, s[x \<mapsto> 3]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 4]\<rangle>" by (rule Semi1) simp
-  also have "\<langle>?w, s[x \<mapsto> 4]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s[x \<mapsto> 4]\<rangle>" ..
-  also have "\<langle>?if, s[x \<mapsto> 4]\<rangle> \<longrightarrow>\<^sub>1  \<langle>?c; ?w, s[x \<mapsto> 4]\<rangle>" by simp
-  also have "\<langle>?c; ?w, s[x \<mapsto> 4]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 5]\<rangle>" by (rule Semi1) simp
-  oops
-
-subsection "Basic properties"
-
-text {*
-  There are no \emph{stuck} programs:
-*}
-lemma no_stuck: "\<exists>y. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1 y"
-proof (induct c)
-  -- "case Semi:"
-  fix c1 c2 assume "\<exists>y. \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 y"
-  then obtain y where "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 y" ..
-  then obtain c1' s' where "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'\<rangle> \<or> \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1',s'\<rangle>"
-    by (cases y, cases "fst y") auto
-  thus "\<exists>s'. \<langle>c1;c2,s\<rangle> \<longrightarrow>\<^sub>1 s'" by auto
-next
-  -- "case If:"
-  fix b c1 c2 assume "\<exists>y. \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 y" and "\<exists>y. \<langle>c2,s\<rangle> \<longrightarrow>\<^sub>1 y"
-  thus "\<exists>y. \<langle>\<IF> b \<THEN> c1 \<ELSE> c2, s\<rangle> \<longrightarrow>\<^sub>1 y" by (cases "b s") auto
-qed auto -- "the rest is trivial"
-
-text {*
-  If a configuration does not contain a statement, the program
-  has terminated and there is no next configuration:
-*}
-lemma stuck [elim!]: "\<langle>s\<rangle> \<longrightarrow>\<^sub>1 y \<Longrightarrow> P"
-  by (induct y, auto elim: evalc1.cases)
-
-lemma evalc_None_retrancl [simp, dest!]: "\<langle>s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* s' \<Longrightarrow> s' = \<langle>s\<rangle>"
-  by (induct set: rtrancl) auto
-
-(*<*)
-(* FIXME: relpow.simps don't work *)
-lemmas [simp del] = relpow.simps
-lemma rel_pow_0 [simp]: "!!R::('a*'a) set. R ^^ 0 = Id" by (simp add: relpow.simps)
-lemma rel_pow_Suc_0 [simp]: "!!R::('a*'a) set. R ^^ Suc 0 = R" by (simp add: relpow.simps)
-
-(*>*)
-lemma evalc1_None_0 [simp]: "\<langle>s\<rangle> -n\<rightarrow>\<^sub>1 y = (n = 0 \<and> y = \<langle>s\<rangle>)"
-  by (cases n) auto
-
-lemma SKIP_n: "\<langle>\<SKIP>, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<Longrightarrow> s' = s \<and> n=1"
-  by (cases n) auto
-
-subsection "Equivalence to natural semantics (after Nielson and Nielson)"
-
-text {*
-  We first need two lemmas about semicolon statements:
-  decomposition and composition.
-*}
-lemma semiD:
-  "\<langle>c1; c2, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<Longrightarrow>
-  \<exists>i j s'. \<langle>c1, s\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<and> \<langle>c2, s'\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<and> n = i+j"
-proof (induct n arbitrary: c1 c2 s s'')
-  case 0
-  then show ?case by simp
-next
-  case (Suc n)
-
-  from `\<langle>c1; c2, s\<rangle> -Suc n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>`
-  obtain co s''' where
-      1: "\<langle>c1; c2, s\<rangle> \<longrightarrow>\<^sub>1 (co, s''')" and
-      n: "(co, s''') -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>"
-    by auto
-
-  from 1
-  show "\<exists>i j s'. \<langle>c1, s\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<and> \<langle>c2, s'\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<and> Suc n = i+j"
-    (is "\<exists>i j s'. ?Q i j s'")
-  proof (cases set: evalc1)
-    case Semi1
-    from `co = Some c2` and `\<langle>c1, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'''\<rangle>` and 1 n
-    have "?Q 1 n s'''" by simp
-    thus ?thesis by blast
-  next
-    case (Semi2 c1')
-    note c1 = `\<langle>c1, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1', s'''\<rangle>`
-    with `co = Some (c1'; c2)` and n
-    have "\<langle>c1'; c2, s'''\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by simp
-    with Suc.hyps obtain i j s0 where
-        c1': "\<langle>c1',s'''\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s0\<rangle>" and
-        c2:  "\<langle>c2,s0\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" and
-        i:   "n = i+j"
-      by fast
-
-    from c1 c1'
-    have "\<langle>c1,s\<rangle> -(i+1)\<rightarrow>\<^sub>1 \<langle>s0\<rangle>" by (auto intro: rel_pow_Suc_I2)
-    with c2 i
-    have "?Q (i+1) j s0" by simp
-    thus ?thesis by blast
-  qed
-qed
-
-
-lemma semiI:
-  "\<langle>c0,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<Longrightarrow> \<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle> \<Longrightarrow> \<langle>c0; c1, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-proof (induct n arbitrary: c0 s s'')
-  case 0
-  from `\<langle>c0,s\<rangle> -(0::nat)\<rightarrow>\<^sub>1 \<langle>s''\<rangle>`
-  have False by simp
-  thus ?case ..
-next
-  case (Suc n)
-  note c0 = `\<langle>c0,s\<rangle> -Suc n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>`
-  note c1 = `\<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>`
-  note IH = `\<And>c0 s s''.
-    \<langle>c0,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<Longrightarrow> \<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle> \<Longrightarrow> \<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>`
-  from c0 obtain y where
-    1: "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1 y" and n: "y -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by blast
-  from 1 obtain c0' s0' where
-      "y = \<langle>s0'\<rangle> \<or> y = \<langle>c0', s0'\<rangle>"
-    by (cases y, cases "fst y") auto
-  moreover
-  { assume y: "y = \<langle>s0'\<rangle>"
-    with n have "s'' = s0'" by simp
-    with y 1 have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1, s''\<rangle>" by blast
-    with c1 have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (blast intro: rtrancl_trans)
-  }
-  moreover
-  { assume y: "y = \<langle>c0', s0'\<rangle>"
-    with n have "\<langle>c0', s0'\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by blast
-    with IH c1 have "\<langle>c0'; c1,s0'\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by blast
-    moreover
-    from y 1 have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0'; c1,s0'\<rangle>" by blast
-    hence "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c0'; c1,s0'\<rangle>" by blast
-    ultimately
-    have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (blast intro: rtrancl_trans)
-  }
-  ultimately
-  show "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by blast
-qed
-
-text {*
-  The easy direction of the equivalence proof:
-*}
-lemma evalc_imp_evalc1:
-  assumes "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'"
-  shows "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-  using assms
-proof induct
-  fix s show "\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" by auto
-next
-  fix x a s show "\<langle>x :== a ,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s[x\<mapsto>a s]\<rangle>" by auto
-next
-  fix c0 c1 s s'' s'
-  assume "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s''\<rangle>"
-  then obtain n where "\<langle>c0,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by (blast dest: rtrancl_imp_rel_pow)
-  moreover
-  assume "\<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-  ultimately
-  show "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (rule semiI)
-next
-  fix s::state and b c0 c1 s'
-  assume "b s"
-  hence "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0,s\<rangle>" by simp
-  also assume "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-  finally show "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" .
-next
-  fix s::state and b c0 c1 s'
-  assume "\<not>b s"
-  hence "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1,s\<rangle>" by simp
-  also assume "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-  finally show "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" .
-next
-  fix b c and s::state
-  assume b: "\<not>b s"
-  let ?if = "\<IF> b \<THEN> c; \<WHILE> b \<DO> c \<ELSE> \<SKIP>"
-  have "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s\<rangle>" by blast
-  also have "\<langle>?if,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<SKIP>, s\<rangle>" by (simp add: b)
-  also have "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s\<rangle>" by blast
-  finally show "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" ..
-next
-  fix b c s s'' s'
-  let ?w  = "\<WHILE> b \<DO> c"
-  let ?if = "\<IF> b \<THEN> c; ?w \<ELSE> \<SKIP>"
-  assume w: "\<langle>?w,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-  assume c: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s''\<rangle>"
-  assume b: "b s"
-  have "\<langle>?w,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s\<rangle>" by blast
-  also have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c; ?w, s\<rangle>" by (simp add: b)
-  also
-  from c obtain n where "\<langle>c,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by (blast dest: rtrancl_imp_rel_pow)
-  with w have "\<langle>c; ?w,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by - (rule semiI)
-  finally show "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" ..
-qed
-
-text {*
-  Finally, the equivalence theorem:
-*}
-theorem evalc_equiv_evalc1:
-  "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s' = \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-proof
-  assume "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'"
-  then show "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (rule evalc_imp_evalc1)
-next
-  assume "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>"
-  then obtain n where "\<langle>c, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by (blast dest: rtrancl_imp_rel_pow)
-  moreover
-  have "\<langle>c, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'"
-  proof (induct arbitrary: c s s' rule: less_induct)
-    fix n
-    assume IH: "\<And>m c s s'. m < n \<Longrightarrow> \<langle>c,s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'"
-    fix c s s'
-    assume c:  "\<langle>c, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle>"
-    then obtain m where n: "n = Suc m" by (cases n) auto
-    with c obtain y where
-      c': "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1 y" and m: "y -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by blast
-    show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'"
-    proof (cases c)
-      case SKIP
-      with c n show ?thesis by auto
-    next
-      case Assign
-      with c n show ?thesis by auto
-    next
-      fix c1 c2 assume semi: "c = (c1; c2)"
-      with c obtain i j s'' where
-          c1: "\<langle>c1, s\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" and
-          c2: "\<langle>c2, s''\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" and
-          ij: "n = i+j"
-        by (blast dest: semiD)
-      from c1 c2 obtain
-        "0 < i" and "0 < j" by (cases i, auto, cases j, auto)
-      with ij obtain
-        i: "i < n" and j: "j < n" by simp
-      from IH i c1
-      have "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s''" .
-      moreover
-      from IH j c2
-      have "\<langle>c2,s''\<rangle> \<longrightarrow>\<^sub>c s'" .
-      moreover
-      note semi
-      ultimately
-      show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
-    next
-      fix b c1 c2 assume If: "c = \<IF> b \<THEN> c1 \<ELSE> c2"
-      { assume True: "b s = True"
-        with If c n
-        have "\<langle>c1,s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by auto
-        with n IH
-        have "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
-        with If True
-        have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
-      }
-      moreover
-      { assume False: "b s = False"
-        with If c n
-        have "\<langle>c2,s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by auto
-        with n IH
-        have "\<langle>c2,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
-        with If False
-        have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
-      }
-      ultimately
-      show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by (cases "b s") auto
-    next
-      fix b c' assume w: "c = \<WHILE> b \<DO> c'"
-      with c n
-      have "\<langle>\<IF> b \<THEN> c'; \<WHILE> b \<DO> c' \<ELSE> \<SKIP>,s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>"
-        (is "\<langle>?if,_\<rangle> -m\<rightarrow>\<^sub>1 _") by auto
-      with n IH
-      have "\<langle>\<IF> b \<THEN> c'; \<WHILE> b \<DO> c' \<ELSE> \<SKIP>,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
-      moreover note unfold_while [of b c']
-      -- {* @{thm unfold_while [of b c']} *}
-      ultimately
-      have "\<langle>\<WHILE> b \<DO> c',s\<rangle> \<longrightarrow>\<^sub>c s'" by (blast dest: equivD2)
-      with w show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by simp
-    qed
-  qed
-  ultimately
-  show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast
-qed
-
-
-subsection "Winskel's Proof"
-
-declare rel_pow_0_E [elim!]
-
-text {*
-  Winskel's small step rules are a bit different \cite{Winskel};
-  we introduce their equivalents as derived rules:
-*}
-lemma whileFalse1 [intro]:
-  "\<not> b s \<Longrightarrow> \<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" (is "_ \<Longrightarrow> \<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>")
-proof -
-  assume "\<not>b s"
-  have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle>" ..
-  also from `\<not>b s` have "\<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<SKIP>, s\<rangle>" ..
-  also have "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s\<rangle>" ..
-  finally show "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" ..
-qed
-
-lemma whileTrue1 [intro]:
-  "b s \<Longrightarrow> \<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c;\<WHILE> b \<DO> c, s\<rangle>"
-  (is "_ \<Longrightarrow> \<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c;?w,s\<rangle>")
-proof -
-  assume "b s"
-  have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle>" ..
-  also from `b s` have "\<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c;?w, s\<rangle>" ..
-  finally show "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c;?w,s\<rangle>" ..
-qed
-
-inductive_cases evalc1_SEs:
-  "\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>1 (co, s')"
-  "\<langle>x:==a,s\<rangle> \<longrightarrow>\<^sub>1 (co, s')"
-  "\<langle>c1;c2, s\<rangle> \<longrightarrow>\<^sub>1 (co, s')"
-  "\<langle>\<IF> b \<THEN> c1 \<ELSE> c2, s\<rangle> \<longrightarrow>\<^sub>1 (co, s')"
-  "\<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>1 (co, s')"
-
-inductive_cases evalc1_E: "\<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>1 (co, s')"
-
-declare evalc1_SEs [elim!]
-
-lemma evalc_impl_evalc1: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s1 \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s1\<rangle>"
-apply (induct set: evalc)
-
--- SKIP
-apply blast
-
--- ASSIGN
-apply fast
-
--- SEMI
-apply (fast dest: rtrancl_imp_UN_rel_pow intro: semiI)
-
--- IF
-apply (fast intro: converse_rtrancl_into_rtrancl)
-apply (fast intro: converse_rtrancl_into_rtrancl)
-
--- WHILE
-apply blast
-apply (blast dest: rtrancl_imp_UN_rel_pow intro: converse_rtrancl_into_rtrancl semiI)
-
-done
-
-
-lemma lemma2:
-  "\<langle>c;d,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>u\<rangle> \<Longrightarrow> \<exists>t m. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle> \<and> \<langle>d,t\<rangle> -m\<rightarrow>\<^sub>1 \<langle>u\<rangle> \<and> m \<le> n"
-apply (induct n arbitrary: c d s u)
- -- "case n = 0"
- apply fastsimp
--- "induction step"
-apply (fast intro!: le_SucI le_refl dest!: rel_pow_Suc_D2
-            elim!: rel_pow_imp_rtrancl converse_rtrancl_into_rtrancl)
-done
-
-lemma evalc1_impl_evalc:
-  "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle> \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t"
-apply (induct c arbitrary: s t)
-apply (safe dest!: rtrancl_imp_UN_rel_pow)
-
--- SKIP
-apply (simp add: SKIP_n)
-
--- ASSIGN
-apply (fastsimp elim: rel_pow_E2)
-
--- SEMI
-apply (fast dest!: rel_pow_imp_rtrancl lemma2)
-
--- IF
-apply (erule rel_pow_E2)
-apply simp
-apply (fast dest!: rel_pow_imp_rtrancl)
-
--- "WHILE, induction on the length of the computation"
-apply (rename_tac b c s t n)
-apply (erule_tac P = "?X -n\<rightarrow>\<^sub>1 ?Y" in rev_mp)
-apply (rule_tac x = "s" in spec)
-apply (induct_tac n rule: nat_less_induct)
-apply (intro strip)
-apply (erule rel_pow_E2)
- apply simp
-apply (simp only: split_paired_all)
-apply (erule evalc1_E)
-
-apply simp
-apply (case_tac "b x")
- -- WhileTrue
- apply (erule rel_pow_E2)
-  apply simp
- apply (clarify dest!: lemma2)
- apply atomize
- apply (erule allE, erule allE, erule impE, assumption)
- apply (erule_tac x=mb in allE, erule impE, fastsimp)
- apply blast
--- WhileFalse
-apply (erule rel_pow_E2)
- apply simp
-apply (simp add: SKIP_n)
-done
-
-
-text {* proof of the equivalence of evalc and evalc1 *}
-lemma evalc1_eq_evalc: "(\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle>) = (\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t)"
-  by (fast elim!: evalc1_impl_evalc evalc_impl_evalc1)
-
-
-subsection "A proof without n"
-
-text {*
-  The inductions are a bit awkward to write in this section,
-  because @{text None} as result statement in the small step
-  semantics doesn't have a direct counterpart in the big step
-  semantics.
-
-  Winskel's small step rule set (using the @{text "\<SKIP>"} statement
-  to indicate termination) is better suited for this proof.
-*}
-
-lemma my_lemma1:
-  assumes "\<langle>c1,s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s2\<rangle>"
-    and "\<langle>c2,s2\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3"
-  shows "\<langle>c1;c2,s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3"
-proof -
-  -- {* The induction rule needs @{text P} to be a function of @{term "Some c1"} *}
-  from assms
-  have "\<langle>(\<lambda>c. if c = None then c2 else the c; c2) (Some c1),s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3"
-    apply (induct rule: converse_rtrancl_induct2)
-     apply simp
-    apply (rename_tac c s')
-    apply simp
-    apply (rule conjI)
-     apply fast
-    apply clarify
-    apply (case_tac c)
-    apply (auto intro: converse_rtrancl_into_rtrancl)
-    done
-  then show ?thesis by simp
-qed
-
-lemma evalc_impl_evalc1': "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s1 \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s1\<rangle>"
-apply (induct set: evalc)
-
--- SKIP
-apply fast
-
--- ASSIGN
-apply fast
-
--- SEMI
-apply (fast intro: my_lemma1)
-
--- IF
-apply (fast intro: converse_rtrancl_into_rtrancl)
-apply (fast intro: converse_rtrancl_into_rtrancl)
-
--- WHILE
-apply fast
-apply (fast intro: converse_rtrancl_into_rtrancl my_lemma1)
-
-done
-
-text {*
-  The opposite direction is based on a Coq proof done by Ranan Fraer and
-  Yves Bertot. The following sketch is from an email by Ranan Fraer.
-
-\begin{verbatim}
-First we've broke it into 2 lemmas:
-
-Lemma 1
-((c,s) --> (SKIP,t)) => (<c,s> -c-> t)
-
-This is a quick one, dealing with the cases skip, assignment
-and while_false.
-
-Lemma 2
-((c,s) -*-> (c',s')) /\ <c',s'> -c'-> t
-  =>
-<c,s> -c-> t
-
-This is proved by rule induction on the  -*-> relation
-and the induction step makes use of a third lemma:
-
-Lemma 3
-((c,s) --> (c',s')) /\ <c',s'> -c'-> t
-  =>
-<c,s> -c-> t
-
-This captures the essence of the proof, as it shows that <c',s'>
-behaves as the continuation of <c,s> with respect to the natural
-semantics.
-The proof of Lemma 3 goes by rule induction on the --> relation,
-dealing with the cases sequence1, sequence2, if_true, if_false and
-while_true. In particular in the case (sequence1) we make use again
-of Lemma 1.
-\end{verbatim}
-*}
-
-inductive_cases evalc1_term_cases: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'\<rangle>"
-
-lemma FB_lemma3:
-  "(c,s) \<longrightarrow>\<^sub>1 (c',s') \<Longrightarrow> c \<noteq> None \<Longrightarrow>
-  \<langle>if c'=None then \<SKIP> else the c',s'\<rangle> \<longrightarrow>\<^sub>c t \<Longrightarrow> \<langle>the c,s\<rangle> \<longrightarrow>\<^sub>c t"
-  by (induct arbitrary: t set: evalc1)
-    (auto elim!: evalc1_term_cases equivD2 [OF unfold_while])
-
-lemma FB_lemma2:
-  "(c,s) \<longrightarrow>\<^sub>1\<^sup>* (c',s') \<Longrightarrow> c \<noteq> None \<Longrightarrow>
-   \<langle>if c' = None then \<SKIP> else the c',s'\<rangle> \<longrightarrow>\<^sub>c t \<Longrightarrow> \<langle>the c,s\<rangle> \<longrightarrow>\<^sub>c t"
-  apply (induct rule: converse_rtrancl_induct2, force)
-  apply (fastsimp elim!: evalc1_term_cases intro: FB_lemma3)
-  done
-
-lemma evalc1_impl_evalc': "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle> \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t"
-  by (fastsimp dest: FB_lemma2)
-
-end