src/HOL/IMP/Finite_Reachable.thy
changeset 50050 fac2b27893ff
child 52046 bc01725d7918
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Finite_Reachable.thy	Mon Nov 12 12:27:58 2012 +0100
@@ -0,0 +1,161 @@
+theory Finite_Reachable
+imports Small_Step
+begin
+
+subsection "Finite number of reachable commands"
+
+text{* This theory shows that in the small-step semantics one can only reach
+a finite number of commands from any given command. Hence one can see the
+command component of a small-step configuration as a combination of the
+program to be executed and a pc. *}
+
+definition reachable :: "com \<Rightarrow> com set" where
+"reachable c = {c'. \<exists>s t. (c,s) \<rightarrow>* (c',t)}"
+
+text{* Proofs need induction on the length of a small-step reduction sequence. *}
+
+fun small_stepsn :: "com * state \<Rightarrow> nat \<Rightarrow> com * state \<Rightarrow> bool"
+    ("_ \<rightarrow>'(_') _" [55,0,55] 55) where
+"(cs \<rightarrow>(0) cs') = (cs' = cs)" |
+"cs \<rightarrow>(Suc n) cs'' = (\<exists>cs'. cs \<rightarrow> cs' \<and> cs' \<rightarrow>(n) cs'')"
+
+lemma stepsn_if_star: "cs \<rightarrow>* cs' \<Longrightarrow> \<exists>n. cs \<rightarrow>(n) cs'"
+proof(induction rule: star.induct)
+  case refl show ?case by (metis small_stepsn.simps(1))
+next
+  case step thus ?case by (metis small_stepsn.simps(2))
+qed
+
+lemma star_if_stepsn: "cs \<rightarrow>(n) cs' \<Longrightarrow> cs \<rightarrow>* cs'"
+by(induction n arbitrary: cs) (auto elim: star.step)
+
+lemma SKIP_starD: "(SKIP, s) \<rightarrow>* (c,t) \<Longrightarrow> c = SKIP"
+by(induction SKIP s c t rule: star_induct) auto
+
+lemma reachable_SKIP: "reachable SKIP = {SKIP}"
+by(auto simp: reachable_def dest: SKIP_starD)
+
+
+lemma Assign_starD: "(x::=a, s) \<rightarrow>* (c,t) \<Longrightarrow> c \<in> {x::=a, SKIP}"
+by (induction "x::=a" s c t rule: star_induct) (auto dest: SKIP_starD)
+
+lemma reachable_Assign: "reachable (x::=a) = {x::=a, SKIP}"
+by(auto simp: reachable_def dest:Assign_starD)
+
+
+lemma Seq_stepsnD: "(c1; c2, s) \<rightarrow>(n) (c', t) \<Longrightarrow>
+  (\<exists>c1' m. c' = c1'; c2 \<and> (c1, s) \<rightarrow>(m) (c1', t) \<and> m \<le> n) \<or>
+  (\<exists>s2 m1 m2. (c1,s) \<rightarrow>(m1) (SKIP,s2) \<and> (c2, s2) \<rightarrow>(m2) (c', t) \<and> m1+m2 < n)"
+proof(induction n arbitrary: c1 c2 s)
+  case 0 thus ?case by auto
+next
+  case (Suc n)
+  from Suc.prems obtain s' c12' where "(c1;c2, s) \<rightarrow> (c12', s')"
+    and n: "(c12',s') \<rightarrow>(n) (c',t)" by auto
+  from this(1) show ?case
+  proof
+    assume "c1 = SKIP" "(c12', s') = (c2, s)"
+    hence "(c1,s) \<rightarrow>(0) (SKIP, s') \<and> (c2, s') \<rightarrow>(n) (c', t) \<and> 0 + n < Suc n"
+      using n by auto
+    thus ?case by blast
+  next
+    fix c1' s'' assume 1: "(c12', s') = (c1'; c2, s'')" "(c1, s) \<rightarrow> (c1', s'')"
+    hence n': "(c1';c2,s') \<rightarrow>(n) (c',t)" using n by auto
+    from Suc.IH[OF n'] show ?case
+    proof
+      assume "\<exists>c1'' m. c' = c1''; c2 \<and> (c1', s') \<rightarrow>(m) (c1'', t) \<and> m \<le> n"
+        (is "\<exists> a b. ?P a b")
+      then obtain c1'' m where 2: "?P c1'' m" by blast
+      hence "c' = c1'';c2 \<and> (c1, s) \<rightarrow>(Suc m) (c1'',t) \<and> Suc m \<le> Suc n"
+        using 1 by auto
+      thus ?case by blast
+    next
+      assume "\<exists>s2 m1 m2. (c1',s') \<rightarrow>(m1) (SKIP,s2) \<and>
+        (c2,s2) \<rightarrow>(m2) (c',t) \<and> m1+m2 < n" (is "\<exists>a b c. ?P a b c")
+      then obtain s2 m1 m2 where "?P s2 m1 m2" by blast
+      hence "(c1,s) \<rightarrow>(Suc m1) (SKIP,s2) \<and> (c2,s2) \<rightarrow>(m2) (c',t) \<and>
+        Suc m1 + m2 < Suc n"  using 1 by auto
+      thus ?case by blast
+    qed
+  qed
+qed
+
+corollary Seq_starD: "(c1; c2, s) \<rightarrow>* (c', t) \<Longrightarrow>
+  (\<exists>c1'. c' = c1'; c2 \<and> (c1, s) \<rightarrow>* (c1', t)) \<or>
+  (\<exists>s2. (c1,s) \<rightarrow>* (SKIP,s2) \<and> (c2, s2) \<rightarrow>* (c', t))"
+by(metis Seq_stepsnD star_if_stepsn stepsn_if_star)
+
+lemma reachable_Seq: "reachable (c1;c2) \<subseteq>
+  (\<lambda>c1'. c1';c2) ` reachable c1 \<union> reachable c2"
+by(auto simp: reachable_def image_def dest!: Seq_starD)
+
+
+lemma If_starD: "(IF b THEN c1 ELSE c2, s) \<rightarrow>* (c,t) \<Longrightarrow>
+  c = IF b THEN c1 ELSE c2 \<or> (c1,s) \<rightarrow>* (c,t) \<or> (c2,s) \<rightarrow>* (c,t)"
+by(induction "IF b THEN c1 ELSE c2" s c t rule: star_induct) auto
+
+lemma reachable_If: "reachable (IF b THEN c1 ELSE c2) \<subseteq>
+  {IF b THEN c1 ELSE c2} \<union> reachable c1 \<union> reachable c2"
+by(auto simp: reachable_def dest!: If_starD)
+
+
+lemma While_stepsnD: "(WHILE b DO c, s) \<rightarrow>(n) (c2,t) \<Longrightarrow>
+  c2 \<in> {WHILE b DO c, IF b THEN c ; WHILE b DO c ELSE SKIP, SKIP}
+  \<or> (\<exists>c1. c2 = c1 ; WHILE b DO c \<and> (\<exists> s1 s2. (c,s1) \<rightarrow>* (c1,s2)))"
+proof(induction n arbitrary: s rule: less_induct)
+  case (less n1)
+  show ?case
+  proof(cases n1)
+    case 0 thus ?thesis using less.prems by (simp)
+  next
+    case (Suc n2)
+    let ?w = "WHILE b DO c"
+    let ?iw = "IF b THEN c ; ?w ELSE SKIP"
+    from Suc less.prems have n2: "(?iw,s) \<rightarrow>(n2) (c2,t)" by(auto elim!: WhileE)
+    show ?thesis
+    proof(cases n2)
+      case 0 thus ?thesis using n2 by auto
+    next
+      case (Suc n3)
+      then obtain iw' s' where "(?iw,s) \<rightarrow> (iw',s')"
+        and n3: "(iw',s') \<rightarrow>(n3) (c2,t)"  using n2 by auto
+      from this(1)
+      show ?thesis
+      proof
+        assume "(iw', s') = (c; WHILE b DO c, s)"
+        with n3 have "(c;?w, s) \<rightarrow>(n3) (c2,t)" by auto
+        from Seq_stepsnD[OF this] show ?thesis
+        proof
+          assume "\<exists>c1' m. c2 = c1'; ?w \<and> (c,s) \<rightarrow>(m) (c1', t) \<and> m \<le> n3"
+          thus ?thesis by (metis star_if_stepsn)
+        next
+          assume "\<exists>s2 m1 m2. (c, s) \<rightarrow>(m1) (SKIP, s2) \<and>
+            (WHILE b DO c, s2) \<rightarrow>(m2) (c2, t) \<and> m1 + m2 < n3" (is "\<exists>x y z. ?P x y z")
+          then obtain s2 m1 m2 where "?P s2 m1 m2" by blast
+          with `n2 = Suc n3` `n1 = Suc n2`have "m2 < n1" by arith
+          from less.IH[OF this] `?P s2 m1 m2` show ?thesis by blast
+        qed
+      next
+        assume "(iw', s') = (SKIP, s)"
+        thus ?thesis using star_if_stepsn[OF n3] by(auto dest!: SKIP_starD)
+      qed
+    qed
+  qed
+qed
+
+lemma reachable_While: "reachable (WHILE b DO c) \<subseteq>
+  {WHILE b DO c, IF b THEN c ; WHILE b DO c ELSE SKIP, SKIP} \<union>
+  (\<lambda>c'. c' ; WHILE b DO c) ` reachable c"
+apply(auto simp: reachable_def image_def)
+by (metis While_stepsnD insertE singletonE stepsn_if_star)
+
+
+theorem finite_reachable: "finite(reachable c)"
+apply(induction c)
+apply(auto simp: reachable_SKIP reachable_Assign
+  finite_subset[OF reachable_Seq] finite_subset[OF reachable_If]
+  finite_subset[OF reachable_While])
+done
+
+
+end
\ No newline at end of file