doc-src/TutorialI/Types/document/Typedef.tex
changeset 11866 fbd097aec213
parent 11865 93d5408eb7d9
child 11867 76401b2ee871
--- a/doc-src/TutorialI/Types/document/Typedef.tex	Sun Oct 21 19:48:19 2001 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,279 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Typedef}%
-%
-\isamarkupsection{Introducing New Types%
-}
-%
-\begin{isamarkuptext}%
-\label{sec:adv-typedef}
-For most applications, a combination of predefined types like \isa{bool} and
-\isa{{\isasymRightarrow}} with recursive datatypes and records is quite sufficient. Very
-occasionally you may feel the need for a more advanced type.  If you
-are certain that your type is not definable by any of the
-standard means, then read on.
-\begin{warn}
-  Types in HOL must be non-empty; otherwise the quantifier rules would be
-  unsound, because $\exists x.\ x=x$ is a theorem.
-\end{warn}%
-\end{isamarkuptext}%
-%
-\isamarkupsubsection{Declaring New Types%
-}
-%
-\begin{isamarkuptext}%
-\label{sec:typedecl}
-\index{types!declaring|(}%
-\index{typedecl@\isacommand {typedecl} (command)}%
-The most trivial way of introducing a new type is by a \textbf{type
-declaration}:%
-\end{isamarkuptext}%
-\isacommand{typedecl}\ my{\isacharunderscore}new{\isacharunderscore}type%
-\begin{isamarkuptext}%
-\noindent
-This does not define \isa{my{\isacharunderscore}new{\isacharunderscore}type} at all but merely introduces its
-name. Thus we know nothing about this type, except that it is
-non-empty. Such declarations without definitions are
-useful if that type can be viewed as a parameter of the theory.
-A typical example is given in \S\ref{sec:VMC}, where we define a transition
-relation over an arbitrary type of states.
-
-In principle we can always get rid of such type declarations by making those
-types parameters of every other type, thus keeping the theory generic. In
-practice, however, the resulting clutter can make types hard to read.
-
-If you are looking for a quick and dirty way of introducing a new type
-together with its properties: declare the type and state its properties as
-axioms. Example:%
-\end{isamarkuptext}%
-\isacommand{axioms}\isanewline
-just{\isacharunderscore}one{\isacharcolon}\ {\isachardoublequote}{\isasymexists}x{\isacharcolon}{\isacharcolon}my{\isacharunderscore}new{\isacharunderscore}type{\isachardot}\ {\isasymforall}y{\isachardot}\ x\ {\isacharequal}\ y{\isachardoublequote}%
-\begin{isamarkuptext}%
-\noindent
-However, we strongly discourage this approach, except at explorative stages
-of your development. It is extremely easy to write down contradictory sets of
-axioms, in which case you will be able to prove everything but it will mean
-nothing.  In the example above, the axiomatic approach is
-unnecessary: a one-element type called \isa{unit} is already defined in HOL.
-\index{types!declaring|)}%
-\end{isamarkuptext}%
-%
-\isamarkupsubsection{Defining New Types%
-}
-%
-\begin{isamarkuptext}%
-\label{sec:typedef}
-\index{types!defining|(}%
-\index{typedecl@\isacommand {typedef} (command)|(}%
-Now we come to the most general means of safely introducing a new type, the
-\textbf{type definition}. All other means, for example
-\isacommand{datatype}, are based on it. The principle is extremely simple:
-any non-empty subset of an existing type can be turned into a new type.  Thus
-a type definition is merely a notational device: you introduce a new name for
-a subset of an existing type. This does not add any logical power to HOL,
-because you could base all your work directly on the subset of the existing
-type. However, the resulting theories could easily become indigestible
-because instead of implicit types you would have explicit sets in your
-formulae.
-
-Let us work a simple example, the definition of a three-element type.
-It is easily represented by the first three natural numbers:%
-\end{isamarkuptext}%
-\isacommand{typedef}\ three\ {\isacharequal}\ {\isachardoublequote}{\isacharbraceleft}n{\isachardot}\ n\ {\isasymle}\ {\isadigit{2}}{\isacharbraceright}{\isachardoublequote}%
-\begin{isamarkuptxt}%
-\noindent
-In order to enforce that the representing set on the right-hand side is
-non-empty, this definition actually starts a proof to that effect:
-\begin{isabelle}%
-\ {\isadigit{1}}{\isachardot}\ {\isasymexists}x{\isachardot}\ x\ {\isasymin}\ {\isacharbraceleft}n{\isachardot}\ n\ {\isasymle}\ {\isadigit{2}}{\isacharbraceright}%
-\end{isabelle}
-Fortunately, this is easy enough to show: take 0 as a witness.%
-\end{isamarkuptxt}%
-\isacommand{apply}{\isacharparenleft}rule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isadigit{0}}\ \isakeyword{in}\ exI{\isacharparenright}\isanewline
-\isacommand{by}\ simp%
-\begin{isamarkuptext}%
-This type definition introduces the new type \isa{three} and asserts
-that it is a copy of the set \isa{{\isacharbraceleft}{\isadigit{0}}{\isacharcomma}\ {\isadigit{1}}{\isacharcomma}\ {\isadigit{2}}{\isacharbraceright}}. This assertion
-is expressed via a bijection between the \emph{type} \isa{three} and the
-\emph{set} \isa{{\isacharbraceleft}{\isadigit{0}}{\isacharcomma}\ {\isadigit{1}}{\isacharcomma}\ {\isadigit{2}}{\isacharbraceright}}. To this end, the command declares the following
-constants behind the scenes:
-\begin{center}
-\begin{tabular}{rcl}
-\isa{three} &::& \isa{nat\ set} \\
-\isa{Rep{\isacharunderscore}three} &::& \isa{three\ {\isasymRightarrow}\ nat}\\
-\isa{Abs{\isacharunderscore}three} &::& \isa{nat\ {\isasymRightarrow}\ three}
-\end{tabular}
-\end{center}
-where constant \isa{three} is explicitly defined as the representing set:
-\begin{center}
-\isa{three\ {\isasymequiv}\ {\isacharbraceleft}n{\isachardot}\ n\ {\isasymle}\ {\isadigit{2}}{\isacharbraceright}}\hfill(\isa{three{\isacharunderscore}def})
-\end{center}
-The situation is best summarized with the help of the following diagram,
-where squares are types and circles are sets:
-\begin{center}
-\unitlength1mm
-\thicklines
-\begin{picture}(100,40)
-\put(3,13){\framebox(15,15){\isa{three}}}
-\put(55,5){\framebox(30,30){\isa{three}}}
-\put(70,32){\makebox(0,0){\isa{nat}}}
-\put(70,20){\circle{40}}
-\put(10,15){\vector(1,0){60}}
-\put(25,14){\makebox(0,0)[tl]{\isa{Rep{\isacharunderscore}three}}}
-\put(70,25){\vector(-1,0){60}}
-\put(25,26){\makebox(0,0)[bl]{\isa{Abs{\isacharunderscore}three}}}
-\end{picture}
-\end{center}
-Finally, \isacommand{typedef} asserts that \isa{Rep{\isacharunderscore}three} is
-surjective on the subset \isa{three} and \isa{Abs{\isacharunderscore}three} and \isa{Rep{\isacharunderscore}three} are inverses of each other:
-\begin{center}
-\begin{tabular}{@ {}r@ {\qquad\qquad}l@ {}}
-\isa{Rep{\isacharunderscore}three\ x\ {\isasymin}\ three} & (\isa{Rep{\isacharunderscore}three}) \\
-\isa{Abs{\isacharunderscore}three\ {\isacharparenleft}Rep{\isacharunderscore}three\ x{\isacharparenright}\ {\isacharequal}\ x} & (\isa{Rep{\isacharunderscore}three{\isacharunderscore}inverse}) \\
-\isa{y\ {\isasymin}\ three\ {\isasymLongrightarrow}\ Rep{\isacharunderscore}three\ {\isacharparenleft}Abs{\isacharunderscore}three\ y{\isacharparenright}\ {\isacharequal}\ y} & (\isa{Abs{\isacharunderscore}three{\isacharunderscore}inverse})
-\end{tabular}
-\end{center}
-%
-From this example it should be clear what \isacommand{typedef} does
-in general given a name (here \isa{three}) and a set
-(here \isa{{\isacharbraceleft}n{\isachardot}\ n\ {\isasymle}\ {\isadigit{2}}{\isacharbraceright}}).
-
-Our next step is to define the basic functions expected on the new type.
-Although this depends on the type at hand, the following strategy works well:
-\begin{itemize}
-\item define a small kernel of basic functions that can express all other
-functions you anticipate.
-\item define the kernel in terms of corresponding functions on the
-representing type using \isa{Abs} and \isa{Rep} to convert between the
-two levels.
-\end{itemize}
-In our example it suffices to give the three elements of type \isa{three}
-names:%
-\end{isamarkuptext}%
-\isacommand{constdefs}\isanewline
-\ \ A{\isacharcolon}{\isacharcolon}\ three\isanewline
-\ {\isachardoublequote}A\ {\isasymequiv}\ Abs{\isacharunderscore}three\ {\isadigit{0}}{\isachardoublequote}\isanewline
-\ \ B{\isacharcolon}{\isacharcolon}\ three\isanewline
-\ {\isachardoublequote}B\ {\isasymequiv}\ Abs{\isacharunderscore}three\ {\isadigit{1}}{\isachardoublequote}\isanewline
-\ \ C\ {\isacharcolon}{\isacharcolon}\ three\isanewline
-\ {\isachardoublequote}C\ {\isasymequiv}\ Abs{\isacharunderscore}three\ {\isadigit{2}}{\isachardoublequote}%
-\begin{isamarkuptext}%
-So far, everything was easy. But it is clear that reasoning about \isa{three} will be hell if we have to go back to \isa{nat} every time. Thus our
-aim must be to raise our level of abstraction by deriving enough theorems
-about type \isa{three} to characterize it completely. And those theorems
-should be phrased in terms of \isa{A}, \isa{B} and \isa{C}, not \isa{Abs{\isacharunderscore}three} and \isa{Rep{\isacharunderscore}three}. Because of the simplicity of the example,
-we merely need to prove that \isa{A}, \isa{B} and \isa{C} are distinct
-and that they exhaust the type.
-
-In processing our \isacommand{typedef} declaration, 
-Isabelle helpfully proves several lemmas.
-One, \isa{Abs{\isacharunderscore}three{\isacharunderscore}inject},
-expresses that \isa{Abs{\isacharunderscore}three} is injective on the representing subset:
-\begin{center}
-\isa{{\isasymlbrakk}x\ {\isasymin}\ three{\isacharsemicolon}\ y\ {\isasymin}\ three{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}Abs{\isacharunderscore}three\ x\ {\isacharequal}\ Abs{\isacharunderscore}three\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharequal}\ y{\isacharparenright}}
-\end{center}
-Another, \isa{Rep{\isacharunderscore}three{\isacharunderscore}inject}, expresses that the representation
-function is also injective:
-\begin{center}
-\isa{{\isacharparenleft}Rep{\isacharunderscore}three\ x\ {\isacharequal}\ Rep{\isacharunderscore}three\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharequal}\ y{\isacharparenright}}
-\end{center}
-Distinctness of \isa{A}, \isa{B} and \isa{C} follows immediately
-if we expand their definitions and rewrite with the injectivity
-of \isa{Abs{\isacharunderscore}three}:%
-\end{isamarkuptext}%
-\isacommand{lemma}\ {\isachardoublequote}A\ {\isasymnoteq}\ B\ {\isasymand}\ B\ {\isasymnoteq}\ A\ {\isasymand}\ A\ {\isasymnoteq}\ C\ {\isasymand}\ C\ {\isasymnoteq}\ A\ {\isasymand}\ B\ {\isasymnoteq}\ C\ {\isasymand}\ C\ {\isasymnoteq}\ B{\isachardoublequote}\isanewline
-\isacommand{by}{\isacharparenleft}simp\ add{\isacharcolon}\ Abs{\isacharunderscore}three{\isacharunderscore}inject\ A{\isacharunderscore}def\ B{\isacharunderscore}def\ C{\isacharunderscore}def\ three{\isacharunderscore}def{\isacharparenright}%
-\begin{isamarkuptext}%
-\noindent
-Of course we rely on the simplifier to solve goals like \isa{{\isadigit{0}}\ {\isasymnoteq}\ {\isadigit{1}}}.
-
-The fact that \isa{A}, \isa{B} and \isa{C} exhaust type \isa{three} is
-best phrased as a case distinction theorem: if you want to prove \isa{P\ x}
-(where \isa{x} is of type \isa{three}) it suffices to prove \isa{P\ A},
-\isa{P\ B} and \isa{P\ C}. First we prove the analogous proposition for the
-representation:%
-\end{isamarkuptext}%
-\isacommand{lemma}\ cases{\isacharunderscore}lemma{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ Q\ {\isadigit{0}}{\isacharsemicolon}\ Q\ {\isadigit{1}}{\isacharsemicolon}\ Q\ {\isadigit{2}}{\isacharsemicolon}\ n\ {\isasymin}\ three\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ \ Q\ n{\isachardoublequote}%
-\begin{isamarkuptxt}%
-\noindent
-Expanding \isa{three{\isacharunderscore}def} yields the premise \isa{n\ {\isasymle}\ {\isadigit{2}}}. Repeated
-elimination with \isa{le{\isacharunderscore}SucE}
-\begin{isabelle}%
-{\isasymlbrakk}{\isacharquery}m\ {\isasymle}\ Suc\ {\isacharquery}n{\isacharsemicolon}\ {\isacharquery}m\ {\isasymle}\ {\isacharquery}n\ {\isasymLongrightarrow}\ {\isacharquery}R{\isacharsemicolon}\ {\isacharquery}m\ {\isacharequal}\ Suc\ {\isacharquery}n\ {\isasymLongrightarrow}\ {\isacharquery}R{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharquery}R%
-\end{isabelle}
-reduces \isa{n\ {\isasymle}\ {\isadigit{2}}} to the three cases \isa{n\ {\isasymle}\ {\isadigit{0}}}, \isa{n\ {\isacharequal}\ {\isadigit{1}}} and
-\isa{n\ {\isacharequal}\ {\isadigit{2}}} which are trivial for simplification:%
-\end{isamarkuptxt}%
-\isacommand{apply}{\isacharparenleft}simp\ add{\isacharcolon}three{\isacharunderscore}def{\isacharparenright}\isanewline
-\isacommand{apply}{\isacharparenleft}{\isacharparenleft}erule\ le{\isacharunderscore}SucE{\isacharparenright}{\isacharplus}{\isacharparenright}\isanewline
-\isacommand{apply}\ simp{\isacharunderscore}all\isanewline
-\isacommand{done}%
-\begin{isamarkuptext}%
-Now the case distinction lemma on type \isa{three} is easy to derive if you 
-know how:%
-\end{isamarkuptext}%
-\isacommand{lemma}\ three{\isacharunderscore}cases{\isacharcolon}\ {\isachardoublequote}{\isasymlbrakk}\ P\ A{\isacharsemicolon}\ P\ B{\isacharsemicolon}\ P\ C\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ x{\isachardoublequote}%
-\begin{isamarkuptxt}%
-\noindent
-We start by replacing the \isa{x} by \isa{Abs{\isacharunderscore}three\ {\isacharparenleft}Rep{\isacharunderscore}three\ x{\isacharparenright}}:%
-\end{isamarkuptxt}%
-\isacommand{apply}{\isacharparenleft}rule\ subst{\isacharbrackleft}OF\ Rep{\isacharunderscore}three{\isacharunderscore}inverse{\isacharbrackright}{\isacharparenright}%
-\begin{isamarkuptxt}%
-\noindent
-This substitution step worked nicely because there was just a single
-occurrence of a term of type \isa{three}, namely \isa{x}.
-When we now apply \isa{cases{\isacharunderscore}lemma}, \isa{Q} becomes \isa{{\isasymlambda}n{\isachardot}\ P\ {\isacharparenleft}Abs{\isacharunderscore}three\ n{\isacharparenright}} because \isa{Rep{\isacharunderscore}three\ x} is the only term of type \isa{nat}:%
-\end{isamarkuptxt}%
-\isacommand{apply}{\isacharparenleft}rule\ cases{\isacharunderscore}lemma{\isacharparenright}%
-\begin{isamarkuptxt}%
-\begin{isabelle}%
-\ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}P\ A{\isacharsemicolon}\ P\ B{\isacharsemicolon}\ P\ C{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Abs{\isacharunderscore}three\ {\isadigit{0}}{\isacharparenright}\isanewline
-\ {\isadigit{2}}{\isachardot}\ {\isasymlbrakk}P\ A{\isacharsemicolon}\ P\ B{\isacharsemicolon}\ P\ C{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Abs{\isacharunderscore}three\ {\isadigit{1}}{\isacharparenright}\isanewline
-\ {\isadigit{3}}{\isachardot}\ {\isasymlbrakk}P\ A{\isacharsemicolon}\ P\ B{\isacharsemicolon}\ P\ C{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Abs{\isacharunderscore}three\ {\isadigit{2}}{\isacharparenright}\isanewline
-\ {\isadigit{4}}{\isachardot}\ {\isasymlbrakk}P\ A{\isacharsemicolon}\ P\ B{\isacharsemicolon}\ P\ C{\isasymrbrakk}\ {\isasymLongrightarrow}\ Rep{\isacharunderscore}three\ x\ {\isasymin}\ three%
-\end{isabelle}
-The resulting subgoals are easily solved by simplification:%
-\end{isamarkuptxt}%
-\isacommand{apply}{\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}A{\isacharunderscore}def\ B{\isacharunderscore}def\ C{\isacharunderscore}def\ Rep{\isacharunderscore}three{\isacharparenright}\isanewline
-\isacommand{done}%
-\begin{isamarkuptext}%
-\noindent
-This concludes the derivation of the characteristic theorems for
-type \isa{three}.
-
-The attentive reader has realized long ago that the
-above lengthy definition can be collapsed into one line:%
-\end{isamarkuptext}%
-\isacommand{datatype}\ three{\isacharprime}\ {\isacharequal}\ A\ {\isacharbar}\ B\ {\isacharbar}\ C%
-\begin{isamarkuptext}%
-\noindent
-In fact, the \isacommand{datatype} command performs internally more or less
-the same derivations as we did, which gives you some idea what life would be
-like without \isacommand{datatype}.
-
-Although \isa{three} could be defined in one line, we have chosen this
-example to demonstrate \isacommand{typedef} because its simplicity makes the
-key concepts particularly easy to grasp. If you would like to see a
-non-trivial example that cannot be defined more directly, we recommend the
-definition of \emph{finite multisets} in the HOL Library.
-
-Let us conclude by summarizing the above procedure for defining a new type.
-Given some abstract axiomatic description $P$ of a type $ty$ in terms of a
-set of functions $F$, this involves three steps:
-\begin{enumerate}
-\item Find an appropriate type $\tau$ and subset $A$ which has the desired
-  properties $P$, and make a type definition based on this representation.
-\item Define the required functions $F$ on $ty$ by lifting
-analogous functions on the representation via $Abs_ty$ and $Rep_ty$.
-\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation.
-\end{enumerate}
-You can now forget about the representation and work solely in terms of the
-abstract functions $F$ and properties $P$.%
-\index{typedecl@\isacommand {typedef} (command)|)}%
-\index{types!defining|)}%
-\end{isamarkuptext}%
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: