src/HOL/Inductive.thy
changeset 24915 fc90277c0dd7
parent 24845 abcd15369ffa
child 25510 38c15efe603b
--- a/src/HOL/Inductive.thy	Mon Oct 08 22:03:21 2007 +0200
+++ b/src/HOL/Inductive.thy	Mon Oct 08 22:03:25 2007 +0200
@@ -3,10 +3,10 @@
     Author:     Markus Wenzel, TU Muenchen
 *)
 
-header {* Support for inductive sets and types *}
+header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
 
 theory Inductive 
-imports FixedPoint Sum_Type
+imports Lattices Sum_Type
 uses
   ("Tools/inductive_package.ML")
   "Tools/dseq.ML"
@@ -20,6 +20,227 @@
   ("Tools/primrec_package.ML")
 begin
 
+subsection {* Least and greatest fixed points *}
+
+definition
+  lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
+  "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
+
+definition
+  gfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
+  "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
+
+
+subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
+
+text{*@{term "lfp f"} is the least upper bound of 
+      the set @{term "{u. f(u) \<le> u}"} *}
+
+lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A"
+  by (auto simp add: lfp_def intro: Inf_lower)
+
+lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
+  by (auto simp add: lfp_def intro: Inf_greatest)
+
+lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
+  by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
+
+lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)"
+  by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
+
+lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)"
+  by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3)
+
+lemma lfp_const: "lfp (\<lambda>x. t) = t"
+  by (rule lfp_unfold) (simp add:mono_def)
+
+
+subsection {* General induction rules for least fixed points *}
+
+theorem lfp_induct:
+  assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P"
+  shows "lfp f <= P"
+proof -
+  have "inf (lfp f) P <= lfp f" by (rule inf_le1)
+  with mono have "f (inf (lfp f) P) <= f (lfp f)" ..
+  also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric])
+  finally have "f (inf (lfp f) P) <= lfp f" .
+  from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI)
+  hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound)
+  also have "inf (lfp f) P <= P" by (rule inf_le2)
+  finally show ?thesis .
+qed
+
+lemma lfp_induct_set:
+  assumes lfp: "a: lfp(f)"
+      and mono: "mono(f)"
+      and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
+  shows "P(a)"
+  by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
+    (auto simp: inf_set_eq intro: indhyp)
+
+lemma lfp_ordinal_induct: 
+  assumes mono: "mono f"
+  and P_f: "!!S. P S ==> P(f S)"
+  and P_Union: "!!M. !S:M. P S ==> P(Union M)"
+  shows "P(lfp f)"
+proof -
+  let ?M = "{S. S \<subseteq> lfp f & P S}"
+  have "P (Union ?M)" using P_Union by simp
+  also have "Union ?M = lfp f"
+  proof
+    show "Union ?M \<subseteq> lfp f" by blast
+    hence "f (Union ?M) \<subseteq> f (lfp f)" by (rule mono [THEN monoD])
+    hence "f (Union ?M) \<subseteq> lfp f" using mono [THEN lfp_unfold] by simp
+    hence "f (Union ?M) \<in> ?M" using P_f P_Union by simp
+    hence "f (Union ?M) \<subseteq> Union ?M" by (rule Union_upper)
+    thus "lfp f \<subseteq> Union ?M" by (rule lfp_lowerbound)
+  qed
+  finally show ?thesis .
+qed
+
+
+text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
+    to control unfolding*}
+
+lemma def_lfp_unfold: "[| h==lfp(f);  mono(f) |] ==> h = f(h)"
+by (auto intro!: lfp_unfold)
+
+lemma def_lfp_induct: 
+    "[| A == lfp(f); mono(f);
+        f (inf A P) \<le> P
+     |] ==> A \<le> P"
+  by (blast intro: lfp_induct)
+
+lemma def_lfp_induct_set: 
+    "[| A == lfp(f);  mono(f);   a:A;                    
+        !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
+     |] ==> P(a)"
+  by (blast intro: lfp_induct_set)
+
+(*Monotonicity of lfp!*)
+lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g"
+  by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans)
+
+
+subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
+
+text{*@{term "gfp f"} is the greatest lower bound of 
+      the set @{term "{u. u \<le> f(u)}"} *}
+
+lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f"
+  by (auto simp add: gfp_def intro: Sup_upper)
+
+lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X"
+  by (auto simp add: gfp_def intro: Sup_least)
+
+lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)"
+  by (iprover intro: gfp_least order_trans monoD gfp_upperbound)
+
+lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f"
+  by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
+
+lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)"
+  by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3)
+
+
+subsection {* Coinduction rules for greatest fixed points *}
+
+text{*weak version*}
+lemma weak_coinduct: "[| a: X;  X \<subseteq> f(X) |] ==> a : gfp(f)"
+by (rule gfp_upperbound [THEN subsetD], auto)
+
+lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
+apply (erule gfp_upperbound [THEN subsetD])
+apply (erule imageI)
+done
+
+lemma coinduct_lemma:
+     "[| X \<le> f (sup X (gfp f));  mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))"
+  apply (frule gfp_lemma2)
+  apply (drule mono_sup)
+  apply (rule le_supI)
+  apply assumption
+  apply (rule order_trans)
+  apply (rule order_trans)
+  apply assumption
+  apply (rule sup_ge2)
+  apply assumption
+  done
+
+text{*strong version, thanks to Coen and Frost*}
+lemma coinduct_set: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
+by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq])
+
+lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)"
+  apply (rule order_trans)
+  apply (rule sup_ge1)
+  apply (erule gfp_upperbound [OF coinduct_lemma])
+  apply assumption
+  done
+
+lemma gfp_fun_UnI2: "[| mono(f);  a: gfp(f) |] ==> a: f(X Un gfp(f))"
+by (blast dest: gfp_lemma2 mono_Un)
+
+
+subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
+
+text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
+  @{term lfp} and @{term gfp}*}
+
+lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
+by (iprover intro: subset_refl monoI Un_mono monoD)
+
+lemma coinduct3_lemma:
+     "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)));  mono(f) |]
+      ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
+apply (rule subset_trans)
+apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
+apply (rule Un_least [THEN Un_least])
+apply (rule subset_refl, assumption)
+apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
+apply (rule monoD, assumption)
+apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
+done
+
+lemma coinduct3: 
+  "[| mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
+apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
+apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto)
+done
+
+
+text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
+    to control unfolding*}
+
+lemma def_gfp_unfold: "[| A==gfp(f);  mono(f) |] ==> A = f(A)"
+by (auto intro!: gfp_unfold)
+
+lemma def_coinduct:
+     "[| A==gfp(f);  mono(f);  X \<le> f(sup X A) |] ==> X \<le> A"
+by (iprover intro!: coinduct)
+
+lemma def_coinduct_set:
+     "[| A==gfp(f);  mono(f);  a:X;  X \<subseteq> f(X Un A) |] ==> a: A"
+by (auto intro!: coinduct_set)
+
+(*The version used in the induction/coinduction package*)
+lemma def_Collect_coinduct:
+    "[| A == gfp(%w. Collect(P(w)));  mono(%w. Collect(P(w)));   
+        a: X;  !!z. z: X ==> P (X Un A) z |] ==>  
+     a : A"
+apply (erule def_coinduct_set, auto) 
+done
+
+lemma def_coinduct3:
+    "[| A==gfp(f); mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
+by (auto intro!: coinduct3)
+
+text{*Monotonicity of @{term gfp}!*}
+lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g"
+  by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans)
+
+
 subsection {* Inductive predicates and sets *}
 
 text {* Inversion of injective functions. *}
@@ -64,6 +285,24 @@
   Ball_def Bex_def
   induct_rulify_fallback
 
+ML {*
+val def_lfp_unfold = @{thm def_lfp_unfold}
+val def_gfp_unfold = @{thm def_gfp_unfold}
+val def_lfp_induct = @{thm def_lfp_induct}
+val def_coinduct = @{thm def_coinduct}
+val inf_bool_eq = @{thm inf_bool_eq}
+val inf_fun_eq = @{thm inf_fun_eq}
+val le_boolI = @{thm le_boolI}
+val le_boolI' = @{thm le_boolI'}
+val le_funI = @{thm le_funI}
+val le_boolE = @{thm le_boolE}
+val le_funE = @{thm le_funE}
+val le_boolD = @{thm le_boolD}
+val le_funD = @{thm le_funD}
+val le_bool_def = @{thm le_bool_def}
+val le_fun_def = @{thm le_fun_def}
+*}
+
 use "Tools/inductive_package.ML"
 setup InductivePackage.setup
 
@@ -74,26 +313,6 @@
   Ball_def Bex_def
   induct_rulify_fallback
 
-lemma False_meta_all:
-  "Trueprop False \<equiv> (\<And>P\<Colon>bool. P)"
-proof
-  fix P
-  assume False
-  then show P ..
-next
-  assume "\<And>P\<Colon>bool. P"
-  then show False .
-qed
-
-lemma not_eq_False:
-  assumes not_eq: "x \<noteq> y"
-  and eq: "x \<equiv> y"
-  shows False
-  using not_eq eq by auto
-
-lemmas not_eq_quodlibet =
-  not_eq_False [simplified False_meta_all]
-
 
 subsection {* Inductive datatypes and primitive recursion *}