src/FOLP/IFOLP.ML
changeset 17480 fd19f77dcf60
parent 15570 8d8c70b41bab
child 18977 f24c416a4814
--- a/src/FOLP/IFOLP.ML	Sat Sep 17 20:49:14 2005 +0200
+++ b/src/FOLP/IFOLP.ML	Sun Sep 18 14:25:48 2005 +0200
@@ -2,29 +2,28 @@
     ID:         $Id$
     Author:     Martin D Coen, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
+*)
 
-Tactics and lemmas for IFOLP (Intuitionistic First-Order Logic with Proofs)
-*)
 (*** Sequent-style elimination rules for & --> and ALL ***)
 
-val prems= Goal 
+val prems= Goal
     "[| p:P&Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R |] ==> ?a:R";
 by (REPEAT (resolve_tac prems 1
    ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN resolve_tac prems 1))) ;
 qed "conjE";
 
-val prems= Goal 
+val prems= Goal
     "[| p:P-->Q;  q:P;  !!x. x:Q ==> r(x):R |] ==> ?p:R";
 by (REPEAT (resolve_tac (prems@[mp]) 1)) ;
 qed "impE";
 
-val prems= Goal 
+val prems= Goal
     "[| p:ALL x. P(x); !!y. y:P(x) ==> q(y):R |] ==> ?p:R";
 by (REPEAT (resolve_tac (prems@[spec]) 1)) ;
 qed "allE";
 
 (*Duplicates the quantifier; for use with eresolve_tac*)
-val prems= Goal 
+val prems= Goal
     "[| p:ALL x. P(x);  !!y z.[| y:P(x); z:ALL x. P(x) |] ==> q(y,z):R \
 \    |] ==> ?p:R";
 by (REPEAT (resolve_tac (prems@[spec]) 1)) ;
@@ -33,16 +32,16 @@
 
 (*** Negation rules, which translate between ~P and P-->False ***)
 
-val notI = prove_goalw IFOLP.thy [not_def]  "(!!x. x:P ==> q(x):False) ==> ?p:~P"
+val notI = prove_goalw (the_context ()) [not_def]  "(!!x. x:P ==> q(x):False) ==> ?p:~P"
  (fn prems=> [ (REPEAT (ares_tac (prems@[impI]) 1)) ]);
 
-val notE = prove_goalw IFOLP.thy [not_def] "[| p:~P;  q:P |] ==> ?p:R"
+val notE = prove_goalw (the_context ()) [not_def] "[| p:~P;  q:P |] ==> ?p:R"
  (fn prems=>
   [ (resolve_tac [mp RS FalseE] 1),
     (REPEAT (resolve_tac prems 1)) ]);
 
 (*This is useful with the special implication rules for each kind of P. *)
-val prems= Goal 
+val prems= Goal
     "[| p:~P;  !!x. x:(P-->False) ==> q(x):Q |] ==> ?p:Q";
 by (REPEAT (ares_tac (prems@[impI,notE]) 1)) ;
 qed "not_to_imp";
@@ -65,7 +64,7 @@
 
 (** Unique assumption tactic.
     Ignores proof objects.
-    Fails unless one assumption is equal and exactly one is unifiable 
+    Fails unless one assumption is equal and exactly one is unifiable
 **)
 
 local
@@ -76,7 +75,7 @@
     (fn (prem,i) =>
       let val hyps = map discard_proof (Logic.strip_assums_hyp prem)
           and concl = discard_proof (Logic.strip_assums_concl prem)
-      in  
+      in
           if exists (fn hyp => hyp aconv concl) hyps
           then case distinct (List.filter (fn hyp=> could_unify(hyp,concl)) hyps) of
                    [_] => assume_tac i
@@ -97,22 +96,22 @@
 
 (*** If-and-only-if ***)
 
-val iffI = prove_goalw IFOLP.thy [iff_def]
+val iffI = prove_goalw (the_context ()) [iff_def]
    "[| !!x. x:P ==> q(x):Q;  !!x. x:Q ==> r(x):P |] ==> ?p:P<->Q"
  (fn prems=> [ (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ]);
 
 
 (*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
-val iffE = prove_goalw IFOLP.thy [iff_def]
+val iffE = prove_goalw (the_context ()) [iff_def]
     "[| p:P <-> Q;  !!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R |] ==> ?p:R"
  (fn prems => [ (rtac conjE 1), (REPEAT (ares_tac prems 1)) ]);
 
 (* Destruct rules for <-> similar to Modus Ponens *)
 
-val iffD1 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q;  q:P |] ==> ?p:Q"
+val iffD1 = prove_goalw (the_context ()) [iff_def] "[| p:P <-> Q;  q:P |] ==> ?p:Q"
  (fn prems => [ (rtac (conjunct1 RS mp) 1), (REPEAT (ares_tac prems 1)) ]);
 
-val iffD2 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q;  q:Q |] ==> ?p:P"
+val iffD2 = prove_goalw (the_context ()) [iff_def] "[| p:P <-> Q;  q:Q |] ==> ?p:P"
  (fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]);
 
 Goal "?p:P <-> P";
@@ -137,12 +136,12 @@
  do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
 ***)
 
-val prems = goalw IFOLP.thy [ex1_def]
+val prems = goalw (the_context ()) [ex1_def]
     "[| p:P(a);  !!x u. u:P(x) ==> f(u) : x=a |] ==> ?p:EX! x. P(x)";
 by (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ;
 qed "ex1I";
 
-val prems = goalw IFOLP.thy [ex1_def]
+val prems = goalw (the_context ()) [ex1_def]
     "[| p:EX! x. P(x);  \
 \       !!x u v. [| u:P(x);  v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R |] ==>\
 \    ?a : R";
@@ -158,7 +157,7 @@
     resolve_tac (prems RL [iffE]) i THEN
     REPEAT1 (eresolve_tac [asm_rl,mp] i);
 
-val conj_cong = prove_goal IFOLP.thy 
+val conj_cong = prove_goal (the_context ())
     "[| p:P <-> P';  !!x. x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P&Q) <-> (P'&Q')"
  (fn prems =>
   [ (cut_facts_tac prems 1),
@@ -166,7 +165,7 @@
       ORELSE  eresolve_tac [iffE,conjE,mp] 1
       ORELSE  iff_tac prems 1)) ]);
 
-val disj_cong = prove_goal IFOLP.thy 
+val disj_cong = prove_goal (the_context ())
     "[| p:P <-> P';  q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')"
  (fn prems =>
   [ (cut_facts_tac prems 1),
@@ -174,7 +173,7 @@
       ORELSE  ares_tac [iffI] 1
       ORELSE  mp_tac 1)) ]);
 
-val imp_cong = prove_goal IFOLP.thy 
+val imp_cong = prove_goal (the_context ())
     "[| p:P <-> P';  !!x. x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P-->Q) <-> (P'-->Q')"
  (fn prems =>
   [ (cut_facts_tac prems 1),
@@ -182,7 +181,7 @@
       ORELSE  etac iffE 1
       ORELSE  mp_tac 1 ORELSE iff_tac prems 1)) ]);
 
-val iff_cong = prove_goal IFOLP.thy 
+val iff_cong = prove_goal (the_context ())
     "[| p:P <-> P';  q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')"
  (fn prems =>
   [ (cut_facts_tac prems 1),
@@ -190,7 +189,7 @@
       ORELSE  ares_tac [iffI] 1
       ORELSE  mp_tac 1)) ]);
 
-val not_cong = prove_goal IFOLP.thy 
+val not_cong = prove_goal (the_context ())
     "p:P <-> P' ==> ?p:~P <-> ~P'"
  (fn prems =>
   [ (cut_facts_tac prems 1),
@@ -198,14 +197,14 @@
       ORELSE  mp_tac 1
       ORELSE  eresolve_tac [iffE,notE] 1)) ]);
 
-val all_cong = prove_goal IFOLP.thy 
+val all_cong = prove_goal (the_context ())
     "(!!x. f(x):P(x) <-> Q(x)) ==> ?p:(ALL x. P(x)) <-> (ALL x. Q(x))"
  (fn prems =>
   [ (REPEAT   (ares_tac [iffI,allI] 1
       ORELSE   mp_tac 1
       ORELSE   etac allE 1 ORELSE iff_tac prems 1)) ]);
 
-val ex_cong = prove_goal IFOLP.thy 
+val ex_cong = prove_goal (the_context ())
     "(!!x. f(x):P(x) <-> Q(x)) ==> ?p:(EX x. P(x)) <-> (EX x. Q(x))"
  (fn prems =>
   [ (REPEAT   (etac exE 1 ORELSE ares_tac [iffI,exI] 1
@@ -213,7 +212,7 @@
       ORELSE   iff_tac prems 1)) ]);
 
 (*NOT PROVED
-val ex1_cong = prove_goal IFOLP.thy 
+val ex1_cong = prove_goal (the_context ())
     "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))"
  (fn prems =>
   [ (REPEAT   (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1
@@ -225,8 +224,8 @@
 
 val refl = ieqI;
 
-val subst = prove_goal IFOLP.thy "[| p:a=b;  q:P(a) |] ==> ?p : P(b)"
- (fn [prem1,prem2] => [ rtac (prem2 RS rev_mp) 1, (rtac (prem1 RS ieqE) 1), 
+val subst = prove_goal (the_context ()) "[| p:a=b;  q:P(a) |] ==> ?p : P(b)"
+ (fn [prem1,prem2] => [ rtac (prem2 RS rev_mp) 1, (rtac (prem1 RS ieqE) 1),
                         rtac impI 1, atac 1 ]);
 
 Goal "q:a=b ==> ?c:b=a";
@@ -235,7 +234,7 @@
 qed "sym";
 
 Goal "[| p:a=b;  q:b=c |] ==> ?d:a=c";
-by (etac subst 1 THEN assume_tac 1); 
+by (etac subst 1 THEN assume_tac 1);
 qed "trans";
 
 (** ~ b=a ==> ~ a=b **)
@@ -263,12 +262,12 @@
 qed "subst_context";
 
 Goal "[| p:a=b;  q:c=d |]  ==>  ?p:t(a,c)=t(b,d)";
-by (REPEAT (etac ssubst 1)); 
+by (REPEAT (etac ssubst 1));
 by (rtac refl 1) ;
 qed "subst_context2";
 
 Goal "[| p:a=b;  q:c=d;  r:e=f |]  ==>  ?p:t(a,c,e)=t(b,d,f)";
-by (REPEAT (etac ssubst 1)); 
+by (REPEAT (etac ssubst 1));
 by (rtac refl 1) ;
 qed "subst_context3";
 
@@ -309,8 +308,8 @@
 
 (*special cases for free variables P, Q, R, S -- up to 3 arguments*)
 
-val pred_congs = 
-    List.concat (map (fn c => 
+val pred_congs =
+    List.concat (map (fn c =>
                map (fn th => read_instantiate [("P",c)] th)
                    [pred1_cong,pred2_cong,pred3_cong])
                (explode"PQRS"));
@@ -321,30 +320,30 @@
 
 (*** Simplifications of assumed implications.
      Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
-     used with mp_tac (restricted to atomic formulae) is COMPLETE for 
+     used with mp_tac (restricted to atomic formulae) is COMPLETE for
      intuitionistic propositional logic.  See
    R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
     (preprint, University of St Andrews, 1991)  ***)
 
-val major::prems= Goal 
+val major::prems= Goal
     "[| p:(P&Q)-->S;  !!x. x:P-->(Q-->S) ==> q(x):R |] ==> ?p:R";
 by (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ;
 qed "conj_impE";
 
-val major::prems= Goal 
+val major::prems= Goal
     "[| p:(P|Q)-->S;  !!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R |] ==> ?p:R";
 by (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ;
 qed "disj_impE";
 
-(*Simplifies the implication.  Classical version is stronger. 
+(*Simplifies the implication.  Classical version is stronger.
   Still UNSAFE since Q must be provable -- backtracking needed.  *)
-val major::prems= Goal 
+val major::prems= Goal
     "[| p:(P-->Q)-->S;  !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q;  !!x. x:S ==> r(x):R |] ==> \
 \    ?p:R";
 by (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ;
 qed "imp_impE";
 
-(*Simplifies the implication.  Classical version is stronger. 
+(*Simplifies the implication.  Classical version is stronger.
   Still UNSAFE since ~P must be provable -- backtracking needed.  *)
 val major::prems= Goal
     "[| p:~P --> S;  !!y. y:P ==> q(y):False;  !!y. y:S ==> r(y):R |] ==> ?p:R";
@@ -352,20 +351,20 @@
 qed "not_impE";
 
 (*Simplifies the implication.   UNSAFE.  *)
-val major::prems= Goal 
+val major::prems= Goal
     "[| p:(P<->Q)-->S;  !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q;  \
 \       !!x y.[| x:Q; y:P-->S |] ==> r(x,y):P;  !!x. x:S ==> s(x):R |] ==> ?p:R";
 by (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ;
 qed "iff_impE";
 
 (*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
-val major::prems= Goal 
+val major::prems= Goal
     "[| p:(ALL x. P(x))-->S;  !!x. q:P(x);  !!y. y:S ==> r(y):R |] ==> ?p:R";
 by (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ;
 qed "all_impE";
 
 (*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
-val major::prems= Goal 
+val major::prems= Goal
     "[| p:(EX x. P(x))-->S;  !!y. y:P(a)-->S ==> q(y):R |] ==> ?p:R";
 by (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ;
 qed "ex_impE";