src/HOL/HOLCF/IOA/meta_theory/Automata.thy
author huffman
Sat, 27 Nov 2010 16:08:10 -0800
changeset 40774 0437dbc127b3
parent 36452 src/HOLCF/IOA/meta_theory/Automata.thy@d37c6eed8117
child 40945 b8703f63bfb2
permissions -rw-r--r--
moved directory src/HOLCF to src/HOL/HOLCF; added HOLCF theories to src/HOL/IsaMakefile;

(*  Title:      HOLCF/IOA/meta_theory/Automata.thy
    Author:     Olaf Müller, Konrad Slind, Tobias Nipkow
*)

header {* The I/O automata of Lynch and Tuttle in HOLCF *}

theory Automata
imports Asig
begin

default_sort type

types
  ('a, 's) transition = "'s * 'a * 's"
  ('a, 's) ioa = "'a signature * 's set * ('a,'s)transition set * ('a set set) * ('a set set)"

consts

  (* IO automata *)

  asig_of        ::"('a,'s)ioa => 'a signature"
  starts_of      ::"('a,'s)ioa => 's set"
  trans_of       ::"('a,'s)ioa => ('a,'s)transition set"
  wfair_of       ::"('a,'s)ioa => ('a set) set"
  sfair_of       ::"('a,'s)ioa => ('a set) set"

  is_asig_of     ::"('a,'s)ioa => bool"
  is_starts_of   ::"('a,'s)ioa => bool"
  is_trans_of    ::"('a,'s)ioa => bool"
  input_enabled  ::"('a,'s)ioa => bool"
  IOA            ::"('a,'s)ioa => bool"

  (* constraints for fair IOA *)

  fairIOA        ::"('a,'s)ioa => bool"
  input_resistant::"('a,'s)ioa => bool"

  (* enabledness of actions and action sets *)

  enabled        ::"('a,'s)ioa => 'a => 's => bool"
  Enabled    ::"('a,'s)ioa => 'a set => 's => bool"

  (* action set keeps enabled until probably disabled by itself *)

  en_persistent  :: "('a,'s)ioa => 'a set => bool"

 (* post_conditions for actions and action sets *)

  was_enabled        ::"('a,'s)ioa => 'a => 's => bool"
  set_was_enabled    ::"('a,'s)ioa => 'a set => 's => bool"

  (* invariants *)
  invariant     :: "[('a,'s)ioa, 's=>bool] => bool"

  (* binary composition of action signatures and automata *)
  asig_comp    ::"['a signature, 'a signature] => 'a signature"
  compatible   ::"[('a,'s)ioa, ('a,'t)ioa] => bool"
  par          ::"[('a,'s)ioa, ('a,'t)ioa] => ('a,'s*'t)ioa"  (infixr "||" 10)

  (* hiding and restricting *)
  hide_asig     :: "['a signature, 'a set] => 'a signature"
  hide          :: "[('a,'s)ioa, 'a set] => ('a,'s)ioa"
  restrict_asig :: "['a signature, 'a set] => 'a signature"
  restrict      :: "[('a,'s)ioa, 'a set] => ('a,'s)ioa"

  (* renaming *)
  rename_set    :: "'a set => ('c => 'a option) => 'c set"
  rename        :: "('a, 'b)ioa => ('c => 'a option) => ('c,'b)ioa"

notation (xsymbols)
  par  (infixr "\<parallel>" 10)


inductive
  reachable :: "('a, 's) ioa => 's => bool"
  for C :: "('a, 's) ioa"
  where
    reachable_0:  "s : starts_of C ==> reachable C s"
  | reachable_n:  "[| reachable C s; (s, a, t) : trans_of C |] ==> reachable C t"

abbreviation
  trans_of_syn  ("_ -_--_-> _" [81,81,81,81] 100) where
  "s -a--A-> t == (s,a,t):trans_of A"

notation (xsymbols)
  trans_of_syn  ("_ \<midarrow>_\<midarrow>_\<longrightarrow> _" [81,81,81,81] 100)

abbreviation "act A == actions (asig_of A)"
abbreviation "ext A == externals (asig_of A)"
abbreviation int where "int A == internals (asig_of A)"
abbreviation "inp A == inputs (asig_of A)"
abbreviation "out A == outputs (asig_of A)"
abbreviation "local A == locals (asig_of A)"

defs

(* --------------------------------- IOA ---------------------------------*)

asig_of_def:   "asig_of == fst"
starts_of_def: "starts_of == (fst o snd)"
trans_of_def:  "trans_of == (fst o snd o snd)"
wfair_of_def:  "wfair_of == (fst o snd o snd o snd)"
sfair_of_def:  "sfair_of == (snd o snd o snd o snd)"

is_asig_of_def:
  "is_asig_of A == is_asig (asig_of A)"

is_starts_of_def:
  "is_starts_of A ==  (~ starts_of A = {})"

is_trans_of_def:
  "is_trans_of A ==
    (!triple. triple:(trans_of A) --> fst(snd(triple)):actions(asig_of A))"

input_enabled_def:
  "input_enabled A ==
    (!a. (a:inputs(asig_of A)) --> (!s1. ? s2. (s1,a,s2):(trans_of A)))"


ioa_def:
  "IOA A == (is_asig_of A    &
             is_starts_of A  &
             is_trans_of A   &
             input_enabled A)"


invariant_def: "invariant A P == (!s. reachable A s --> P(s))"


(* ------------------------- parallel composition --------------------------*)


compatible_def:
  "compatible A B ==
  (((out A Int out B) = {}) &
   ((int A Int act B) = {}) &
   ((int B Int act A) = {}))"

asig_comp_def:
  "asig_comp a1 a2 ==
     (((inputs(a1) Un inputs(a2)) - (outputs(a1) Un outputs(a2)),
       (outputs(a1) Un outputs(a2)),
       (internals(a1) Un internals(a2))))"

par_def:
  "(A || B) ==
      (asig_comp (asig_of A) (asig_of B),
       {pr. fst(pr):starts_of(A) & snd(pr):starts_of(B)},
       {tr. let s = fst(tr); a = fst(snd(tr)); t = snd(snd(tr))
            in (a:act A | a:act B) &
               (if a:act A then
                  (fst(s),a,fst(t)):trans_of(A)
                else fst(t) = fst(s))
               &
               (if a:act B then
                  (snd(s),a,snd(t)):trans_of(B)
                else snd(t) = snd(s))},
        wfair_of A Un wfair_of B,
        sfair_of A Un sfair_of B)"


(* ------------------------ hiding -------------------------------------------- *)

restrict_asig_def:
  "restrict_asig asig actns ==
    (inputs(asig) Int actns,
     outputs(asig) Int actns,
     internals(asig) Un (externals(asig) - actns))"

(* Notice that for wfair_of and sfair_of nothing has to be changed, as
   changes from the outputs to the internals does not touch the locals as
   a whole, which is of importance for fairness only *)

restrict_def:
  "restrict A actns ==
    (restrict_asig (asig_of A) actns,
     starts_of A,
     trans_of A,
     wfair_of A,
     sfair_of A)"

hide_asig_def:
  "hide_asig asig actns ==
    (inputs(asig) - actns,
     outputs(asig) - actns,
     internals(asig) Un actns)"

hide_def:
  "hide A actns ==
    (hide_asig (asig_of A) actns,
     starts_of A,
     trans_of A,
     wfair_of A,
     sfair_of A)"

(* ------------------------- renaming ------------------------------------------- *)

rename_set_def:
  "rename_set A ren == {b. ? x. Some x = ren b & x : A}"

rename_def:
"rename ioa ren ==
  ((rename_set (inp ioa) ren,
    rename_set (out ioa) ren,
    rename_set (int ioa) ren),
   starts_of ioa,
   {tr. let s = fst(tr); a = fst(snd(tr));  t = snd(snd(tr))
        in
        ? x. Some(x) = ren(a) & (s,x,t):trans_of ioa},
   {rename_set s ren | s. s: wfair_of ioa},
   {rename_set s ren | s. s: sfair_of ioa})"

(* ------------------------- fairness ----------------------------- *)

fairIOA_def:
  "fairIOA A == (! S : wfair_of A. S<= local A) &
                (! S : sfair_of A. S<= local A)"

input_resistant_def:
  "input_resistant A == ! W : sfair_of A. ! s a t.
                        reachable A s & reachable A t & a:inp A &
                        Enabled A W s & s -a--A-> t
                        --> Enabled A W t"

enabled_def:
  "enabled A a s == ? t. s-a--A-> t"

Enabled_def:
  "Enabled A W s == ? w:W. enabled A w s"

en_persistent_def:
  "en_persistent A W == ! s a t. Enabled A W s &
                                 a ~:W &
                                 s -a--A-> t
                                 --> Enabled A W t"
was_enabled_def:
  "was_enabled A a t == ? s. s-a--A-> t"

set_was_enabled_def:
  "set_was_enabled A W t == ? w:W. was_enabled A w t"


declare split_paired_Ex [simp del]

lemmas ioa_projections = asig_of_def starts_of_def trans_of_def wfair_of_def sfair_of_def


subsection "asig_of, starts_of, trans_of"

lemma ioa_triple_proj: 
 "((asig_of (x,y,z,w,s)) = x)   &  
  ((starts_of (x,y,z,w,s)) = y) &  
  ((trans_of (x,y,z,w,s)) = z)  &  
  ((wfair_of (x,y,z,w,s)) = w) &  
  ((sfair_of (x,y,z,w,s)) = s)"
  apply (simp add: ioa_projections)
  done

lemma trans_in_actions: 
  "[| is_trans_of A; (s1,a,s2):trans_of(A) |] ==> a:act A"
apply (unfold is_trans_of_def actions_def is_asig_def)
  apply (erule allE, erule impE, assumption)
  apply simp
done

lemma starts_of_par: 
"starts_of(A || B) = {p. fst(p):starts_of(A) & snd(p):starts_of(B)}"
  apply (simp add: par_def ioa_projections)
done

lemma trans_of_par: 
"trans_of(A || B) = {tr. let s = fst(tr); a = fst(snd(tr)); t = snd(snd(tr))  
             in (a:act A | a:act B) &  
                (if a:act A then        
                   (fst(s),a,fst(t)):trans_of(A)  
                 else fst(t) = fst(s))             
                &                                   
                (if a:act B then                     
                   (snd(s),a,snd(t)):trans_of(B)      
                 else snd(t) = snd(s))}"

apply (simp add: par_def ioa_projections)
done


subsection "actions and par"

lemma actions_asig_comp: 
  "actions(asig_comp a b) = actions(a) Un actions(b)"
  apply (simp (no_asm) add: actions_def asig_comp_def asig_projections)
  apply blast
  done

lemma asig_of_par: "asig_of(A || B) = asig_comp (asig_of A) (asig_of B)"
  apply (simp add: par_def ioa_projections)
  done


lemma externals_of_par: "ext (A1||A2) =     
   (ext A1) Un (ext A2)"
apply (simp add: externals_def asig_of_par asig_comp_def
  asig_inputs_def asig_outputs_def Un_def set_diff_eq)
apply blast
done

lemma actions_of_par: "act (A1||A2) =     
   (act A1) Un (act A2)"
apply (simp add: actions_def asig_of_par asig_comp_def
  asig_inputs_def asig_outputs_def asig_internals_def Un_def set_diff_eq)
apply blast
done

lemma inputs_of_par: "inp (A1||A2) = 
          ((inp A1) Un (inp A2)) - ((out A1) Un (out A2))"
apply (simp add: actions_def asig_of_par asig_comp_def
  asig_inputs_def asig_outputs_def Un_def set_diff_eq)
done

lemma outputs_of_par: "out (A1||A2) = 
          (out A1) Un (out A2)"
apply (simp add: actions_def asig_of_par asig_comp_def
  asig_outputs_def Un_def set_diff_eq)
done

lemma internals_of_par: "int (A1||A2) = 
          (int A1) Un (int A2)"
apply (simp add: actions_def asig_of_par asig_comp_def
  asig_inputs_def asig_outputs_def asig_internals_def Un_def set_diff_eq)
done


subsection "actions and compatibility"

lemma compat_commute: "compatible A B = compatible B A"
apply (simp add: compatible_def Int_commute)
apply auto
done

lemma ext1_is_not_int2: 
 "[| compatible A1 A2; a:ext A1|] ==> a~:int A2"
apply (unfold externals_def actions_def compatible_def)
apply simp
apply blast
done

(* just commuting the previous one: better commute compatible *)
lemma ext2_is_not_int1: 
 "[| compatible A2 A1 ; a:ext A1|] ==> a~:int A2"
apply (unfold externals_def actions_def compatible_def)
apply simp
apply blast
done

lemmas ext1_ext2_is_not_act2 = ext1_is_not_int2 [THEN int_and_ext_is_act, standard]
lemmas ext1_ext2_is_not_act1 = ext2_is_not_int1 [THEN int_and_ext_is_act, standard]

lemma intA_is_not_extB: 
 "[| compatible A B; x:int A |] ==> x~:ext B"
apply (unfold externals_def actions_def compatible_def)
apply simp
apply blast
done

lemma intA_is_not_actB: 
"[| compatible A B; a:int A |] ==> a ~: act B"
apply (unfold externals_def actions_def compatible_def is_asig_def asig_of_def)
apply simp
apply blast
done

(* the only one that needs disjointness of outputs and of internals and _all_ acts *)
lemma outAactB_is_inpB: 
"[| compatible A B; a:out A ;a:act B|] ==> a : inp B"
apply (unfold asig_outputs_def asig_internals_def actions_def asig_inputs_def 
    compatible_def is_asig_def asig_of_def)
apply simp
apply blast
done

(* needed for propagation of input_enabledness from A,B to A||B *)
lemma inpAAactB_is_inpBoroutB: 
"[| compatible A B; a:inp A ;a:act B|] ==> a : inp B | a: out B"
apply (unfold asig_outputs_def asig_internals_def actions_def asig_inputs_def 
    compatible_def is_asig_def asig_of_def)
apply simp
apply blast
done


subsection "input_enabledness and par"


(* ugly case distinctions. Heart of proof:
     1. inpAAactB_is_inpBoroutB ie. internals are really hidden.
     2. inputs_of_par: outputs are no longer inputs of par. This is important here *)
lemma input_enabled_par: 
"[| compatible A B; input_enabled A; input_enabled B|]  
      ==> input_enabled (A||B)"
apply (unfold input_enabled_def)
apply (simp add: Let_def inputs_of_par trans_of_par)
apply (tactic "safe_tac (global_claset_of @{theory Fun})")
apply (simp add: inp_is_act)
prefer 2
apply (simp add: inp_is_act)
(* a: inp A *)
apply (case_tac "a:act B")
(* a:act B *)
apply (erule_tac x = "a" in allE)
apply simp
apply (drule inpAAactB_is_inpBoroutB)
apply assumption
apply assumption
apply (erule_tac x = "a" in allE)
apply simp
apply (erule_tac x = "aa" in allE)
apply (erule_tac x = "b" in allE)
apply (erule exE)
apply (erule exE)
apply (rule_tac x = " (s2,s2a) " in exI)
apply (simp add: inp_is_act)
(* a~: act B*)
apply (simp add: inp_is_act)
apply (erule_tac x = "a" in allE)
apply simp
apply (erule_tac x = "aa" in allE)
apply (erule exE)
apply (rule_tac x = " (s2,b) " in exI)
apply simp

(* a:inp B *)
apply (case_tac "a:act A")
(* a:act A *)
apply (erule_tac x = "a" in allE)
apply (erule_tac x = "a" in allE)
apply (simp add: inp_is_act)
apply (frule_tac A1 = "A" in compat_commute [THEN iffD1])
apply (drule inpAAactB_is_inpBoroutB)
back
apply assumption
apply assumption
apply simp
apply (erule_tac x = "aa" in allE)
apply (erule_tac x = "b" in allE)
apply (erule exE)
apply (erule exE)
apply (rule_tac x = " (s2,s2a) " in exI)
apply (simp add: inp_is_act)
(* a~: act B*)
apply (simp add: inp_is_act)
apply (erule_tac x = "a" in allE)
apply (erule_tac x = "a" in allE)
apply simp
apply (erule_tac x = "b" in allE)
apply (erule exE)
apply (rule_tac x = " (aa,s2) " in exI)
apply simp
done


subsection "invariants"

lemma invariantI:
  "[| !!s. s:starts_of(A) ==> P(s);      
      !!s t a. [|reachable A s; P(s)|] ==> (s,a,t): trans_of(A) --> P(t) |]  
   ==> invariant A P"
apply (unfold invariant_def)
apply (rule allI)
apply (rule impI)
apply (rule_tac x = "s" in reachable.induct)
apply assumption
apply blast
apply blast
done

lemma invariantI1:
 "[| !!s. s : starts_of(A) ==> P(s);  
     !!s t a. reachable A s ==> P(s) --> (s,a,t):trans_of(A) --> P(t)  
  |] ==> invariant A P"
  apply (blast intro: invariantI)
  done

lemma invariantE: "[| invariant A P; reachable A s |] ==> P(s)"
  apply (unfold invariant_def)
  apply blast
  done


subsection "restrict"


lemmas reachable_0 = reachable.reachable_0
  and reachable_n = reachable.reachable_n

lemma cancel_restrict_a: "starts_of(restrict ioa acts) = starts_of(ioa) &      
          trans_of(restrict ioa acts) = trans_of(ioa)"
apply (simp add: restrict_def ioa_projections)
done

lemma cancel_restrict_b: "reachable (restrict ioa acts) s = reachable ioa s"
apply (rule iffI)
apply (erule reachable.induct)
apply (simp add: cancel_restrict_a reachable_0)
apply (erule reachable_n)
apply (simp add: cancel_restrict_a)
(* <--  *)
apply (erule reachable.induct)
apply (rule reachable_0)
apply (simp add: cancel_restrict_a)
apply (erule reachable_n)
apply (simp add: cancel_restrict_a)
done

lemma acts_restrict: "act (restrict A acts) = act A"
apply (simp (no_asm) add: actions_def asig_internals_def
  asig_outputs_def asig_inputs_def externals_def asig_of_def restrict_def restrict_asig_def)
apply auto
done

lemma cancel_restrict: "starts_of(restrict ioa acts) = starts_of(ioa) &      
          trans_of(restrict ioa acts) = trans_of(ioa) &  
          reachable (restrict ioa acts) s = reachable ioa s &  
          act (restrict A acts) = act A"
  apply (simp (no_asm) add: cancel_restrict_a cancel_restrict_b acts_restrict)
  done


subsection "rename"

lemma trans_rename: "s -a--(rename C f)-> t ==> (? x. Some(x) = f(a) & s -x--C-> t)"
apply (simp add: Let_def rename_def trans_of_def)
done


lemma reachable_rename: "[| reachable (rename C g) s |] ==> reachable C s"
apply (erule reachable.induct)
apply (rule reachable_0)
apply (simp add: rename_def ioa_projections)
apply (drule trans_rename)
apply (erule exE)
apply (erule conjE)
apply (erule reachable_n)
apply assumption
done


subsection "trans_of(A||B)"


lemma trans_A_proj: "[|(s,a,t):trans_of (A||B); a:act A|]  
              ==> (fst s,a,fst t):trans_of A"
apply (simp add: Let_def par_def trans_of_def)
done

lemma trans_B_proj: "[|(s,a,t):trans_of (A||B); a:act B|]  
              ==> (snd s,a,snd t):trans_of B"
apply (simp add: Let_def par_def trans_of_def)
done

lemma trans_A_proj2: "[|(s,a,t):trans_of (A||B); a~:act A|] 
              ==> fst s = fst t"
apply (simp add: Let_def par_def trans_of_def)
done

lemma trans_B_proj2: "[|(s,a,t):trans_of (A||B); a~:act B|] 
              ==> snd s = snd t"
apply (simp add: Let_def par_def trans_of_def)
done

lemma trans_AB_proj: "(s,a,t):trans_of (A||B)  
               ==> a :act A | a :act B"
apply (simp add: Let_def par_def trans_of_def)
done

lemma trans_AB: "[|a:act A;a:act B; 
       (fst s,a,fst t):trans_of A;(snd s,a,snd t):trans_of B|] 
   ==> (s,a,t):trans_of (A||B)"
apply (simp add: Let_def par_def trans_of_def)
done

lemma trans_A_notB: "[|a:act A;a~:act B; 
       (fst s,a,fst t):trans_of A;snd s=snd t|] 
   ==> (s,a,t):trans_of (A||B)"
apply (simp add: Let_def par_def trans_of_def)
done

lemma trans_notA_B: "[|a~:act A;a:act B; 
       (snd s,a,snd t):trans_of B;fst s=fst t|] 
   ==> (s,a,t):trans_of (A||B)"
apply (simp add: Let_def par_def trans_of_def)
done

lemmas trans_of_defs1 = trans_AB trans_A_notB trans_notA_B
  and trans_of_defs2 = trans_A_proj trans_B_proj trans_A_proj2 trans_B_proj2 trans_AB_proj


lemma trans_of_par4: 
"((s,a,t) : trans_of(A || B || C || D)) =                                     
  ((a:actions(asig_of(A)) | a:actions(asig_of(B)) | a:actions(asig_of(C)) |   
    a:actions(asig_of(D))) &                                                  
   (if a:actions(asig_of(A)) then (fst(s),a,fst(t)):trans_of(A)               
    else fst t=fst s) &                                                       
   (if a:actions(asig_of(B)) then (fst(snd(s)),a,fst(snd(t))):trans_of(B)     
    else fst(snd(t))=fst(snd(s))) &                                           
   (if a:actions(asig_of(C)) then                                             
      (fst(snd(snd(s))),a,fst(snd(snd(t)))):trans_of(C)                       
    else fst(snd(snd(t)))=fst(snd(snd(s)))) &                                 
   (if a:actions(asig_of(D)) then                                             
      (snd(snd(snd(s))),a,snd(snd(snd(t)))):trans_of(D)                       
    else snd(snd(snd(t)))=snd(snd(snd(s)))))"
  apply (simp (no_asm) add: par_def actions_asig_comp Pair_fst_snd_eq Let_def ioa_projections)
  done


subsection "proof obligation generator for IOA requirements"

(* without assumptions on A and B because is_trans_of is also incorporated in ||def *)
lemma is_trans_of_par: "is_trans_of (A||B)"
apply (unfold is_trans_of_def)
apply (simp add: Let_def actions_of_par trans_of_par)
done

lemma is_trans_of_restrict: 
"is_trans_of A ==> is_trans_of (restrict A acts)"
apply (unfold is_trans_of_def)
apply (simp add: cancel_restrict acts_restrict)
done

lemma is_trans_of_rename: 
"is_trans_of A ==> is_trans_of (rename A f)"
apply (unfold is_trans_of_def restrict_def restrict_asig_def)
apply (simp add: Let_def actions_def trans_of_def asig_internals_def
  asig_outputs_def asig_inputs_def externals_def asig_of_def rename_def rename_set_def)
apply blast
done

lemma is_asig_of_par: "[| is_asig_of A; is_asig_of B; compatible A B|]   
          ==> is_asig_of (A||B)"
apply (simp add: is_asig_of_def asig_of_par asig_comp_def compatible_def
  asig_internals_def asig_outputs_def asig_inputs_def actions_def is_asig_def)
apply (simp add: asig_of_def)
apply auto
done

lemma is_asig_of_restrict: 
"is_asig_of A ==> is_asig_of (restrict A f)"
apply (unfold is_asig_of_def is_asig_def asig_of_def restrict_def restrict_asig_def 
           asig_internals_def asig_outputs_def asig_inputs_def externals_def o_def)
apply simp
apply auto
done

lemma is_asig_of_rename: "is_asig_of A ==> is_asig_of (rename A f)"
apply (simp add: is_asig_of_def rename_def rename_set_def asig_internals_def
  asig_outputs_def asig_inputs_def actions_def is_asig_def asig_of_def)
apply auto
apply (drule_tac [!] s = "Some ?x" in sym)
apply auto
done

lemmas [simp] = is_asig_of_par is_asig_of_restrict
  is_asig_of_rename is_trans_of_par is_trans_of_restrict is_trans_of_rename


lemma compatible_par: 
"[|compatible A B; compatible A C |]==> compatible A (B||C)"
apply (unfold compatible_def)
apply (simp add: internals_of_par outputs_of_par actions_of_par)
apply auto
done

(*  better derive by previous one and compat_commute *)
lemma compatible_par2: 
"[|compatible A C; compatible B C |]==> compatible (A||B) C"
apply (unfold compatible_def)
apply (simp add: internals_of_par outputs_of_par actions_of_par)
apply auto
done

lemma compatible_restrict: 
"[| compatible A B; (ext B - S) Int ext A = {}|]  
      ==> compatible A (restrict B S)"
apply (unfold compatible_def)
apply (simp add: ioa_triple_proj asig_triple_proj externals_def
  restrict_def restrict_asig_def actions_def)
apply auto
done


declare split_paired_Ex [simp]

end