theory Predicate_Compile_Alternative_Defs
imports "../Predicate_Compile"
begin
section {* Common constants *}
declare HOL.if_bool_eq_disj[code_pred_inline]
setup {* Predicate_Compile_Data.ignore_consts [@{const_name Let}] *}
section {* Pairs *}
setup {* Predicate_Compile_Data.ignore_consts [@{const_name fst}, @{const_name snd}, @{const_name split}] *}
section {* Bounded quantifiers *}
declare Ball_def[code_pred_inline]
declare Bex_def[code_pred_inline]
section {* Set operations *}
declare Collect_def[code_pred_inline]
declare mem_def[code_pred_inline]
declare eq_reflection[OF empty_def, code_pred_inline]
declare insert_code[code_pred_def]
declare subset_iff[code_pred_inline]
declare Int_def[code_pred_inline]
declare eq_reflection[OF Un_def, code_pred_inline]
declare eq_reflection[OF UNION_def, code_pred_inline]
lemma Diff[code_pred_inline]:
"(A - B) = (%x. A x \<and> \<not> B x)"
by (auto simp add: mem_def)
lemma set_equality[code_pred_inline]:
"(A = B) = ((\<forall>x. A x \<longrightarrow> B x) \<and> (\<forall>x. B x \<longrightarrow> A x))"
by (fastsimp simp add: mem_def)
section {* Setup for Numerals *}
setup {* Predicate_Compile_Data.ignore_consts [@{const_name number_of}] *}
setup {* Predicate_Compile_Data.keep_functions [@{const_name number_of}] *}
setup {* Predicate_Compile_Data.ignore_consts [@{const_name div}, @{const_name mod}, @{const_name times}] *}
subsection {* Inductive definitions for arithmetic on natural numbers *}
inductive plusP
where
"plusP x 0 x"
| "plusP x y z ==> plusP x (Suc y) (Suc z)"
setup {* Predicate_Compile_Fun.add_function_predicate_translation
(@{term "op + :: nat => nat => nat"}, @{term "plusP"}) *}
inductive less_nat
where
"less_nat 0 (Suc y)"
| "less_nat x y ==> less_nat (Suc x) (Suc y)"
lemma [code_pred_inline]:
"x < y = less_nat x y"
apply (rule iffI)
apply (induct x arbitrary: y)
apply (case_tac y) apply (auto intro: less_nat.intros)
apply (case_tac y)
apply (auto intro: less_nat.intros)
apply (induct rule: less_nat.induct)
apply auto
done
inductive less_eq_nat
where
"less_eq_nat 0 y"
| "less_eq_nat x y ==> less_eq_nat (Suc x) (Suc y)"
lemma [code_pred_inline]:
"x <= y = less_eq_nat x y"
apply (rule iffI)
apply (induct x arbitrary: y)
apply (auto intro: less_eq_nat.intros)
apply (case_tac y) apply (auto intro: less_eq_nat.intros)
apply (induct rule: less_eq_nat.induct)
apply auto done
section {* Alternative list definitions *}
text {* size simps are not yet added to the Spec_Rules interface. So they are just added manually here! *}
lemma [code_pred_def]:
"length [] = 0"
"length (x # xs) = Suc (length xs)"
by auto
subsection {* Alternative rules for set *}
lemma set_ConsI1 [code_pred_intro]:
"set (x # xs) x"
unfolding mem_def[symmetric, of _ x]
by auto
lemma set_ConsI2 [code_pred_intro]:
"set xs x ==> set (x' # xs) x"
unfolding mem_def[symmetric, of _ x]
by auto
code_pred [skip_proof] set
proof -
case set
from this show thesis
apply (case_tac xb)
apply auto
unfolding mem_def[symmetric, of _ xc]
apply auto
unfolding mem_def
apply fastsimp
done
qed
subsection {* Alternative rules for list_all2 *}
lemma list_all2_NilI [code_pred_intro]: "list_all2 P [] []"
by auto
lemma list_all2_ConsI [code_pred_intro]: "list_all2 P xs ys ==> P x y ==> list_all2 P (x#xs) (y#ys)"
by auto
code_pred [skip_proof] list_all2
proof -
case list_all2
from this show thesis
apply -
apply (case_tac xb)
apply (case_tac xc)
apply auto
apply (case_tac xc)
apply auto
apply fastsimp
done
qed
end