(* Title: HOL/Nat_Numeral.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
*)
header {* Binary numerals for the natural numbers *}
theory Nat_Numeral
imports Int
begin
subsection {* Numerals for natural numbers *}
text {*
Arithmetic for naturals is reduced to that for the non-negative integers.
*}
subsection {* Special case: squares and cubes *}
lemma numeral_2_eq_2: "2 = Suc (Suc 0)"
by (simp add: nat_number(2-4))
lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))"
by (simp add: nat_number(2-4))
context power
begin
abbreviation (xsymbols)
power2 :: "'a \<Rightarrow> 'a" ("(_\<twosuperior>)" [1000] 999) where
"x\<twosuperior> \<equiv> x ^ 2"
notation (latex output)
power2 ("(_\<twosuperior>)" [1000] 999)
notation (HTML output)
power2 ("(_\<twosuperior>)" [1000] 999)
end
context monoid_mult
begin
lemma power2_eq_square: "a\<twosuperior> = a * a"
by (simp add: numeral_2_eq_2)
lemma power3_eq_cube: "a ^ 3 = a * a * a"
by (simp add: numeral_3_eq_3 mult_assoc)
lemma power_even_eq:
"a ^ (2*n) = (a ^ n) ^ 2"
by (subst mult_commute) (simp add: power_mult)
lemma power_odd_eq:
"a ^ Suc (2*n) = a * (a ^ n) ^ 2"
by (simp add: power_even_eq)
end
context semiring_1
begin
lemma zero_power2 [simp]: "0\<twosuperior> = 0"
by (simp add: power2_eq_square)
lemma one_power2 [simp]: "1\<twosuperior> = 1"
by (simp add: power2_eq_square)
end
context ring_1
begin
lemma power2_minus [simp]:
"(- a)\<twosuperior> = a\<twosuperior>"
by (simp add: power2_eq_square)
lemma power_minus1_even [simp]:
"-1 ^ (2*n) = 1"
proof (induct n)
case 0 show ?case by simp
next
case (Suc n) then show ?case by (simp add: power_add power2_eq_square)
qed
lemma power_minus1_odd:
"-1 ^ Suc (2*n) = -1"
by simp
lemma power_minus_even [simp]:
"(-a) ^ (2*n) = a ^ (2*n)"
by (simp add: power_minus [of a])
end
context ring_1_no_zero_divisors
begin
lemma zero_eq_power2 [simp]:
"a\<twosuperior> = 0 \<longleftrightarrow> a = 0"
unfolding power2_eq_square by simp
lemma power2_eq_1_iff:
"a\<twosuperior> = 1 \<longleftrightarrow> a = 1 \<or> a = - 1"
unfolding power2_eq_square by (rule square_eq_1_iff)
end
context idom
begin
lemma power2_eq_iff: "x\<twosuperior> = y\<twosuperior> \<longleftrightarrow> x = y \<or> x = - y"
unfolding power2_eq_square by (rule square_eq_iff)
end
context linordered_ring
begin
lemma sum_squares_ge_zero:
"0 \<le> x * x + y * y"
by (intro add_nonneg_nonneg zero_le_square)
lemma not_sum_squares_lt_zero:
"\<not> x * x + y * y < 0"
by (simp add: not_less sum_squares_ge_zero)
end
context linordered_ring_strict
begin
lemma sum_squares_eq_zero_iff:
"x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
by (simp add: add_nonneg_eq_0_iff)
lemma sum_squares_le_zero_iff:
"x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"
by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)
lemma sum_squares_gt_zero_iff:
"0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"
by (simp add: not_le [symmetric] sum_squares_le_zero_iff)
end
context linordered_semidom
begin
lemma power2_le_imp_le:
"x\<twosuperior> \<le> y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y"
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)
lemma power2_less_imp_less:
"x\<twosuperior> < y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y"
by (rule power_less_imp_less_base)
lemma power2_eq_imp_eq:
"x\<twosuperior> = y\<twosuperior> \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y"
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp
end
context linordered_idom
begin
lemma zero_le_power2 [simp]:
"0 \<le> a\<twosuperior>"
by (simp add: power2_eq_square)
lemma zero_less_power2 [simp]:
"0 < a\<twosuperior> \<longleftrightarrow> a \<noteq> 0"
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)
lemma power2_less_0 [simp]:
"\<not> a\<twosuperior> < 0"
by (force simp add: power2_eq_square mult_less_0_iff)
lemma abs_power2 [simp]:
"abs (a\<twosuperior>) = a\<twosuperior>"
by (simp add: power2_eq_square abs_mult abs_mult_self)
lemma power2_abs [simp]:
"(abs a)\<twosuperior> = a\<twosuperior>"
by (simp add: power2_eq_square abs_mult_self)
lemma odd_power_less_zero:
"a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"
by (simp add: mult_ac power_add power2_eq_square)
thus ?case
by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg)
qed
lemma odd_0_le_power_imp_0_le:
"0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a"
using odd_power_less_zero [of a n]
by (force simp add: linorder_not_less [symmetric])
lemma zero_le_even_power'[simp]:
"0 \<le> a ^ (2*n)"
proof (induct n)
case 0
show ?case by simp
next
case (Suc n)
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"
by (simp add: mult_ac power_add power2_eq_square)
thus ?case
by (simp add: Suc zero_le_mult_iff)
qed
lemma sum_power2_ge_zero:
"0 \<le> x\<twosuperior> + y\<twosuperior>"
unfolding power2_eq_square by (rule sum_squares_ge_zero)
lemma not_sum_power2_lt_zero:
"\<not> x\<twosuperior> + y\<twosuperior> < 0"
unfolding power2_eq_square by (rule not_sum_squares_lt_zero)
lemma sum_power2_eq_zero_iff:
"x\<twosuperior> + y\<twosuperior> = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
unfolding power2_eq_square by (rule sum_squares_eq_zero_iff)
lemma sum_power2_le_zero_iff:
"x\<twosuperior> + y\<twosuperior> \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"
unfolding power2_eq_square by (rule sum_squares_le_zero_iff)
lemma sum_power2_gt_zero_iff:
"0 < x\<twosuperior> + y\<twosuperior> \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"
unfolding power2_eq_square by (rule sum_squares_gt_zero_iff)
end
lemma power2_sum:
fixes x y :: "'a::comm_semiring_1"
shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y"
by (simp add: algebra_simps power2_eq_square mult_2_right)
lemma power2_diff:
fixes x y :: "'a::comm_ring_1"
shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y"
by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute)
subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
declare nat_1 [simp]
lemma nat_neg_numeral [simp]: "nat (neg_numeral w) = 0"
by simp
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0"
by simp
subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
lemma int_numeral: "int (numeral v) = numeral v"
by (rule of_nat_numeral) (* already simp *)
lemma nonneg_int_cases:
fixes k :: int assumes "0 \<le> k" obtains n where "k = of_nat n"
using assms by (cases k, simp, simp)
subsubsection{*Successor *}
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
apply (rule sym)
apply (simp add: nat_eq_iff)
done
lemma Suc_nat_number_of_add:
"Suc (numeral v + n) = numeral (v + Num.One) + n"
by simp
lemma Suc_numeral [simp]:
"Suc (numeral v) = numeral (v + Num.One)"
by simp
subsubsection{*Subtraction *}
lemma diff_nat_eq_if:
"nat z - nat z' =
(if z' < 0 then nat z
else let d = z-z' in
if d < 0 then 0 else nat d)"
by (simp add: Let_def nat_diff_distrib [symmetric])
(* Int.nat_diff_distrib has too-strong premises *)
lemma nat_diff_distrib': "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x - y) = nat x - nat y"
apply (rule int_int_eq [THEN iffD1], clarsimp)
apply (subst zdiff_int [symmetric])
apply (rule nat_mono, simp_all)
done
lemma diff_nat_numeral [simp]:
"(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')"
by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral)
lemma nat_numeral_diff_1 [simp]:
"numeral v - (1::nat) = nat (numeral v - 1)"
using diff_nat_numeral [of v Num.One] by simp
subsection{*Comparisons*}
(*Maps #n to n for n = 1, 2*)
lemmas numerals = numeral_1_eq_1 [where 'a=nat] numeral_2_eq_2
subsection{*Powers with Numeric Exponents*}
text{*Squares of literal numerals will be evaluated.*}
(* FIXME: replace with more general rules for powers of numerals *)
lemmas power2_eq_square_numeral [simp] =
power2_eq_square [of "numeral w"] for w
text{*Simprules for comparisons where common factors can be cancelled.*}
lemmas zero_compare_simps =
add_strict_increasing add_strict_increasing2 add_increasing
zero_le_mult_iff zero_le_divide_iff
zero_less_mult_iff zero_less_divide_iff
mult_le_0_iff divide_le_0_iff
mult_less_0_iff divide_less_0_iff
zero_le_power2 power2_less_0
subsubsection{*Nat *}
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"
by simp
(*Expresses a natural number constant as the Suc of another one.
NOT suitable for rewriting because n recurs on the right-hand side.*)
lemmas expand_Suc = Suc_pred' [of "numeral v", OF zero_less_numeral] for v
subsubsection{*Arith *}
lemma Suc_eq_plus1: "Suc n = n + 1"
unfolding One_nat_def by simp
lemma Suc_eq_plus1_left: "Suc n = 1 + n"
unfolding One_nat_def by simp
(* These two can be useful when m = numeral... *)
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"
unfolding One_nat_def by (cases m) simp_all
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"
unfolding One_nat_def by (cases m) simp_all
lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))"
unfolding One_nat_def by (cases m) simp_all
subsection{*Comparisons involving @{term Suc} *}
lemma eq_numeral_Suc [simp]: "numeral v = Suc n \<longleftrightarrow> nat (numeral v - 1) = n"
by (subst expand_Suc, simp only: nat.inject nat_numeral_diff_1)
lemma Suc_eq_numeral [simp]: "Suc n = numeral v \<longleftrightarrow> n = nat (numeral v - 1)"
by (subst expand_Suc, simp only: nat.inject nat_numeral_diff_1)
lemma less_numeral_Suc [simp]: "numeral v < Suc n \<longleftrightarrow> nat (numeral v - 1) < n"
by (subst expand_Suc, simp only: Suc_less_eq nat_numeral_diff_1)
lemma less_Suc_numeral [simp]: "Suc n < numeral v \<longleftrightarrow> n < nat (numeral v - 1)"
by (subst expand_Suc, simp only: Suc_less_eq nat_numeral_diff_1)
lemma le_numeral_Suc [simp]: "numeral v \<le> Suc n \<longleftrightarrow> nat (numeral v - 1) \<le> n"
by (subst expand_Suc, simp only: Suc_le_mono nat_numeral_diff_1)
lemma le_Suc_numeral [simp]: "Suc n \<le> numeral v \<longleftrightarrow> n \<le> nat (numeral v - 1)"
by (subst expand_Suc, simp only: Suc_le_mono nat_numeral_diff_1)
subsection{*Max and Min Combined with @{term Suc} *}
lemma max_Suc_numeral [simp]:
"max (Suc n) (numeral v) = Suc (max n (nat (numeral v - 1)))"
by (subst expand_Suc, simp only: max_Suc_Suc nat_numeral_diff_1)
lemma max_numeral_Suc [simp]:
"max (numeral v) (Suc n) = Suc (max (nat (numeral v - 1)) n)"
by (subst expand_Suc, simp only: max_Suc_Suc nat_numeral_diff_1)
lemma min_Suc_numeral [simp]:
"min (Suc n) (numeral v) = Suc (min n (nat (numeral v - 1)))"
by (subst expand_Suc, simp only: min_Suc_Suc nat_numeral_diff_1)
lemma min_numeral_Suc [simp]:
"min (numeral v) (Suc n) = Suc (min (nat (numeral v - 1)) n)"
by (subst expand_Suc, simp only: min_Suc_Suc nat_numeral_diff_1)
subsection{*Literal arithmetic involving powers*}
(* TODO: replace with more generic rule for powers of numerals *)
lemma power_nat_numeral:
"(numeral v :: nat) ^ n = nat ((numeral v :: int) ^ n)"
by (simp only: nat_power_eq zero_le_numeral nat_numeral)
lemmas power_nat_numeral_numeral = power_nat_numeral [of _ "numeral w"] for w
declare power_nat_numeral_numeral [simp]
text{*For arbitrary rings*}
lemma power_numeral_even:
fixes z :: "'a::monoid_mult"
shows "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)"
unfolding numeral_Bit0 power_add Let_def ..
lemma power_numeral_odd:
fixes z :: "'a::monoid_mult"
shows "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)"
unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right
unfolding power_Suc power_add Let_def mult_assoc ..
lemmas zpower_numeral_even = power_numeral_even [where 'a=int]
lemmas zpower_numeral_odd = power_numeral_odd [where 'a=int]
lemmas power_numeral_even_numeral [simp] =
power_numeral_even [of "numeral v"] for v
lemmas power_numeral_odd_numeral [simp] =
power_numeral_odd [of "numeral v"] for v
lemma nat_numeral_Bit0:
"numeral (Num.Bit0 w) = (let n::nat = numeral w in n + n)"
unfolding numeral_Bit0 Let_def ..
lemma nat_numeral_Bit1:
"numeral (Num.Bit1 w) = (let n = numeral w in Suc (n + n))"
unfolding numeral_Bit1 Let_def by simp
lemmas eval_nat_numeral =
nat_numeral_Bit0 nat_numeral_Bit1
lemmas nat_arith =
diff_nat_numeral
lemmas semiring_norm =
Let_def arith_simps nat_arith rel_simps
if_False if_True
add_0 add_Suc add_numeral_left
add_neg_numeral_left mult_numeral_left
numeral_1_eq_1 [symmetric] Suc_eq_plus1
eq_numeral_iff_iszero not_iszero_Numeral1
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
by (fact Let_def)
lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::ring_1)"
by (fact power_minus1_even) (* FIXME: duplicate *)
lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::ring_1)"
by (fact power_minus1_odd) (* FIXME: duplicate *)
subsection{*Literal arithmetic and @{term of_nat}*}
lemma of_nat_double:
"0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)"
by (simp only: mult_2 nat_add_distrib of_nat_add)
subsubsection{*For simplifying @{term "Suc m - K"} and @{term "K - Suc m"}*}
text{*Where K above is a literal*}
lemma Suc_diff_eq_diff_pred: "0 < n ==> Suc m - n = m - (n - Numeral1)"
by (simp split: nat_diff_split)
text{*No longer required as a simprule because of the @{text inverse_fold}
simproc*}
lemma Suc_diff_numeral: "Suc m - (numeral v) = m - (numeral v - 1)"
by (subst expand_Suc, simp only: diff_Suc_Suc)
lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
by (simp split: nat_diff_split)
subsubsection{*For @{term nat_case} and @{term nat_rec}*}
lemma nat_case_numeral [simp]:
"nat_case a f (numeral v) = (let pv = nat (numeral v - 1) in f pv)"
by (subst expand_Suc, simp only: nat.cases nat_numeral_diff_1 Let_def)
lemma nat_case_add_eq_if [simp]:
"nat_case a f ((numeral v) + n) = (let pv = nat (numeral v - 1) in f (pv + n))"
by (subst expand_Suc, simp only: nat.cases nat_numeral_diff_1 Let_def add_Suc)
lemma nat_rec_numeral [simp]:
"nat_rec a f (numeral v) = (let pv = nat (numeral v - 1) in f pv (nat_rec a f pv))"
by (subst expand_Suc, simp only: nat_rec_Suc nat_numeral_diff_1 Let_def)
lemma nat_rec_add_eq_if [simp]:
"nat_rec a f (numeral v + n) =
(let pv = nat (numeral v - 1) in f (pv + n) (nat_rec a f (pv + n)))"
by (subst expand_Suc, simp only: nat_rec_Suc nat_numeral_diff_1 Let_def add_Suc)
subsubsection{*Various Other Lemmas*}
lemma card_UNIV_bool[simp]: "card (UNIV :: bool set) = 2"
by(simp add: UNIV_bool)
text {*Evens and Odds, for Mutilated Chess Board*}
text{*Lemmas for specialist use, NOT as default simprules*}
lemma nat_mult_2: "2 * z = (z+z::nat)"
by (rule mult_2) (* FIXME: duplicate *)
lemma nat_mult_2_right: "z * 2 = (z+z::nat)"
by (rule mult_2_right) (* FIXME: duplicate *)
text{*Case analysis on @{term "n<2"}*}
lemma less_2_cases: "(n::nat) < 2 ==> n = 0 | n = Suc 0"
by (auto simp add: numeral_2_eq_2)
text{*Removal of Small Numerals: 0, 1 and (in additive positions) 2*}
lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)"
by simp
lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)"
by simp
text{*Can be used to eliminate long strings of Sucs, but not by default*}
lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n"
by simp
text{*Legacy theorems*}
lemmas nat_1_add_1 = one_add_one [where 'a=nat]
end