src/HOL/ex/Bit_Operations.thy
author haftmann
Sun, 26 Jan 2020 20:35:32 +0000
changeset 71409 0bb0cb558bf9
parent 71195 d50a718ccf35
child 71412 96d126844adc
permissions -rw-r--r--
sketches of ideas still to come

(*  Author:  Florian Haftmann, TUM
*)

section \<open>Proof of concept for purely algebraically founded lists of bits\<close>

theory Bit_Operations
  imports
    "HOL-Library.Boolean_Algebra"
    Main
begin

lemma bit_push_bit_eq_int:
  \<open>bit (push_bit m k) n \<longleftrightarrow> m \<le> n \<and> bit k (n - m)\<close> for k :: int
proof (cases \<open>m \<le> n\<close>)
  case True
  then obtain q where \<open>n = m + q\<close>
    using le_Suc_ex by blast
  with True show ?thesis
    by (simp add: push_bit_eq_mult bit_def power_add)
next
  case False
  then obtain q where \<open>m = Suc (n + q)\<close>
    using less_imp_Suc_add not_le by blast
  with False show ?thesis
    by (simp add: push_bit_eq_mult bit_def power_add)
qed

context semiring_bits
begin

(*lemma range_rec:
  \<open>2 ^ Suc n - 1 = 1 + 2 * (2 ^ n - 1)\<close>
  sorry

lemma even_range_div_iff:
  \<open>even ((2 ^ m - 1) div 2 ^ n) \<longleftrightarrow> 2 ^ n = 0 \<or> m \<le> n\<close>
  sorry*)

(*lemma even_range_iff [simp]:
  \<open>even (2 ^ n - 1) \<longleftrightarrow> n = 0\<close>
  by (induction n) (simp_all only: range_rec, simp_all)

lemma bit_range_iff:
  \<open>bit (2 ^ m - 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n < m\<close>
  by (simp add: bit_def even_range_div_iff not_le)*)

end

context semiring_bit_shifts
begin

(*lemma bit_push_bit_iff:
  \<open>bit (push_bit m a) n \<longleftrightarrow> n \<ge> m \<and> 2 ^ n \<noteq> 0 \<and> bit a (n - m)\<close>*)

end


subsection \<open>Bit operations in suitable algebraic structures\<close>

class semiring_bit_operations = semiring_bit_shifts +
  fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr "AND" 64)
    and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr "OR"  59)
    and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr "XOR" 59)
  assumes bit_and_iff: \<open>\<And>n. bit (a AND b) n \<longleftrightarrow> bit a n \<and> bit b n\<close>
    and bit_or_iff: \<open>\<And>n. bit (a OR b) n \<longleftrightarrow> bit a n \<or> bit b n\<close>
    and bit_xor_iff: \<open>\<And>n. bit (a XOR b) n \<longleftrightarrow> bit a n \<noteq> bit b n\<close>
begin

text \<open>
  We want the bitwise operations to bind slightly weaker
  than \<open>+\<close> and \<open>-\<close>.
  For the sake of code generation
  the operations \<^const>\<open>and\<close>, \<^const>\<open>or\<close> and \<^const>\<open>xor\<close>
  are specified as definitional class operations.
\<close>

definition map_bit :: \<open>nat \<Rightarrow> (bool \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  where \<open>map_bit n f a = take_bit n a + push_bit n (of_bool (f (bit a n)) + 2 * drop_bit (Suc n) a)\<close>

definition set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  where \<open>set_bit n = map_bit n top\<close>

definition unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  where \<open>unset_bit n = map_bit n bot\<close>

definition flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
  where \<open>flip_bit n = map_bit n Not\<close>

text \<open>
  Having 
  \<^const>\<open>set_bit\<close>, \<^const>\<open>unset_bit\<close> and \<^const>\<open>flip_bit\<close> as separate
  operations allows to implement them using bit masks later.
\<close>

lemma stable_imp_drop_eq:
  \<open>drop_bit n a = a\<close> if \<open>a div 2 = a\<close>
  by (induction n) (simp_all add: that)

lemma map_bit_0 [simp]:
  \<open>map_bit 0 f a = of_bool (f (odd a)) + 2 * (a div 2)\<close>
  by (simp add: map_bit_def)

lemma map_bit_Suc [simp]:
  \<open>map_bit (Suc n) f a = a mod 2 + 2 * map_bit n f (a div 2)\<close>
  by (auto simp add: map_bit_def algebra_simps mod2_eq_if push_bit_add mult_2
    elim: evenE oddE)

lemma set_bit_0 [simp]:
  \<open>set_bit 0 a = 1 + 2 * (a div 2)\<close>
  by (simp add: set_bit_def)

lemma set_bit_Suc [simp]:
  \<open>set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\<close>
  by (simp add: set_bit_def)

lemma unset_bit_0 [simp]:
  \<open>unset_bit 0 a = 2 * (a div 2)\<close>
  by (simp add: unset_bit_def)

lemma unset_bit_Suc [simp]:
  \<open>unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\<close>
  by (simp add: unset_bit_def)

lemma flip_bit_0 [simp]:
  \<open>flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\<close>
  by (simp add: flip_bit_def)

lemma flip_bit_Suc [simp]:
  \<open>flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\<close>
  by (simp add: flip_bit_def)

lemma take_bit_and [simp]:
  \<open>take_bit n (a AND b) = take_bit n a AND take_bit n b\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff)

lemma take_bit_or [simp]:
  \<open>take_bit n (a OR b) = take_bit n a OR take_bit n b\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff)

lemma take_bit_xor [simp]:
  \<open>take_bit n (a XOR b) = take_bit n a XOR take_bit n b\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff)

end

class ring_bit_operations = semiring_bit_operations + ring_parity +
  fixes not :: \<open>'a \<Rightarrow> 'a\<close>  (\<open>NOT\<close>)
  assumes bit_not_iff: \<open>\<And>n. bit (NOT a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit a n\<close>
  assumes minus_eq_not_minus_1: \<open>- a = NOT (a - 1)\<close>
begin

text \<open>
  For the sake of code generation \<^const>\<open>not\<close> is specified as
  definitional class operation.  Note that \<^const>\<open>not\<close> has no
  sensible definition for unlimited but only positive bit strings
  (type \<^typ>\<open>nat\<close>).
\<close>

lemma bits_minus_1_mod_2_eq [simp]:
  \<open>(- 1) mod 2 = 1\<close>
  by (simp add: mod_2_eq_odd)

lemma not_eq_complement:
  \<open>NOT a = - a - 1\<close>
  using minus_eq_not_minus_1 [of \<open>a + 1\<close>] by simp

lemma minus_eq_not_plus_1:
  \<open>- a = NOT a + 1\<close>
  using not_eq_complement [of a] by simp

lemma bit_minus_iff:
  \<open>bit (- a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit (a - 1) n\<close>
  by (simp add: minus_eq_not_minus_1 bit_not_iff)

lemma bit_not_exp_iff:
  \<open>bit (NOT (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<noteq> m\<close>
  by (auto simp add: bit_not_iff bit_exp_iff)

lemma bit_minus_1_iff [simp]:
  \<open>bit (- 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0\<close>
  by (simp add: bit_minus_iff)

lemma bit_minus_exp_iff:
  \<open>bit (- (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<ge> m\<close>
  oops

lemma bit_minus_2_iff [simp]:
  \<open>bit (- 2) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n > 0\<close>
  by (simp add: bit_minus_iff bit_1_iff)

sublocale bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close>
  rewrites \<open>bit.xor = (XOR)\<close>
proof -
  interpret bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close>
    apply standard
             apply (auto simp add: bit_eq_iff bit_and_iff bit_or_iff bit_not_iff)
     apply (simp_all add: bit_exp_iff)
     apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0)
    apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0)
    done
  show \<open>boolean_algebra (AND) (OR) NOT 0 (- 1)\<close>
    by standard
  show \<open>boolean_algebra.xor (AND) (OR) NOT = (XOR)\<close> 
    apply (auto simp add: fun_eq_iff bit.xor_def bit_eq_iff bit_and_iff bit_or_iff bit_not_iff bit_xor_iff)
         apply (simp add: bit_exp_iff, simp add: bit_def)
        apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0)
       apply (metis local.bit_def local.bit_exp_iff local.bits_div_by_0)
      apply (simp_all add: bit_exp_iff, simp_all add: bit_def)
    done
qed

lemma take_bit_not_take_bit:
  \<open>take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\<close>
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff)

end


subsubsection \<open>Instance \<^typ>\<open>nat\<close>\<close>

locale zip_nat = single: abel_semigroup f
    for f :: "bool \<Rightarrow> bool \<Rightarrow> bool"  (infixl "\<^bold>*" 70) +
  assumes end_of_bits: "\<not> False \<^bold>* False"
begin

lemma False_P_imp:
  "False \<^bold>* True \<and> P" if "False \<^bold>* P"
  using that end_of_bits by (cases P) simp_all

function F :: "nat \<Rightarrow> nat \<Rightarrow> nat"  (infixl "\<^bold>\<times>" 70)
  where "m \<^bold>\<times> n = (if m = 0 \<and> n = 0 then 0
    else of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\<times> (n div 2) * 2)"
  by auto

termination
  by (relation "measure (case_prod (+))") auto

lemma zero_left_eq:
  "0 \<^bold>\<times> n = of_bool (False \<^bold>* True) * n"
  by (induction n rule: nat_bit_induct) (simp_all add: end_of_bits)

lemma zero_right_eq:
  "m \<^bold>\<times> 0 = of_bool (True \<^bold>* False) * m"
  by (induction m rule: nat_bit_induct) (simp_all add: end_of_bits)

lemma simps [simp]:
  "0 \<^bold>\<times> 0 = 0"
  "0 \<^bold>\<times> n = of_bool (False \<^bold>* True) * n"
  "m \<^bold>\<times> 0 = of_bool (True \<^bold>* False) * m"
  "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> m \<^bold>\<times> n = of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\<times> (n div 2) * 2"
  by (simp_all only: zero_left_eq zero_right_eq) simp

lemma rec:
  "m \<^bold>\<times> n = of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\<times> (n div 2) * 2"
  by (cases "m = 0 \<and> n = 0") (auto simp add: end_of_bits)

declare F.simps [simp del]

sublocale abel_semigroup F
proof
  show "m \<^bold>\<times> n \<^bold>\<times> q = m \<^bold>\<times> (n \<^bold>\<times> q)" for m n q :: nat
  proof (induction m arbitrary: n q rule: nat_bit_induct)
    case zero
    show ?case
      by simp
  next
    case (even m)
    with rec [of "2 * m"] rec [of _ q] show ?case
      by (cases "even n") (auto simp add: ac_simps dest: False_P_imp)
  next
    case (odd m)
    with rec [of "Suc (2 * m)"] rec [of _ q] show ?case
      by (cases "even n"; cases "even q")
        (auto dest: False_P_imp simp add: ac_simps)
  qed
  show "m \<^bold>\<times> n = n \<^bold>\<times> m" for m n :: nat
  proof (induction m arbitrary: n rule: nat_bit_induct)
    case zero
    show ?case
      by (simp add: ac_simps)
  next
    case (even m)
    with rec [of "2 * m" n] rec [of n "2 * m"] show ?case
      by (simp add: ac_simps)
  next
    case (odd m)
    with rec [of "Suc (2 * m)" n] rec [of n "Suc (2 * m)"] show ?case
      by (simp add: ac_simps)
  qed
qed

lemma self [simp]:
  "n \<^bold>\<times> n = of_bool (True \<^bold>* True) * n"
  by (induction n rule: nat_bit_induct) (simp_all add: end_of_bits)

lemma even_iff [simp]:
  "even (m \<^bold>\<times> n) \<longleftrightarrow> \<not> (odd m \<^bold>* odd n)"
proof (induction m arbitrary: n rule: nat_bit_induct)
  case zero
  show ?case
    by (cases "even n") (simp_all add: end_of_bits)
next
  case (even m)
  then show ?case
    by (simp add: rec [of "2 * m"])
next
  case (odd m)
  then show ?case
    by (simp add: rec [of "Suc (2 * m)"])
qed

end

instantiation nat :: semiring_bit_operations
begin

global_interpretation and_nat: zip_nat "(\<and>)"
  defines and_nat = and_nat.F
  by standard auto

global_interpretation and_nat: semilattice "(AND) :: nat \<Rightarrow> nat \<Rightarrow> nat"
proof (rule semilattice.intro, fact and_nat.abel_semigroup_axioms, standard)
  show "n AND n = n" for n :: nat
    by (simp add: and_nat.self)
qed

declare and_nat.simps [simp] \<comment> \<open>inconsistent declaration handling by
  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>

lemma zero_nat_and_eq [simp]:
  "0 AND n = 0" for n :: nat
  by simp

lemma and_zero_nat_eq [simp]:
  "n AND 0 = 0" for n :: nat
  by simp

global_interpretation or_nat: zip_nat "(\<or>)"
  defines or_nat = or_nat.F
  by standard auto

global_interpretation or_nat: semilattice "(OR) :: nat \<Rightarrow> nat \<Rightarrow> nat"
proof (rule semilattice.intro, fact or_nat.abel_semigroup_axioms, standard)
  show "n OR n = n" for n :: nat
    by (simp add: or_nat.self)
qed

declare or_nat.simps [simp] \<comment> \<open>inconsistent declaration handling by
  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>

lemma zero_nat_or_eq [simp]:
  "0 OR n = n" for n :: nat
  by simp

lemma or_zero_nat_eq [simp]:
  "n OR 0 = n" for n :: nat
  by simp

global_interpretation xor_nat: zip_nat "(\<noteq>)"
  defines xor_nat = xor_nat.F
  by standard auto

declare xor_nat.simps [simp] \<comment> \<open>inconsistent declaration handling by
  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>

lemma zero_nat_xor_eq [simp]:
  "0 XOR n = n" for n :: nat
  by simp

lemma xor_zero_nat_eq [simp]:
  "n XOR 0 = n" for n :: nat
  by simp

instance proof
  fix m n q :: nat
  show \<open>bit (m AND n) q \<longleftrightarrow> bit m q \<and> bit n q\<close>
  proof (rule sym, induction q arbitrary: m n)
    case 0
    then show ?case
      by (simp add: and_nat.even_iff)
  next
    case (Suc q)
    with and_nat.rec [of m n] show ?case
      by simp
  qed
  show \<open>bit (m OR n) q \<longleftrightarrow> bit m q \<or> bit n q\<close>
  proof (rule sym, induction q arbitrary: m n)
    case 0
    then show ?case
      by (simp add: or_nat.even_iff)
  next
    case (Suc q)
    with or_nat.rec [of m n] show ?case
      by simp
  qed
  show \<open>bit (m XOR n) q \<longleftrightarrow> bit m q \<noteq> bit n q\<close>
  proof (rule sym, induction q arbitrary: m n)
    case 0
    then show ?case
      by (simp add: xor_nat.even_iff)
  next
    case (Suc q)
    with xor_nat.rec [of m n] show ?case
      by simp
  qed
qed

end

global_interpretation or_nat: semilattice_neutr "(OR)" "0 :: nat"
  by standard simp

global_interpretation xor_nat: comm_monoid "(XOR)" "0 :: nat"
  by standard simp

lemma Suc_0_and_eq [simp]:
  "Suc 0 AND n = n mod 2"
  by (cases n) auto

lemma and_Suc_0_eq [simp]:
  "n AND Suc 0 = n mod 2"
  using Suc_0_and_eq [of n] by (simp add: ac_simps)

lemma Suc_0_or_eq [simp]:
  "Suc 0 OR n = n + of_bool (even n)"
  by (cases n) (simp_all add: ac_simps)

lemma or_Suc_0_eq [simp]:
  "n OR Suc 0 = n + of_bool (even n)"
  using Suc_0_or_eq [of n] by (simp add: ac_simps)

lemma Suc_0_xor_eq [simp]:
  "Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)"
  by (cases n) (simp_all add: ac_simps)

lemma xor_Suc_0_eq [simp]:
  "n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)"
  using Suc_0_xor_eq [of n] by (simp add: ac_simps)


subsubsection \<open>Instance \<^typ>\<open>int\<close>\<close>

abbreviation (input) complement :: "int \<Rightarrow> int"
  where "complement k \<equiv> - k - 1"

lemma complement_half:
  "complement (k * 2) div 2 = complement k"
  by simp

lemma complement_div_2:
  "complement (k div 2) = complement k div 2"
  by linarith

locale zip_int = single: abel_semigroup f
  for f :: "bool \<Rightarrow> bool \<Rightarrow> bool"  (infixl "\<^bold>*" 70)
begin
 
lemma False_False_imp_True_True:
  "True \<^bold>* True" if "False \<^bold>* False"
proof (rule ccontr)
  assume "\<not> True \<^bold>* True"
  with that show False
    using single.assoc [of False True True]
    by (cases "False \<^bold>* True") simp_all
qed

function F :: "int \<Rightarrow> int \<Rightarrow> int"  (infixl "\<^bold>\<times>" 70)
  where "k \<^bold>\<times> l = (if k \<in> {0, - 1} \<and> l \<in> {0, - 1}
    then - of_bool (odd k \<^bold>* odd l)
    else of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\<times> (l div 2) * 2)"
  by auto

termination
  by (relation "measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>))") auto

lemma zero_left_eq:
  "0 \<^bold>\<times> l = (case (False \<^bold>* False, False \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> l
     | (True, False) \<Rightarrow> complement l
     | (True, True) \<Rightarrow> - 1)"
  by (induction l rule: int_bit_induct)
   (simp_all split: bool.split) 

lemma minus_left_eq:
  "- 1 \<^bold>\<times> l = (case (True \<^bold>* False, True \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> l
     | (True, False) \<Rightarrow> complement l
     | (True, True) \<Rightarrow> - 1)"
  by (induction l rule: int_bit_induct)
   (simp_all split: bool.split) 

lemma zero_right_eq:
  "k \<^bold>\<times> 0 = (case (False \<^bold>* False, False \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> k
     | (True, False) \<Rightarrow> complement k
     | (True, True) \<Rightarrow> - 1)"
  by (induction k rule: int_bit_induct)
    (simp_all add: ac_simps split: bool.split)

lemma minus_right_eq:
  "k \<^bold>\<times> - 1 = (case (True \<^bold>* False, True \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> k
     | (True, False) \<Rightarrow> complement k
     | (True, True) \<Rightarrow> - 1)"
  by (induction k rule: int_bit_induct)
    (simp_all add: ac_simps split: bool.split)

lemma simps [simp]:
  "0 \<^bold>\<times> 0 = - of_bool (False \<^bold>* False)"
  "- 1 \<^bold>\<times> 0 = - of_bool (True \<^bold>* False)"
  "0 \<^bold>\<times> - 1 = - of_bool (False \<^bold>* True)"
  "- 1 \<^bold>\<times> - 1 = - of_bool (True \<^bold>* True)"
  "0 \<^bold>\<times> l = (case (False \<^bold>* False, False \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> l
     | (True, False) \<Rightarrow> complement l
     | (True, True) \<Rightarrow> - 1)"
  "- 1 \<^bold>\<times> l = (case (True \<^bold>* False, True \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> l
     | (True, False) \<Rightarrow> complement l
     | (True, True) \<Rightarrow> - 1)"
  "k \<^bold>\<times> 0 = (case (False \<^bold>* False, False \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> k
     | (True, False) \<Rightarrow> complement k
     | (True, True) \<Rightarrow> - 1)"
  "k \<^bold>\<times> - 1 = (case (True \<^bold>* False, True \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> k
     | (True, False) \<Rightarrow> complement k
     | (True, True) \<Rightarrow> - 1)"
  "k \<noteq> 0 \<Longrightarrow> k \<noteq> - 1 \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> l \<noteq> - 1
    \<Longrightarrow> k \<^bold>\<times> l = of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\<times> (l div 2) * 2"
  by simp_all[4] (simp_all only: zero_left_eq minus_left_eq zero_right_eq minus_right_eq, simp)

declare F.simps [simp del]

lemma rec:
  "k \<^bold>\<times> l = of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\<times> (l div 2) * 2"
  by (cases "k \<in> {0, - 1} \<and> l \<in> {0, - 1}") (auto simp add: ac_simps F.simps [of k l] split: bool.split)

sublocale abel_semigroup F
proof
  show "k \<^bold>\<times> l \<^bold>\<times> r = k \<^bold>\<times> (l \<^bold>\<times> r)" for k l r :: int
  proof (induction k arbitrary: l r rule: int_bit_induct)
    case zero
    have "complement l \<^bold>\<times> r = complement (l \<^bold>\<times> r)" if "False \<^bold>* False" "\<not> False \<^bold>* True"
    proof (induction l arbitrary: r rule: int_bit_induct)
      case zero
      from that show ?case
        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
    next
      case minus
      from that show ?case
        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
    next
      case (even l)
      with that rec [of _ r] show ?case
        by (cases "even r")
          (auto simp add: complement_half ac_simps False_False_imp_True_True split: bool.splits)
    next
      case (odd l)
      moreover have "- l - 1 = - 1 - l"
        by simp
      ultimately show ?case
        using that rec [of _ r]
        by (cases "even r")
          (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
    qed
    then show ?case
      by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
  next
    case minus
    have "complement l \<^bold>\<times> r = complement (l \<^bold>\<times> r)" if "\<not> True \<^bold>* True" "False \<^bold>* True"
    proof (induction l arbitrary: r rule: int_bit_induct)
      case zero
      from that show ?case
        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
    next
      case minus
      from that show ?case
        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
    next
      case (even l)
      with that rec [of _ r] show ?case
        by (cases "even r")
          (auto simp add: complement_half ac_simps False_False_imp_True_True split: bool.splits)
    next
      case (odd l)
      moreover have "- l - 1 = - 1 - l"
        by simp
      ultimately show ?case
        using that rec [of _ r]
        by (cases "even r")
          (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
    qed
    then show ?case
      by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
  next
    case (even k)
    with rec [of "k * 2"] rec [of _ r] show ?case
      by (cases "even r"; cases "even l") (auto simp add: ac_simps False_False_imp_True_True)
  next
    case (odd k)
    with rec [of "1 + k * 2"] rec [of _ r] show ?case
      by (cases "even r"; cases "even l") (auto simp add: ac_simps False_False_imp_True_True)
  qed
  show "k \<^bold>\<times> l = l \<^bold>\<times> k" for k l :: int
  proof (induction k arbitrary: l rule: int_bit_induct)
    case zero
    show ?case
      by simp
  next
    case minus
    show ?case
      by simp
  next
    case (even k)
    with rec [of "k * 2" l] rec [of l "k * 2"] show ?case
      by (simp add: ac_simps)
  next
    case (odd k)
    with rec [of "k * 2 + 1" l] rec [of l "k * 2 + 1"] show ?case
      by (simp add: ac_simps)
  qed
qed

lemma self [simp]:
  "k \<^bold>\<times> k = (case (False \<^bold>* False, True \<^bold>* True)
    of (False, False) \<Rightarrow> 0
     | (False, True) \<Rightarrow> k
     | (True, True) \<Rightarrow> - 1)"
  by (induction k rule: int_bit_induct) (auto simp add: False_False_imp_True_True split: bool.split)

lemma even_iff [simp]:
  "even (k \<^bold>\<times> l) \<longleftrightarrow> \<not> (odd k \<^bold>* odd l)"
proof (induction k arbitrary: l rule: int_bit_induct)
  case zero
  show ?case
    by (cases "even l") (simp_all split: bool.splits)
next
  case minus
  show ?case
    by (cases "even l") (simp_all split: bool.splits)
next
  case (even k)
  then show ?case
    by (simp add: rec [of "k * 2"])
next
  case (odd k)
  then show ?case
    by (simp add: rec [of "1 + k * 2"])
qed

end

instantiation int :: ring_bit_operations
begin

definition not_int :: "int \<Rightarrow> int"
  where "not_int = complement"

global_interpretation and_int: zip_int "(\<and>)"
  defines and_int = and_int.F
  by standard

declare and_int.simps [simp] \<comment> \<open>inconsistent declaration handling by
  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>

global_interpretation and_int: semilattice "(AND) :: int \<Rightarrow> int \<Rightarrow> int"
proof (rule semilattice.intro, fact and_int.abel_semigroup_axioms, standard)
  show "k AND k = k" for k :: int
    by (simp add: and_int.self)
qed

lemma zero_int_and_eq [simp]:
  "0 AND k = 0" for k :: int
  by simp

lemma and_zero_int_eq [simp]:
  "k AND 0 = 0" for k :: int
  by simp

lemma minus_int_and_eq [simp]:
  "- 1 AND k = k" for k :: int
  by simp

lemma and_minus_int_eq [simp]:
  "k AND - 1 = k" for k :: int
  by simp

global_interpretation or_int: zip_int "(\<or>)"
  defines or_int = or_int.F
  by standard

declare or_int.simps [simp] \<comment> \<open>inconsistent declaration handling by
  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>

global_interpretation or_int: semilattice "(OR) :: int \<Rightarrow> int \<Rightarrow> int"
proof (rule semilattice.intro, fact or_int.abel_semigroup_axioms, standard)
  show "k OR k = k" for k :: int
    by (simp add: or_int.self)
qed

lemma zero_int_or_eq [simp]:
  "0 OR k = k" for k :: int
  by simp

lemma and_zero_or_eq [simp]:
  "k OR 0 = k" for k :: int
  by simp

lemma minus_int_or_eq [simp]:
  "- 1 OR k = - 1" for k :: int
  by simp

lemma or_minus_int_eq [simp]:
  "k OR - 1 = - 1" for k :: int
  by simp

global_interpretation xor_int: zip_int "(\<noteq>)"
  defines xor_int = xor_int.F
  by standard

declare xor_int.simps [simp] \<comment> \<open>inconsistent declaration handling by
  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>

lemma zero_int_xor_eq [simp]:
  "0 XOR k = k" for k :: int
  by simp

lemma and_zero_xor_eq [simp]:
  "k XOR 0 = k" for k :: int
  by simp

lemma minus_int_xor_eq [simp]:
  "- 1 XOR k = complement k" for k :: int
  by simp

lemma xor_minus_int_eq [simp]:
  "k XOR - 1 = complement k" for k :: int
  by simp

lemma not_div_2:
  "NOT k div 2 = NOT (k div 2)"
  for k :: int
  by (simp add: complement_div_2 not_int_def)

lemma not_int_simps [simp]:
  "NOT 0 = (- 1 :: int)"
  "NOT (- 1) = (0 :: int)"
  "k \<noteq> 0 \<Longrightarrow> k \<noteq> - 1 \<Longrightarrow> NOT k = of_bool (even k) + 2 * NOT (k div 2)" for k :: int
  by (auto simp add: not_int_def elim: oddE)

lemma not_one_int [simp]:
  "NOT 1 = (- 2 :: int)"
  by simp

lemma even_not_iff [simp]:
  "even (NOT k) \<longleftrightarrow> odd k"
    for k :: int
  by (simp add: not_int_def)

lemma bit_not_iff_int:
  \<open>bit (NOT k) n \<longleftrightarrow> \<not> bit k n\<close>
    for k :: int
    by (induction n arbitrary: k)
      (simp_all add: not_int_def flip: complement_div_2)

instance proof
  fix k l :: int and n :: nat
  show \<open>- k = NOT (k - 1)\<close>
    by (simp add: not_int_def)
  show \<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close>
  proof (rule sym, induction n arbitrary: k l)
    case 0
    then show ?case
      by (simp add: and_int.even_iff)
  next
    case (Suc n)
    with and_int.rec [of k l] show ?case
      by simp
  qed
  show \<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close>
  proof (rule sym, induction n arbitrary: k l)
    case 0
    then show ?case
      by (simp add: or_int.even_iff)
  next
    case (Suc n)
    with or_int.rec [of k l] show ?case
      by simp
  qed
  show \<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close>
  proof (rule sym, induction n arbitrary: k l)
    case 0
    then show ?case
      by (simp add: xor_int.even_iff)
  next
    case (Suc n)
    with xor_int.rec [of k l] show ?case
      by simp
  qed
qed (simp_all add: minus_1_div_exp_eq_int bit_not_iff_int)

end

lemma one_and_int_eq [simp]:
  "1 AND k = k mod 2" for k :: int
  by (simp add: bit_eq_iff bit_and_iff mod2_eq_if) (auto simp add: bit_1_iff)

lemma and_one_int_eq [simp]:
  "k AND 1 = k mod 2" for k :: int
  using one_and_int_eq [of 1] by (simp add: ac_simps)

lemma one_or_int_eq [simp]:
  "1 OR k = k + of_bool (even k)" for k :: int
  using or_int.rec [of 1] by (auto elim: oddE)

lemma or_one_int_eq [simp]:
  "k OR 1 = k + of_bool (even k)" for k :: int
  using one_or_int_eq [of k] by (simp add: ac_simps)

lemma one_xor_int_eq [simp]:
  "1 XOR k = k + of_bool (even k) - of_bool (odd k)" for k :: int
  using xor_int.rec [of 1] by (auto elim: oddE)

lemma xor_one_int_eq [simp]:
  "k XOR 1 = k + of_bool (even k) - of_bool (odd k)" for k :: int
  using one_xor_int_eq [of k] by (simp add: ac_simps)

lemma take_bit_complement_iff:
  "take_bit n (complement k) = take_bit n (complement l) \<longleftrightarrow> take_bit n k = take_bit n l"
  for k l :: int
  by (simp add: take_bit_eq_mod mod_eq_dvd_iff dvd_diff_commute)

lemma take_bit_not_iff_int:
  "take_bit n (NOT k) = take_bit n (NOT l) \<longleftrightarrow> take_bit n k = take_bit n l"
  for k l :: int
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff_int)

end