src/HOL/Tools/record_package.ML
author wenzelm
Thu, 22 Apr 2004 10:52:32 +0200
changeset 14643 130076a81b84
parent 14579 e79f1923fa0a
child 14700 2f885b7e5ba7
permissions -rw-r--r--
tuned;

(*  Title:      HOL/Tools/record_package.ML
    ID:         $Id$
    Author:     Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, TU Muenchen
    License:    GPL (GNU GENERAL PUBLIC LICENSE)

Extensible records with structural subtyping in HOL.
*)

signature BASIC_RECORD_PACKAGE =
sig
  val record_simproc: simproc
  val record_eq_simproc: simproc
  val record_split_tac: int -> tactic
  val record_split_name: string
  val record_split_wrapper: string * wrapper
  val print_record_type_abbr: bool ref 
end;

signature RECORD_PACKAGE =
sig
  include BASIC_RECORD_PACKAGE
  val quiet_mode: bool ref
  val updateN: string
  val mk_fieldT: (string * typ) * typ -> typ
  val dest_fieldT: typ -> (string * typ) * typ
  val dest_fieldTs: typ -> (string * typ) list
  val last_fieldT: typ -> (string * typ) option
  val last_field: Sign.sg -> string -> (string * typ) option
  val get_parents: Sign.sg -> string -> string list
  val mk_field: (string * term) * term -> term
  val mk_fst: term -> term
  val mk_snd: term -> term
  val mk_recordT: (string * typ) list * typ -> typ
  val dest_recordT: typ -> (string * typ) list * typ
  val mk_record: (string * term) list * term -> term
  val mk_sel: term -> string -> term
  val mk_update: term -> string * term -> term
  val print_records: theory -> unit
  val add_record: (string list * bstring) -> string option
    -> (bstring * string * mixfix) list -> theory -> theory * {simps: thm list, iffs: thm list}
  val add_record_i: (string list * bstring) -> (typ list * string) option
    -> (bstring * typ * mixfix) list -> theory -> theory * {simps: thm list, iffs: thm list}
  val setup: (theory -> theory) list
  val record_upd_simproc: simproc
  val record_split_simproc: (term -> bool) -> simproc
  val record_ex_sel_eq_simproc: simproc
  val record_split_simp_tac: (term -> bool) -> int -> tactic
end;

structure RecordPackage: RECORD_PACKAGE =
struct


(*** theory context references ***)

val product_typeN = "Record.product_type";

val product_type_intro = thm "product_type.intro";
val product_type_inject = thm "product_type.inject";
val product_type_conv1 = thm "product_type.conv1";
val product_type_conv2 = thm "product_type.conv2";
val product_type_induct = thm "product_type.induct";
val product_type_cases = thm "product_type.cases";
val product_type_split_paired_all = thm "product_type.split_paired_all";
val product_type_split_paired_All = thm "product_type.split_paired_All";



(*** utilities ***)

(* messages *)

val quiet_mode = ref false;
fun message s = if ! quiet_mode then () else writeln s;


(* syntax *)

fun prune n xs = Library.drop (n, xs);
fun prefix_base s = NameSpace.map_base (fn bname => s ^ bname);

val Trueprop = HOLogic.mk_Trueprop;
fun All xs t = Term.list_all_free (xs, t);

infix 9 $$;
infix 0 :== ===;
infixr 0 ==>;

val (op $$) = Term.list_comb;
val (op :==) = Logic.mk_defpair;
val (op ===) = Trueprop o HOLogic.mk_eq;
val (op ==>) = Logic.mk_implies;


(* attributes *)

fun case_names_fields x = RuleCases.case_names ["fields"] x;
fun induct_type_global name = [case_names_fields, InductAttrib.induct_type_global name];
fun cases_type_global name = [case_names_fields, InductAttrib.cases_type_global name];


(* tactics *)

fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));

(* do case analysis / induction on last parameter of ith subgoal (or s) *)

fun try_param_tac s rule i st =
  let
    val cert = cterm_of (Thm.sign_of_thm st);
    val g = nth_elem (i - 1, prems_of st);
    val params = Logic.strip_params g;
    val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
    val rule' = Thm.lift_rule (st, i) rule;
    val (P, ys) = strip_comb (HOLogic.dest_Trueprop
      (Logic.strip_assums_concl (prop_of rule')));
    val (x, ca) = (case rev (drop (length params, ys)) of
        [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
          (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
      | [x] => (head_of x, false));
    val rule'' = cterm_instantiate (map (pairself cert) (case (rev params) of
        [] => (case assoc (map dest_Free (term_frees (prop_of st)), s) of
          None => sys_error "try_param_tac: no such variable"
        | Some T => [(P, if ca then concl else lambda (Free (s, T)) concl),
            (x, Free (s, T))])
      | (_, T) :: _ => [(P, list_abs (params, if ca then concl
          else incr_boundvars 1 (Abs (s, T, concl)))),
        (x, list_abs (params, Bound 0))])) rule'
  in compose_tac (false, rule'', nprems_of rule) i st end;



(*** code generator data ***)

val [prod_code, fst_code, snd_code] =
  map (Codegen.parse_mixfix (K (Bound 0))) ["(_,/ _)", "fst", "snd"];
val prodT_code = Codegen.parse_mixfix (K dummyT) "(_ */ _)";



(*** syntax operations ***)

(** name components **)

val rN = "r";
val moreN = "more";
val schemeN = "_scheme";
val field_typeN = "_field_type";
val fieldN = "_field";
val fstN = "_val";
val sndN = "_more";
val updateN = "_update";
val makeN = "make";
val fieldsN = "fields";
val extendN = "extend";
val truncateN = "truncate";


(*see typedef_package.ML*)
val RepN = "Rep_";
val AbsN = "Abs_";



(** tuple operations **)

(* types *)

fun mk_fieldT ((c, T), U) = Type (suffix field_typeN c, [T, U]);

fun dest_fieldT (typ as Type (c_field_type, [T, U])) =
      (case try (unsuffix field_typeN) c_field_type of
        None => raise TYPE ("dest_fieldT", [typ], [])
      | Some c => ((c, T), U))
  | dest_fieldT typ = raise TYPE ("dest_fieldT", [typ], []);

fun dest_fieldTs T =
  let val ((c, T), U) = dest_fieldT T
  in (c, T) :: dest_fieldTs U
  end handle TYPE _ => [];

fun last_fieldT T =
  let val ((c, T), U) = dest_fieldT T
  in (case last_fieldT U of
        None => Some (c,T)
      | Some l => Some l)
  end handle TYPE _ => None

(* morphisms *)

fun mk_Rep U (c, T) =
  Const (suffix field_typeN (prefix_base RepN c),
    mk_fieldT ((c, T), U) --> HOLogic.mk_prodT (T, U));

fun mk_Abs U (c, T) =
  Const (suffix field_typeN (prefix_base AbsN c),
    HOLogic.mk_prodT (T, U) --> mk_fieldT ((c, T), U));


(* constructors *)

fun mk_fieldC U (c, T) = (suffix fieldN c, T --> U --> mk_fieldT ((c, T), U));

fun mk_field ((c, t), u) =
  let val T = fastype_of t and U = fastype_of u
  in Const (suffix fieldN c, [T, U] ---> mk_fieldT ((c, T), U)) $ t $ u end;


(* destructors *)

fun mk_fstC U (c, T) = (suffix fstN c, mk_fieldT ((c, T), U) --> T);
fun mk_sndC U (c, T) = (suffix sndN c, mk_fieldT ((c, T), U) --> U);

fun dest_field fst_or_snd p =
  let
    val pT = fastype_of p;
    val ((c, T), U) = dest_fieldT pT;
    val (destN, destT) = if fst_or_snd then (fstN, T) else (sndN, U);
  in Const (suffix destN c, pT --> destT) $ p end;

val mk_fst = dest_field true;
val mk_snd = dest_field false;



(** record operations **)

(* types *)

val mk_recordT = foldr mk_fieldT;

fun dest_recordT T =
  (case try dest_fieldT T of
    None => ([], T)
  | Some (c_T, U) => apfst (cons c_T) (dest_recordT U));

fun find_fieldT c rT =
  (case assoc (fst (dest_recordT rT), c) of
    None => raise TYPE ("find_field: " ^ c, [rT], [])
  | Some T => T);


(* constructors *)

val mk_record = foldr mk_field;


(* selectors *)

fun mk_selC rT (c, T) = (c, rT --> T);

fun mk_sel r c =
  let val rT = fastype_of r
  in Const (mk_selC rT (c, find_fieldT c rT)) $ r end;

fun mk_named_sels names r = names ~~ map (mk_sel r) names;

val mk_moreC = mk_selC;

fun mk_more r c =
  let val rT = fastype_of r
  in Const (mk_moreC rT (c, snd (dest_recordT rT))) $ r end;


(* updates *)

fun mk_updateC rT (c, T) = (suffix updateN c, T --> rT --> rT);

fun mk_update r (c, x) =
  let val rT = fastype_of r
  in Const (mk_updateC rT (c, find_fieldT c rT)) $ x $ r end;

val mk_more_updateC = mk_updateC;

fun mk_more_update r (c, x) =
  let val rT = fastype_of r
  in Const (mk_more_updateC rT (c, snd (dest_recordT rT))) $ x $ r end;



(** concrete syntax for records **)

(* parse translations *)

fun gen_field_tr mark sfx (t as Const (c, _) $ Const (name, _) $ arg) =
      if c = mark then Syntax.const (suffix sfx name) $ arg
      else raise TERM ("gen_field_tr: " ^ mark, [t])
  | gen_field_tr mark _ t = raise TERM ("gen_field_tr: " ^ mark, [t]);

fun gen_fields_tr sep mark sfx (tm as Const (c, _) $ t $ u) =
      if c = sep then gen_field_tr mark sfx t :: gen_fields_tr sep mark sfx u
      else [gen_field_tr mark sfx tm]
  | gen_fields_tr _ mark sfx tm = [gen_field_tr mark sfx tm];

fun gen_record_tr sep mark sfx unit [t] = foldr (op $) (gen_fields_tr sep mark sfx t, unit)
  | gen_record_tr _ _ _ _ ts = raise TERM ("gen_record_tr", ts);

fun gen_record_scheme_tr sep mark sfx [t, more] = foldr (op $) (gen_fields_tr sep mark sfx t, more)
  | gen_record_scheme_tr _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);


val record_type_tr = gen_record_tr "_field_types" "_field_type" field_typeN (Syntax.const "unit");
val record_type_scheme_tr = gen_record_scheme_tr "_field_types" "_field_type" field_typeN;

val record_tr = gen_record_tr "_fields" "_field" fieldN HOLogic.unit;
val record_scheme_tr = gen_record_scheme_tr "_fields" "_field" fieldN;

fun record_update_tr [t, u] =
      foldr (op $) (rev (gen_fields_tr "_updates" "_update" updateN u), t)
  | record_update_tr ts = raise TERM ("record_update_tr", ts);


fun update_name_tr (Free (x, T) :: ts) = Free (suffix updateN x, T) $$ ts
  | update_name_tr (Const (x, T) :: ts) = Const (suffix updateN x, T) $$ ts
  | update_name_tr (((c as Const ("_constrain", _)) $ t $ ty) :: ts) =
      (c $ update_name_tr [t] $ (Syntax.const "fun" $ ty $ Syntax.const "dummy")) $$ ts
  | update_name_tr ts = raise TERM ("update_name_tr", ts);


val parse_translation =
 [("_record_type", record_type_tr),
  ("_record_type_scheme", record_type_scheme_tr),
  ("_record", record_tr),
  ("_record_scheme", record_scheme_tr),
  ("_record_update", record_update_tr),
  ("_update_name", update_name_tr)];


(* print translations *)


val print_record_type_abbr = ref true;

fun gen_fields_tr' mark sfx (tm as Const (name_field, _) $ t $ u) =
      (case try (unsuffix sfx) name_field of
        Some name =>
          apfst (cons (Syntax.const mark $ Syntax.free name $ t)) (gen_fields_tr' mark sfx u)
      | None => ([], tm))
  | gen_fields_tr' _ _ tm = ([], tm);

fun gen_record_tr' sep mark sfx is_unit record record_scheme tm =
  let
    val (ts, u) = gen_fields_tr' mark sfx tm;
    val t' = foldr1 (fn (v, w) => Syntax.const sep $ v $ w) ts;
  in
    if is_unit u then Syntax.const record $ t'
    else Syntax.const record_scheme $ t' $ u
  end;


val record_type_tr' =
  gen_record_tr' "_field_types" "_field_type" field_typeN
    (fn Const ("unit", _) => true | _ => false) "_record_type" "_record_type_scheme";


(* record_type_abbr_tr' tries to reconstruct the record name type abbreviation from *)
(* the (nested) field types.                                                        *)
fun record_type_abbr_tr' sg abbr alphas zeta lastF rec_schemeT tm =
  let
      (* tm is term representation of a (nested) field type. We first reconstruct the      *)
      (* type from tm so that we can continue on the type level rather then the term level.*)
 
      fun get_sort xs n = (case assoc (xs,n) of 
                             Some s => s 
                           | None => Sign.defaultS sg);

      val T = Sign.intern_typ sg (Syntax.typ_of_term (get_sort (Syntax.raw_term_sorts tm)) I tm);
      val tsig = Sign.tsig_of sg;

      fun mk_type_abbr subst name alphas = 
          let val abbrT = Type (name, map (fn a => TVar ((a,0),logicS)) alphas);
          in Syntax.term_of_typ (! Syntax.show_sorts) (Envir.norm_type subst abbrT) end;    

      fun unify rT T = fst (Type.unify tsig (Vartab.empty,0) (Type.varifyT rT,T))

   in if !print_record_type_abbr
      then (case last_fieldT T of
             Some (name,_) 
              => if name = lastF 
                 then
		   let val subst = unify rec_schemeT T 
                   in 
                    if HOLogic.is_unitT (Envir.norm_type subst (TVar((zeta,0),Sign.defaultS sg)))
                    then mk_type_abbr subst abbr alphas
                    else mk_type_abbr subst (suffix schemeN abbr) (alphas@[zeta])
		   end handle TUNIFY => record_type_tr' tm
                 else raise Match (* give print translation of specialised record a chance *)
            | _ => record_type_tr' tm)
       else record_type_tr' tm
  end

     
fun gen_record_type_abbr_tr' sg abbr alphas zeta lastF rec_schemeT name =
  let val name_sfx = suffix field_typeN name
      val tr' = record_type_abbr_tr' sg abbr alphas zeta lastF rec_schemeT 
  in (name_sfx, fn [t,u] => tr' (Syntax.const name_sfx $ t $ u) | _ => raise Match) end;
      
val record_tr' =
  gen_record_tr' "_fields" "_field" fieldN
    (fn Const ("Unity", _) => true | _ => false) "_record" "_record_scheme";

fun record_update_tr' tm =
  let val (ts, u) = gen_fields_tr' "_update" updateN tm in
    Syntax.const "_record_update" $ u $
      foldr1 (fn (v, w) => Syntax.const "_updates" $ v $ w) (rev ts)
  end;

fun gen_field_tr' sfx tr' name =
  let val name_sfx = suffix sfx name
  in (name_sfx, fn [t, u] => tr' (Syntax.const name_sfx $ t $ u) | _ => raise Match) end;

fun print_translation names =
  map (gen_field_tr' fieldN record_tr') names @
  map (gen_field_tr' updateN record_update_tr') names;

fun print_translation_field_types names =
  map (gen_field_tr' field_typeN record_type_tr') names



(*** extend theory by record definition ***)

(** record info **)

(* type record_info and parent_info  *)

type record_info =
 {args: (string * sort) list,
  parent: (typ list * string) option,
  fields: (string * typ) list,
  field_inducts: thm list,
  field_cases: thm list,
  field_splits: thm list,
  simps: thm list};

fun make_record_info args parent fields field_inducts field_cases field_splits simps =
 {args = args, parent = parent, fields = fields, field_inducts = field_inducts,
  field_cases = field_cases, field_splits = field_splits, simps = simps}: record_info;

type parent_info =
 {name: string,
  fields: (string * typ) list,
  field_inducts: thm list,
  field_cases: thm list,
  field_splits: thm list,
  simps: thm list};

fun make_parent_info name fields field_inducts field_cases field_splits simps =
 {name = name, fields = fields, field_inducts = field_inducts,
  field_cases = field_cases, field_splits = field_splits, simps = simps}: parent_info;


(* data kind 'HOL/records' *)

type record_data =
 {records: record_info Symtab.table,
  sel_upd:
   {selectors: unit Symtab.table,
    updates: string Symtab.table,
    simpset: Simplifier.simpset},
  field_splits:
   {fields: unit Symtab.table,
    simpset: Simplifier.simpset},
  equalities: thm Symtab.table,
  splits: (thm*thm*thm*thm) Symtab.table (* !!,!,EX - split-equalities,induct rule *) 
};

fun make_record_data records sel_upd field_splits equalities splits =
 {records = records, sel_upd = sel_upd, field_splits = field_splits,
  equalities = equalities, splits = splits}: record_data;

structure RecordsArgs =
struct
  val name = "HOL/records";
  type T = record_data;

  val empty =
    make_record_data Symtab.empty
      {selectors = Symtab.empty, updates = Symtab.empty, simpset = HOL_basic_ss}
      {fields = Symtab.empty, simpset = HOL_basic_ss} Symtab.empty Symtab.empty;

  val copy = I;
  val prep_ext = I;
  fun merge
   ({records = recs1,
     sel_upd = {selectors = sels1, updates = upds1, simpset = ss1},
     field_splits = {fields = flds1, simpset = fld_ss1},
     equalities = equalities1,
     splits = splits1},
    {records = recs2,
     sel_upd = {selectors = sels2, updates = upds2, simpset = ss2},
     field_splits = {fields = flds2, simpset = fld_ss2},
     equalities = equalities2, 
     splits = splits2}) =
    make_record_data  
      (Symtab.merge (K true) (recs1, recs2))
      {selectors = Symtab.merge (K true) (sels1, sels2),
        updates = Symtab.merge (K true) (upds1, upds2),
        simpset = Simplifier.merge_ss (ss1, ss2)}
      {fields = Symtab.merge (K true) (flds1, flds2),
        simpset = Simplifier.merge_ss (fld_ss1, fld_ss2)}
      (Symtab.merge Thm.eq_thm (equalities1, equalities2))
      (Symtab.merge (fn ((a,b,c,d),(w,x,y,z)) 
                     => Thm.eq_thm (a,w) andalso Thm.eq_thm (b,x) andalso 
                        Thm.eq_thm (c,y) andalso Thm.eq_thm (d,z)) 
                    (splits1, splits2));

  fun print sg ({records = recs, ...}: record_data) =
    let
      val prt_typ = Sign.pretty_typ sg;

      fun pretty_parent None = []
        | pretty_parent (Some (Ts, name)) =
            [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];

      fun pretty_field (c, T) = Pretty.block
        [Pretty.str (Sign.cond_extern sg Sign.constK c), Pretty.str " ::",
          Pretty.brk 1, Pretty.quote (prt_typ T)];

      fun pretty_record (name, {args, parent, fields, ...}: record_info) =
        Pretty.block (Pretty.fbreaks (Pretty.block
          [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
          pretty_parent parent @ map pretty_field fields));
    in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
end;

structure RecordsData = TheoryDataFun(RecordsArgs);
val print_records = RecordsData.print;


(* access 'records' *)

fun get_record thy name = Symtab.lookup (#records (RecordsData.get thy), name);

fun put_record name info thy =
  let
    val {records, sel_upd, field_splits, equalities, splits} = RecordsData.get thy;
    val data = make_record_data (Symtab.update ((name, info), records))
      sel_upd field_splits equalities splits;
  in RecordsData.put data thy end;


(* access 'sel_upd' *)

fun get_sel_upd sg = #sel_upd (RecordsData.get_sg sg);

fun get_selectors sg name = Symtab.lookup (#selectors (get_sel_upd sg), name);
fun get_updates sg name = Symtab.lookup (#updates (get_sel_upd sg), name);
fun get_simpset sg = #simpset (get_sel_upd sg);

fun put_sel_upd names simps thy =
  let
    val sels = map (rpair ()) names;
    val upds = map (suffix updateN) names ~~ names;

    val {records, sel_upd = {selectors, updates, simpset}, field_splits,
      equalities, splits} = RecordsData.get thy;
    val data = make_record_data records
      {selectors = Symtab.extend (selectors, sels),
        updates = Symtab.extend (updates, upds),
        simpset = Simplifier.addsimps (simpset, simps)}
      field_splits equalities splits;
  in RecordsData.put data thy end;


(* access 'field_splits' *)

fun add_field_splits names simps thy =
  let
    val {records, sel_upd, field_splits = {fields, simpset},
      equalities, splits} = RecordsData.get thy;
    val flds = map (rpair ()) names;
    val data = make_record_data records sel_upd
      {fields = Symtab.extend (fields, flds),
       simpset = Simplifier.addsimps (simpset, simps)} equalities splits;
  in RecordsData.put data thy end;


(* access 'equalities' *)

fun add_record_equalities name thm thy =
  let
    val {records, sel_upd, field_splits, equalities, splits} = RecordsData.get thy;
    val data = make_record_data records sel_upd field_splits
      (Symtab.update_new ((name, thm), equalities)) splits;
  in RecordsData.put data thy end;

fun get_equalities sg name =
  Symtab.lookup (#equalities (RecordsData.get_sg sg), name);

(* access 'splits' *)

fun add_record_splits name thmP thy =
  let
    val {records, sel_upd, field_splits, equalities, splits} = RecordsData.get thy;
    val data = make_record_data records sel_upd field_splits
      equalities (Symtab.update_new ((name, thmP), splits));
  in RecordsData.put data thy end;

fun get_splits sg name =
  Symtab.lookup (#splits (RecordsData.get_sg sg), name);

(* last field of a record *)
fun last_field sg name =
      case Symtab.lookup (#records (RecordsData.get_sg sg),name) of
        Some r => Some (hd (rev (#fields r)))
      | None => None;

(* get parent names *)
fun get_parents sg name =
     (case Symtab.lookup (#records (RecordsData.get_sg sg),name) of
         Some r => (case #parent r of
                     Some (_,p) => p::get_parents sg p
                   | None => [])
      | None => [])
       
(* parent records *)

fun add_parents thy None parents = parents
  | add_parents thy (Some (types, name)) parents =
      let
        val sign = Theory.sign_of thy;
        fun err msg = error (msg ^ " parent record " ^ quote name);

        val {args, parent, fields, field_inducts, field_cases, field_splits, simps} =
          (case get_record thy name of Some info => info | None => err "Unknown");
        val _ = if length types <> length args then err "Bad number of arguments for" else ();

        fun bad_inst ((x, S), T) =
          if Sign.of_sort sign (T, S) then None else Some x
        val bads = mapfilter bad_inst (args ~~ types);

        val inst = map fst args ~~ types;
        val subst = Term.map_type_tfree (fn (x, _) => the (assoc (inst, x)));
        val parent' = apsome (apfst (map subst)) parent;
        val fields' = map (apsnd subst) fields;
      in
        conditional (not (null bads)) (fn () =>
          err ("Ill-sorted instantiation of " ^ commas bads ^ " in"));
        add_parents thy parent'
          (make_parent_info name fields' field_inducts field_cases field_splits simps::parents)
      end;



(** record simprocs **)
 
fun quick_and_dirty_prove sg xs asms prop tac =
Tactic.prove sg xs asms prop
    (if ! quick_and_dirty then (K (SkipProof.cheat_tac HOL.thy)) else tac);


fun prove_split_simp sg T prop =
    (case last_fieldT T of
      Some (name,_) => (case get_splits sg name of
                         Some (all_thm,_,_,_) 
                          => let val {sel_upd={simpset,...},...} = RecordsData.get_sg sg;
                             in (quick_and_dirty_prove sg [] [] prop 
                                  (K (simp_tac (simpset addsimps [all_thm]) 1)))
                             end
                      | _ => error "RecordPackage.prove_split_simp: code should never been reached")
     | _ => error "RecordPackage.prove_split_simp: code should never been reached")


(* record_simproc *)
(* Simplifies selections of an record update:
 *  (1)  S (r(|S:=k|)) = k respectively
 *  (2)  S (r(|X:=k|)) = S r
 * The simproc skips multiple updates at once, eg:
 *  S (r (|S:=k,X:=2,Y:=3|)) = k
 * But be careful in (2) because of the extendibility of records.
 * - If S is a more-selector we have to make sure that the update on component
 *   X does not affect the selected subrecord.
 * - If X is a more-selector we have to make sure that S is not in the updated
 *   subrecord. 
 *)
val record_simproc =
  Simplifier.simproc (Theory.sign_of HOL.thy) "record_simp" ["s (u k r)"]
    (fn sg => fn _ => fn t =>
      (case t of (sel as Const (s, Type (_,[domS,rangeS]))) $ ((upd as Const (u, _)) $ k $ r) =>
        (case get_selectors sg s of Some () =>
          (case get_updates sg u of Some u_name =>
            let
              fun mk_abs_var x t = (x, fastype_of t);
              val {sel_upd={updates,...},...} = RecordsData.get_sg sg;

              fun mk_eq_terms ((upd as Const (u,Type(_,[updT,_]))) $ k $ r) =
		  (case (Symtab.lookup (updates,u)) of
                     None => None
                   | Some u_name 
                     => if u_name = s
                        then let 
                               val rv = mk_abs_var "r" r
                               val rb = Bound 0
                               val kv = mk_abs_var "k" k
                               val kb = Bound 1 
                             in Some (upd$kb$rb,kb,[kv,rv],true) end
                        else if u_name mem (map fst (dest_fieldTs rangeS))
                             orelse s mem (map fst (dest_fieldTs updT))
                             then None
			     else (case mk_eq_terms r of 
                                     Some (trm,trm',vars,update_s) 
                                     => let   
					  val kv = mk_abs_var "k" k
                                          val kb = Bound (length vars)
		                        in Some (upd$kb$trm,trm',kv::vars,update_s) end
                                   | None
                                     => let 
					  val rv = mk_abs_var "r" r
                                          val rb = Bound 0
                                          val kv = mk_abs_var "k" k
                                          val kb = Bound 1 
                                        in Some (upd$kb$rb,rb,[kv,rv],false) end))
                | mk_eq_terms r = None     
            in
	      (case mk_eq_terms (upd$k$r) of
                 Some (trm,trm',vars,update_s) 
                 => if update_s 
		    then Some (prove_split_simp sg domS 
                                 (list_all(vars,(Logic.mk_equals (sel$trm,trm')))))
                    else Some (prove_split_simp sg domS 
                                 (list_all(vars,(Logic.mk_equals (sel$trm,sel$trm')))))
               | None => None)
            end
          | None => None)
        | None => None)
      | _ => None));

(* record_eq_simproc *)
(* looks up the most specific record-equality.
 * Note on efficiency:
 * Testing equality of records boils down to the test of equality of all components.
 * Therefore the complexity is: #components * complexity for single component.
 * Especially if a record has a lot of components it may be better to split up
 * the record first and do simplification on that (record_split_simp_tac).
 * e.g. r(|lots of updates|) = x
 *
 *               record_eq_simproc           record_split_simp_tac
 * Complexity: #components * #updates     #updates   
 *           
 *)
val record_eq_simproc =
  Simplifier.simproc (Theory.sign_of HOL.thy) "record_eq_simp" ["r = s"]
    (fn sg => fn _ => fn t =>
      (case t of Const ("op =", Type (_, [T, _])) $ _ $ _ =>
        (case last_fieldT T of
           None => None
         | Some (name, _) => (case get_equalities sg name of
                                None => None
                              | Some thm => Some (thm RS Eq_TrueI)))
       | _ => None));


(* record_upd_simproc *)
(* simplify multiple updates; for example: "r(|M:=3,N:=1,M:=2,N:=4|) == r(|M:=2,N:=4|)" *)
val record_upd_simproc =
  Simplifier.simproc (Theory.sign_of HOL.thy) "record_upd_simp" ["(u1 k1 (u2 k2 r))"]
    (fn sg => fn _ => fn t =>
      (case t of ((upd as Const (u, Type(_,[_,Type(_,[T,_])]))) $ k $ r) =>
 	 let val {sel_upd={updates,...},...} = RecordsData.get_sg sg;
	     fun mk_abs_var x t = (x, fastype_of t);

             fun mk_updterm upds already ((upd as Const (u,_)) $ k $ r) =
		 if is_some (Symtab.lookup (upds,u))
		 then let 
			 fun rest already = mk_updterm upds already
		      in if is_some (Symtab.lookup (already,u)) 
			 then (case (rest already r) of
				 None => let 
				           val rv = mk_abs_var "r" r
                                           val rb = Bound 0
					   val kv = mk_abs_var "k" k
                                           val kb = Bound 1	      
                                         in Some (upd$kb$rb,rb,[kv,rv]) end
                               | Some (trm,trm',vars) 
				 => let 
				     val kv = mk_abs_var "k" k
                                     val kb = Bound (length vars)
                                    in Some (upd$kb$trm,trm',kv::vars) end)
	                 else (case rest (Symtab.update ((u,()),already)) r of 
				 None => None
		               | Some (trm,trm',vars) 
                                  => let
				      val kv = mk_abs_var "k" k
                                      val kb = Bound (length vars)
                                     in Some (upd$kb$trm,upd$kb$trm',kv::vars) end)
		     end
		 else None
	       | mk_updterm _ _ _ = None;

	 in (case mk_updterm updates Symtab.empty t of
	       Some (trm,trm',vars)
                => Some (prove_split_simp sg T (list_all(vars,(Logic.mk_equals (trm,trm')))))
             | None => None)
	 end
       | _ => None));

(* record_split_simproc *)
(* splits quantified occurrences of records, for which P holds. P can peek on the 
 * subterm starting at the quantified occurrence of the record (including the quantifier)
 *)
fun record_split_simproc P =
  Simplifier.simproc (Theory.sign_of HOL.thy) "record_split_simp" ["(a t)"]
    (fn sg => fn _ => fn t =>
      (case t of (Const (quantifier, Type (_, [Type (_, [T, _]), _])))$trm =>
         if quantifier = "All" orelse quantifier = "all" orelse quantifier = "Ex"
         then (case last_fieldT T of
                 None => None
               | Some (name, _)
                  => if P t 
                     then (case get_splits sg name of
                             None => None
                           | Some (all_thm, All_thm, Ex_thm,_) 
                              => Some (case quantifier of
                                         "all" => all_thm
                                       | "All" => All_thm RS HOL.eq_reflection
                                       | "Ex"  => Ex_thm RS HOL.eq_reflection
                                       | _     => error "record_split_simproc"))
                     else None)
         else None
       | _ => None))

(* record_ex_sel_eq_simproc *)
(* record: (EX r. x = sel r) resp. (EX r. sel r = x) to True *) 
val record_ex_sel_eq_simproc =
  Simplifier.simproc (Theory.sign_of HOL.thy) "record_ex_sel_eq_simproc" ["Ex t"]
    (fn sg => fn _ => fn t =>
       let fun prove prop = (quick_and_dirty_prove sg [] [] prop 
                             (fn _ => (simp_tac ((get_simpset sg) addsimps simp_thms
                                       addsimprocs [record_split_simproc (K true)]) 1)));
       in     
         (case t of 
           (Const ("Ex",Tex)$Abs(r,T,Const ("op =",Teq)$(Const (sel,Tsel)$Bound 0)$X)) =>
             (case get_selectors sg sel of Some () =>
                let 
                  val X' = ("x",range_type Tsel);
		  val prop = list_all ([X'], 
                               Logic.mk_equals
		                 (Const ("Ex",Tex)$Abs(r,T,Const ("op =",Teq)$
                                                      (Const (sel,Tsel)$Bound 0)$Bound 1),
                                  Const ("True",HOLogic.boolT)));
                in Some (prove prop) end
              | None => None)
          |(Const ("Ex",Tex)$Abs(r,T,Const ("op =",Teq)$X$(Const (sel,Tsel)$Bound 0))) =>
             (case get_selectors sg sel of Some () =>
                let 
                  val X' = ("x",range_type Tsel);
		  val prop = list_all ([X'], 
                               Logic.mk_equals
		                 (Const ("Ex",Tex)$Abs(r,T,Const ("op =",Teq)$
                                                     Bound 1$(Const (sel,Tsel)$Bound 0)),
                                  Const ("True",HOLogic.boolT)));
                in Some (prove prop) end 
            | None => None)
          | _ => None)
         end)

(** record field splitting **)

(* tactic *)

fun is_fieldT fields (Type (a, [_, _])) = is_some (Symtab.lookup (fields, a))
  | is_fieldT _ _ = false;

fun record_split_tac i st =
  let
    val {field_splits = {fields, simpset}, ...} = RecordsData.get_sg (Thm.sign_of_thm st);

    val has_field = exists_Const
      (fn (s, Type (_, [Type (_, [T, _]), _])) =>
          (s = "all" orelse s = "All") andalso is_fieldT fields T
        | _ => false);

    val goal = Library.nth_elem (i - 1, Thm.prems_of st);
  in
    if has_field goal then Simplifier.full_simp_tac simpset i st
    else Seq.empty
  end handle Library.LIST _ => Seq.empty;


local
val inductive_atomize = thms "induct_atomize";
val inductive_rulify1 = thms "induct_rulify1";
in
(* record_split_simp_tac *)
(* splits (and simplifies) all records in the goal for which P holds. 
 * For quantified occurrences of a record
 * P can peek on the whole subterm (including the quantifier); for free variables P
 * can only peek on the variable itself. 
 *)
fun record_split_simp_tac P i st =
  let
    val sg = Thm.sign_of_thm st;
    val {sel_upd={simpset,...},field_splits={fields,...},...} 
            = RecordsData.get_sg sg;

    val has_field = exists_Const
      (fn (s, Type (_, [Type (_, [T, _]), _])) =>
          (s = "all" orelse s = "All" orelse s = "Ex") andalso is_fieldT fields T
        | _ => false);

    val goal = Library.nth_elem (i - 1, Thm.prems_of st);
    val frees = filter (is_fieldT fields o type_of) (term_frees goal);

    fun mk_split_free_tac free induct_thm i = 
	let val cfree = cterm_of sg free;
            val (_$(_$r)) = concl_of induct_thm;
            val crec = cterm_of sg r;
            val thm  = cterm_instantiate [(crec,cfree)] induct_thm;
        in EVERY [simp_tac (HOL_basic_ss addsimps inductive_atomize) i,
                  rtac thm i,
                  simp_tac (HOL_basic_ss addsimps inductive_rulify1) i]
	end;

    fun split_free_tac P i (free as Free (n,T)) = 
	(case last_fieldT T of
           None => None
         | Some(name,_)=> if P free 
                          then (case get_splits sg name of
                                  None => None
                                | Some (_,_,_,induct_thm)
                                   => Some (mk_split_free_tac free induct_thm i))
                          else None)
     | split_free_tac _ _ _ = None;

    val split_frees_tacs = mapfilter (split_free_tac P i) frees;
   
    val simprocs = if has_field goal then [record_split_simproc P] else [];
   
  in st |> (EVERY split_frees_tacs) 
           THEN (Simplifier.full_simp_tac (simpset addsimprocs simprocs) i)
  end handle Library.LIST _ => Seq.empty;
end;

(* wrapper *)

val record_split_name = "record_split_tac";
val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);


(* method *)

val record_split_method =
  ("record_split", Method.no_args (Method.SIMPLE_METHOD' HEADGOAL record_split_tac),
    "split record fields");



(** internal theory extenders **)

(* field_typedefs *)

fun field_typedefs zeta moreT names theory =
  let
    val alpha = "'a";
    val aT = TFree (alpha, HOLogic.typeS);
    val UNIV = HOLogic.mk_UNIV (HOLogic.mk_prodT (aT, moreT));

    fun type_def (thy, name) =
      let val (thy', {type_definition, set_def = Some def, ...}) =
        thy |> setmp TypedefPackage.quiet_mode true
          (TypedefPackage.add_typedef_i true None
            (suffix field_typeN (Sign.base_name name), [alpha, zeta], Syntax.NoSyn) UNIV None
          (Tactic.rtac UNIV_witness 1))
      in (thy', Tactic.rewrite_rule [def] type_definition) end
  in foldl_map type_def (theory, names) end;


(* field_definitions *)

fun field_definitions fields names alphas zeta moreT more vars thy =
  let
    val sign = Theory.sign_of thy;
    val base = Sign.base_name;

    val xT = TFree (variant alphas "'x", HOLogic.typeS);


    (* prepare declarations and definitions *)

    (*field constructors*)
    val field_decls = map (mk_fieldC moreT) fields;

    fun mk_field_spec ((c, T), v) =
      Term.head_of (mk_field ((c, v), more)) :==
        lambda v (lambda more (mk_Abs moreT (c, T) $ (HOLogic.mk_prod (v, more))));
    val field_specs = map mk_field_spec (fields ~~ vars);

    (*field destructors*)
    val dest_decls = map (mk_fstC moreT) fields @ map (mk_sndC moreT) fields;

    fun mk_dest_spec dest sel (c, T) =
      let val p = Free ("p", mk_fieldT ((c, T), moreT));
      in Term.head_of (dest p) :== lambda p (sel (mk_Rep moreT (c, T) $ p)) end;
    val dest_specs1 = map (mk_dest_spec mk_fst HOLogic.mk_fst) fields;
    val dest_specs2 = map (mk_dest_spec mk_snd HOLogic.mk_snd) fields;


    (* 1st stage: defs_thy *)

    val (defs_thy, (((typedefs, field_defs), dest_defs1), dest_defs2)) =
      thy
      |> field_typedefs zeta moreT names
      |>> (Theory.add_consts_i o map (Syntax.no_syn o apfst base)) (field_decls @ dest_decls)
      |>>> (PureThy.add_defs_i false o map Thm.no_attributes) field_specs
      |>>> (PureThy.add_defs_i false o map Thm.no_attributes) dest_specs1
      |>>> (PureThy.add_defs_i false o map Thm.no_attributes) dest_specs2;

    val prod_types = map (fn (((a, b), c), d) => product_type_intro OF [a, b, c, d])
      (typedefs ~~ field_defs ~~ dest_defs1 ~~ dest_defs2);


    (* 2nd stage: thms_thy *)

    fun make ren th = map (fn (prod_type, field) => Drule.standard
      (Drule.rename_bvars (ren ~~ [base (fst field), moreN] handle LIST _ => [])
        (th OF [prod_type]))) (prod_types ~~ fields);

    val dest_convs = make [] product_type_conv1 @ make [] product_type_conv2;
    val field_injects = make [] product_type_inject;
    val field_inducts = make ["x", "y"] product_type_induct;
    val field_cases = make ["x", "y"] product_type_cases;
    val field_splits = make ["a", "b"] product_type_split_paired_all @
      make ["a", "b"] product_type_split_paired_All;

    val (thms_thy, [field_defs', dest_defs', dest_convs', field_injects',
        field_splits', field_inducts', field_cases']) = defs_thy
      |> Codegen.assoc_consts_i (flat (map (fn (s, _) =>
           [(suffix fieldN s, None, prod_code),
            (suffix fstN s, None, fst_code),
            (suffix sndN s, None, snd_code)]) fields))
      |> Codegen.assoc_types (map (fn (s, _) =>
           (suffix field_typeN s, prodT_code)) fields)
      |> (PureThy.add_thmss o map Thm.no_attributes)
       [("field_defs", field_defs),
        ("dest_defs", dest_defs1 @ dest_defs2),
        ("dest_convs", dest_convs),
        ("field_injects", field_injects),
        ("field_splits", field_splits),
        ("field_inducts", field_inducts),
        ("field_cases", field_cases)];

  in (thms_thy, dest_convs', field_injects', field_splits', field_inducts', field_cases') end;


(* record_definition *)

fun record_definition (args, bname) parent (parents: parent_info list) raw_fields thy =
  let
    val sign = Theory.sign_of thy;

    val alphas = map fst args;
    val name = Sign.full_name sign bname;
    val full = Sign.full_name_path sign bname;
    val base = Sign.base_name;

    val (bfields, field_syntax) = split_list (map (fn (x, T, mx) => ((x, T), mx)) raw_fields);


    (* basic components *)

    val ancestry = map (length o flat o map #fields) (Library.prefixes1 parents);

    val parent_fields = flat (map #fields parents);
    val parent_names = map fst parent_fields;
    val parent_types = map snd parent_fields;
    val parent_len = length parent_fields;
    val parent_xs = variantlist (map (base o fst) parent_fields, [moreN, rN]);
    val parent_vars = ListPair.map Free (parent_xs, parent_types);
    val parent_named_vars = parent_names ~~ parent_vars;

    val fields = map (apfst full) bfields;
    val names = map fst fields;
    val types = map snd fields;
    val len = length fields;
    val xs = variantlist (map fst bfields, moreN :: rN :: parent_xs);
    val vars = ListPair.map Free (xs, types);
    val named_vars = names ~~ vars;

    val all_fields = parent_fields @ fields;
    val all_names = parent_names @ names;
    val all_types = parent_types @ types;
    val all_len = parent_len + len;
    val all_xs = parent_xs @ xs;
    val all_vars = parent_vars @ vars;
    val all_named_vars = parent_named_vars @ named_vars;

    val zeta = variant alphas "'z";
    val moreT = TFree (zeta, HOLogic.typeS);
    val more = Free (moreN, moreT);
    val full_moreN = full moreN;
    fun more_part t = mk_more t full_moreN;
    fun more_part_update t x = mk_more_update t (full_moreN, x);
    val all_types_more = all_types @ [moreT];
    val all_xs_more = all_xs @ [moreN];

    val parent_more = funpow parent_len mk_snd;
    val idxs = 0 upto (len - 1);

    val fieldsT = mk_recordT (fields, HOLogic.unitT);
    fun rec_schemeT n = mk_recordT (prune n all_fields, moreT);
    fun rec_scheme n = mk_record (prune n all_named_vars, more);
    fun recT n = mk_recordT (prune n all_fields, HOLogic.unitT);
    fun rec_ n = mk_record (prune n all_named_vars, HOLogic.unit);
    fun r_scheme n = Free (rN, rec_schemeT n);
    fun r n = Free (rN, recT n);

    

    (* prepare print translation functions *)
    val field_tr's =
      print_translation (distinct (flat (map NameSpace.accesses' (full_moreN :: names))));

    val field_type_tr's = 
	let val fldnames = if parent_len = 0 then (tl names) else names;
        in print_translation_field_types (distinct (flat (map NameSpace.accesses' fldnames))) 
        end;

    fun record_type_abbr_tr's thy =
	let val trnames = NameSpace.accesses' (hd all_names)
            val sg = Theory.sign_of thy
	in map (gen_record_type_abbr_tr' 
                 sg bname alphas zeta (hd (rev names)) (rec_schemeT 0)) trnames end;   

    (* prepare declarations *)

    val sel_decls = map (mk_selC (rec_schemeT 0)) bfields @
      [mk_moreC (rec_schemeT 0) (moreN, moreT)];
    val update_decls = map (mk_updateC (rec_schemeT 0)) bfields @
      [mk_more_updateC (rec_schemeT 0) (moreN, moreT)];
    val make_decl = (makeN, all_types ---> recT 0);
    val fields_decl = (fieldsN, types ---> fieldsT);
    val extend_decl = (extendN, recT 0 --> moreT --> rec_schemeT 0);
    val truncate_decl = (truncateN, rec_schemeT 0 --> recT 0);


    (* prepare definitions *)

    (*record (scheme) type abbreviation*)
    val recordT_specs =
      [(suffix schemeN bname, alphas @ [zeta], rec_schemeT 0, Syntax.NoSyn),
        (bname, alphas, recT 0, Syntax.NoSyn)];

    (*selectors*)
    fun mk_sel_spec (i, c) =
      mk_sel (r_scheme 0) c :== mk_fst (funpow i mk_snd (parent_more (r_scheme 0)));
    val sel_specs =
      ListPair.map mk_sel_spec (idxs, names) @
        [more_part (r_scheme 0) :== funpow len mk_snd (parent_more (r_scheme 0))];

    (*updates*)
    val all_sels = mk_named_sels all_names (r_scheme 0);
    fun mk_upd_spec (i, (c, x)) =
      mk_update (r_scheme 0) (c, x) :==
        mk_record (nth_update (c, x) (parent_len + i, all_sels), more_part (r_scheme 0))
    val update_specs =
      ListPair.map mk_upd_spec (idxs, named_vars) @
        [more_part_update (r_scheme 0) more :== mk_record (all_sels, more)];

    (*derived operations*)
    val make_spec = Const (full makeN, all_types ---> recT 0) $$ all_vars :==
      mk_record (all_named_vars, HOLogic.unit);
    val fields_spec = Const (full fieldsN, types ---> fieldsT) $$ vars :==
      mk_record (named_vars, HOLogic.unit);
    val extend_spec = Const (full extendN, recT 0 --> moreT --> rec_schemeT 0) $ r 0 $ more :==
      mk_record (mk_named_sels all_names (r 0), more);
    val truncate_spec = Const (full truncateN, rec_schemeT 0 --> recT 0) $ r_scheme 0 :==
      mk_record (all_sels, HOLogic.unit);


    (* prepare propositions *)

    (*selectors*)
    val sel_props =
      map (fn (c, x) => mk_sel (rec_scheme 0) c === x) named_vars @
        [more_part (rec_scheme 0) === more];

    (*updates*)
    fun mk_upd_prop (i, (c, T)) =
      let val x' = Free (variant all_xs (base c ^ "'"), T) in
        mk_update (rec_scheme 0) (c, x') ===
          mk_record (nth_update (c, x') (parent_len + i, all_named_vars), more)
      end;
    val update_props =
      ListPair.map mk_upd_prop (idxs, fields) @
        let val more' = Free (variant all_xs (moreN ^ "'"), moreT)
        in [more_part_update (rec_scheme 0) more' === mk_record (all_named_vars, more')] end;

    (*equality*)
    fun mk_sel_eq (t, T) =
      let val t' = Term.abstract_over (r_scheme 0, t)
      in Trueprop (HOLogic.eq_const T $ Term.incr_boundvars 1 t' $ t') end;
    val sel_eqs = map2 mk_sel_eq
      (map (mk_sel (r_scheme 0)) all_names @ [more_part (r_scheme 0)], all_types @ [moreT]);
    val equality_prop =
      Term.all (rec_schemeT 0) $ (Abs ("r", rec_schemeT 0,
        Term.all (rec_schemeT 0) $ (Abs ("r'", rec_schemeT 0,
          Logic.list_implies (sel_eqs,
            Trueprop (HOLogic.eq_const (rec_schemeT 0) $ Bound 1 $ Bound 0))))));

    (*induct*)
    fun induct_scheme_prop n =
      let val P = Free ("P", rec_schemeT n --> HOLogic.boolT) in
        (All (prune n all_xs_more ~~ prune n all_types_more)
          (Trueprop (P $ rec_scheme n)), Trueprop (P $ r_scheme n))
      end;
    fun induct_prop n =
      let val P = Free ("P", recT n --> HOLogic.boolT) in
        (All (prune n all_xs ~~ prune n all_types) (Trueprop (P $ rec_ n)), Trueprop (P $ r n))
      end;

    (*cases*)
    val C = Trueprop (Free (variant all_xs_more "C", HOLogic.boolT));
    fun cases_scheme_prop n =
      All (prune n all_xs_more ~~ prune n all_types_more)
        ((r_scheme n === rec_scheme n) ==> C) ==> C;
    fun cases_prop n = All (prune n all_xs ~~ prune n all_types) ((r n === rec_ n) ==> C) ==> C;

    (*split*)
    fun split_scheme_meta_prop n =
      let val P = Free ("P", rec_schemeT n --> Term.propT) in
       equals (Term.propT) $
        (Term.list_all_free ([(rN,rec_schemeT n)],(P $ r_scheme n)))$
        (All (prune n all_xs_more ~~ prune n all_types_more) (P $ rec_scheme n))
      end;

    fun split_scheme_object_prop n =
      let val P = Free ("P", rec_schemeT n --> HOLogic.boolT) 
          val ALL = foldr (fn ((v,T),t) => HOLogic.mk_all (v,T,t)) 
      in
	Trueprop (
           HOLogic.eq_const (HOLogic.boolT) $
            (HOLogic.mk_all ((rN,rec_schemeT n,P $ r_scheme n)))$
            (ALL (prune n all_xs_more ~~ prune n all_types_more,P $ rec_scheme n)))
      end;

      fun split_scheme_object_ex_prop n =
      let val P = Free ("P", rec_schemeT n --> HOLogic.boolT) 
          val EX = foldr (fn ((v,T),t) => HOLogic.mk_exists (v,T,t)) 
      in
	Trueprop (
           HOLogic.eq_const (HOLogic.boolT) $
            (HOLogic.mk_exists ((rN,rec_schemeT n,P $ r_scheme n)))$
            (EX (prune n all_xs_more ~~ prune n all_types_more,P $ rec_scheme n)))
      end;
    (* 1st stage: fields_thy *)

    val (fields_thy, field_simps, field_injects, field_splits, field_inducts, field_cases) =
      thy
      |> Theory.add_path bname
      |> field_definitions fields names alphas zeta moreT more vars;

    val all_field_inducts = flat (map #field_inducts parents) @ field_inducts;
    val all_field_cases = flat (map #field_cases parents) @ field_cases;
    val all_field_splits = flat (map #field_splits parents) @ field_splits

    
    (* 2nd stage: defs_thy *)

        
   

    val (defs_thy, (((sel_defs, update_defs), derived_defs))) =
      fields_thy
      |> Theory.add_trfuns 
           ([],[],record_type_abbr_tr's fields_thy @ field_type_tr's @ field_tr's, [])
      |> add_field_splits (map (suffix field_typeN) names) field_splits
      |> Theory.parent_path
      |> Theory.add_tyabbrs_i recordT_specs
      |> Theory.add_path bname
      |> Theory.add_consts_i
        (map2 (fn ((x, T), mx) => (x, T, mx)) (sel_decls, field_syntax @ [Syntax.NoSyn]))
      |> (Theory.add_consts_i o map Syntax.no_syn)
        (update_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
      |> (PureThy.add_defs_i false o map Thm.no_attributes) sel_specs
      |>>> (PureThy.add_defs_i false o map Thm.no_attributes) update_specs
      |>>> (PureThy.add_defs_i false o map Thm.no_attributes)
        [make_spec, fields_spec, extend_spec, truncate_spec]
      |>> Theory.hide_consts false [full makeN, full fieldsN, full extendN, full truncateN,
        full moreN, full (suffix updateN moreN)];


    (* 3rd stage: thms_thy *)

    val prove_standard = Tactic.prove_standard (Theory.sign_of defs_thy);
    fun prove_simp simps =
      let val tac = simp_all_tac HOL_basic_ss simps
      in fn prop => prove_standard [] [] prop (K tac) end;

    val parent_simps = flat (map #simps parents);
    val sel_convs = map (prove_simp (parent_simps @ sel_defs @ field_simps)) sel_props;
    val update_convs = map (prove_simp (parent_simps @ update_defs @ sel_convs)) update_props;

    fun induct_scheme n =
      let val (assm, concl) = induct_scheme_prop n in
        prove_standard [] [assm] concl (fn prems =>
          EVERY (map (fn rule => try_param_tac rN rule 1) (prune n all_field_inducts))
          THEN resolve_tac prems 1)
      end;

    fun cases_scheme n =
      prove_standard [] [] (cases_scheme_prop n) (fn _ =>
        EVERY (map (fn rule => try_param_tac rN rule 1) (prune n all_field_cases))
        THEN simp_all_tac HOL_basic_ss []);

    fun split_scheme_meta n =
      prove_standard [] [] (split_scheme_meta_prop n) (fn _ =>
        Simplifier.full_simp_tac (HOL_basic_ss addsimps all_field_splits) 1);

    fun split_scheme_object induct_scheme n =
      prove_standard [] [] (split_scheme_object_prop n) (fn _ =>
         EVERY [rtac iffI 1, 
                REPEAT (rtac allI 1), etac allE 1, atac 1,
                rtac allI 1, rtac induct_scheme 1,REPEAT (etac allE 1),atac 1]);

    fun split_scheme_object_ex split_scheme_meta n =
      prove_standard [] [] (split_scheme_object_ex_prop n) (fn _ =>
        fast_simp_tac (claset_of HOL.thy,
                       HOL_basic_ss addsimps [split_scheme_meta]) 1);
       
    val induct_scheme0 = induct_scheme 0;
    val cases_scheme0 = cases_scheme 0;
    val split_scheme_meta0 = split_scheme_meta 0;
    val split_scheme_object0 = split_scheme_object induct_scheme0 0;
    val split_scheme_object_ex0 = split_scheme_object_ex split_scheme_meta0 0;
    val more_induct_scheme = map induct_scheme ancestry;
    val more_cases_scheme = map cases_scheme ancestry;

    val (thms_thy, (([sel_convs', update_convs', sel_defs', update_defs', _, 
                      [split_scheme_meta',split_scheme_object',
                       split_scheme_object_ex',split_scheme_free']],
        [induct_scheme', cases_scheme']), [more_induct_scheme', more_cases_scheme'])) =
      defs_thy
      |> (PureThy.add_thmss o map Thm.no_attributes)
       [("select_convs", sel_convs),
        ("update_convs", update_convs),
        ("select_defs", sel_defs),
        ("update_defs", update_defs),
        ("defs", derived_defs),
        ("splits",[split_scheme_meta0,split_scheme_object0,
                   split_scheme_object_ex0,induct_scheme0])]
      |>>> PureThy.add_thms
       [(("induct_scheme", induct_scheme0), induct_type_global (suffix schemeN name)),
        (("cases_scheme", cases_scheme0), cases_type_global (suffix schemeN name))]
      |>>> PureThy.add_thmss
        [(("more_induct_scheme", more_induct_scheme), induct_type_global ""),
         (("more_cases_scheme", more_cases_scheme), cases_type_global "")];


    (* 4th stage: more_thms_thy *)

    val prove_standard = Tactic.prove_standard (Theory.sign_of thms_thy);

    fun induct (n, scheme) =
      let val (assm, concl) = induct_prop n in
        prove_standard [] [assm] concl (fn prems =>
          res_inst_tac [(rN, rN)] scheme 1
          THEN try_param_tac "more" unit_induct 1
          THEN resolve_tac prems 1)
      end;

    fun cases (n, scheme) =
      prove_standard [] [] (cases_prop n) (fn _ =>
        res_inst_tac [(rN, rN)] scheme 1
        THEN simp_all_tac HOL_basic_ss [unit_all_eq1]);

    val induct0 = induct (0, induct_scheme');
    val cases0 = cases (0, cases_scheme');
    val more_induct = map induct (ancestry ~~ more_induct_scheme');
    val more_cases = map cases (ancestry ~~ more_cases_scheme');

    val equality = prove_standard [] [] equality_prop (fn _ =>
      fn st => let val [r, r'] = map #1 (rev (Tactic.innermost_params 1 st)) in
        st |> (res_inst_tac [(rN, r)] cases_scheme' 1
        THEN res_inst_tac [(rN, r')] cases_scheme' 1
        THEN simp_all_tac HOL_basic_ss (parent_simps @ sel_convs))
      end);

    val (more_thms_thy, [_, _, equality']) =
      thms_thy |> PureThy.add_thms
       [(("induct", induct0), induct_type_global name),
        (("cases", cases0), cases_type_global name),
        (("equality", equality), [ContextRules.intro_bang_global None])]
      |>> (#1 oo PureThy.add_thmss)
        [(("more_induct", more_induct), induct_type_global ""),
         (("more_cases", more_cases), cases_type_global "")];

    val simps = sel_convs' @ update_convs';
    val iffs = field_injects;

    val more_thms_thy' =
      more_thms_thy |> (#1 oo PureThy.add_thmss)
        [(("simps", simps), [Simplifier.simp_add_global]),
         (("iffs", iffs), [iff_add_global])];


    (* 5th stage: final_thy *)

    val final_thy =
      more_thms_thy'
      |> put_record name (make_record_info args parent fields field_inducts field_cases
          field_splits (field_simps @ simps))
      |> put_sel_upd (names @ [full_moreN]) simps
      |> add_record_equalities (snd (split_last names)) equality'
      |> add_record_splits (snd (split_last names)) 
                           (split_scheme_meta',split_scheme_object',
                            split_scheme_object_ex',split_scheme_free')
      |> Theory.parent_path;

  in (final_thy, {simps = simps, iffs = iffs}) end;



(** theory extender interface **)

(* prepare arguments *)

(*note: read_raw_typ avoids expanding type abbreviations*)
fun read_raw_parent sign s =
  (case Sign.read_raw_typ (sign, K None) s handle TYPE (msg, _, _) => error msg of
    Type (name, Ts) => (Ts, name)
  | _ => error ("Bad parent record specification: " ^ quote s));

fun read_typ sign (env, s) =
  let
    fun def_sort (x, ~1) = assoc (env, x)
      | def_sort _ = None;
    val T = Type.no_tvars (Sign.read_typ (sign, def_sort) s) handle TYPE (msg, _, _) => error msg;
  in (Term.add_typ_tfrees (T, env), T) end;

fun cert_typ sign (env, raw_T) =
  let val T = Type.no_tvars (Sign.certify_typ sign raw_T) handle TYPE (msg, _, _) => error msg
  in (Term.add_typ_tfrees (T, env), T) end;


(* add_record *)

(*we do all preparations and error checks here, deferring the real
  work to record_definition*)

fun gen_add_record prep_typ prep_raw_parent (params, bname) raw_parent raw_fields thy =
  let
    val _ = Theory.requires thy "Record" "record definitions";
    val sign = Theory.sign_of thy;
    val _ = message ("Defining record " ^ quote bname ^ " ...");


    (* parents *)

    fun prep_inst T = snd (cert_typ sign ([], T));

    val parent = apsome (apfst (map prep_inst) o prep_raw_parent sign) raw_parent
      handle ERROR => error ("The error(s) above in parent record specification");
    val parents = add_parents thy parent [];

    val init_env =
      (case parent of
        None => []
      | Some (types, _) => foldr Term.add_typ_tfrees (types, []));


    (* fields *)

    fun prep_field (env, (c, raw_T, mx)) =
      let val (env', T) = prep_typ sign (env, raw_T) handle ERROR =>
        error ("The error(s) above occured in field " ^ quote c)
      in (env', (c, T, mx)) end;

    val (envir, bfields) = foldl_map prep_field (init_env, raw_fields);
    val envir_names = map fst envir;


    (* args *)

    val defaultS = Sign.defaultS sign;
    val args = map (fn x => (x, if_none (assoc (envir, x)) defaultS)) params;


    (* errors *)

    val name = Sign.full_name sign bname;
    val err_dup_record =
      if is_none (get_record thy name) then []
      else ["Duplicate definition of record " ^ quote name];

    val err_dup_parms =
      (case duplicates params of
        [] => []
      | dups => ["Duplicate parameter(s) " ^ commas dups]);

    val err_extra_frees =
      (case gen_rems (op =) (envir_names, params) of
        [] => []
      | extras => ["Extra free type variable(s) " ^ commas extras]);

    val err_no_fields = if null bfields then ["No fields present"] else [];

    val err_dup_fields =
      (case duplicates (map #1 bfields) of
        [] => []
      | dups => ["Duplicate field(s) " ^ commas_quote dups]);

    val err_bad_fields =
      if forall (not_equal moreN o #1) bfields then []
      else ["Illegal field name " ^ quote moreN];

    val err_dup_sorts =
      (case duplicates envir_names of
        [] => []
      | dups => ["Inconsistent sort constraints for " ^ commas dups]);

    val errs =
      err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
      err_dup_fields @ err_bad_fields @ err_dup_sorts;
  in
    if null errs then () else error (cat_lines errs);
    thy |> record_definition (args, bname) parent parents bfields
  end
  handle ERROR => error ("Failed to define record " ^ quote bname);

val add_record = gen_add_record read_typ read_raw_parent;
val add_record_i = gen_add_record cert_typ (K I);


(** package setup **)

(* setup theory *)

val setup =
 [RecordsData.init,
  Theory.add_trfuns ([], parse_translation, [], []),
  Method.add_methods [record_split_method],
  Simplifier.change_simpset_of Simplifier.addsimprocs
    [record_simproc, record_eq_simproc]];


(* outer syntax *)

local structure P = OuterParse and K = OuterSyntax.Keyword in

val record_decl =
  P.type_args -- P.name --
    (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const);

val recordP =
  OuterSyntax.command "record" "define extensible record" K.thy_decl
    (record_decl >> (fn (x, (y, z)) => Toplevel.theory (#1 o add_record x y z)));

val _ = OuterSyntax.add_parsers [recordP];

end;

end;

structure BasicRecordPackage: BASIC_RECORD_PACKAGE = RecordPackage;
open BasicRecordPackage;