src/FOL/ex/Nat.ML
author clasohm
Tue, 24 Oct 1995 14:45:35 +0100
changeset 1294 1358dc040edb
parent 755 dfb3894d78e4
child 1459 d12da312eff4
permissions -rw-r--r--
added calls of init_html and make_chart; added usage of qed

(*  Title: 	FOL/ex/nat.ML
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge

Examples for the manual "Introduction to Isabelle"

Proofs about the natural numbers

INCOMPATIBLE with nat2.ML, Nipkow's examples

To generate similar output to manual, execute these commands:
    Pretty.setmargin 72; print_depth 0;
*)

open Nat;

goal Nat.thy "Suc(k) ~= k";
by (res_inst_tac [("n","k")] induct 1);
by (resolve_tac [notI] 1);
by (eresolve_tac [Suc_neq_0] 1);
by (resolve_tac [notI] 1);
by (eresolve_tac [notE] 1);
by (eresolve_tac [Suc_inject] 1);
qed "Suc_n_not_n";


goal Nat.thy "(k+m)+n = k+(m+n)";
prths ([induct] RL [topthm()]);  (*prints all 14 next states!*)
by (resolve_tac [induct] 1);
back();
back();
back();
back();
back();
back();

goalw Nat.thy [add_def] "0+n = n";
by (resolve_tac [rec_0] 1);
qed "add_0";

goalw Nat.thy [add_def] "Suc(m)+n = Suc(m+n)";
by (resolve_tac [rec_Suc] 1);
qed "add_Suc";

val add_ss = FOL_ss addsimps [add_0, add_Suc];

goal Nat.thy "(k+m)+n = k+(m+n)";
by (res_inst_tac [("n","k")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac add_ss 1);
qed "add_assoc";

goal Nat.thy "m+0 = m";
by (res_inst_tac [("n","m")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac add_ss 1);
qed "add_0_right";

goal Nat.thy "m+Suc(n) = Suc(m+n)";
by (res_inst_tac [("n","m")] induct 1);
by (ALLGOALS (asm_simp_tac add_ss));
qed "add_Suc_right";

val [prem] = goal Nat.thy "(!!n. f(Suc(n)) = Suc(f(n))) ==> f(i+j) = i+f(j)";
by (res_inst_tac [("n","i")] induct 1);
by (simp_tac add_ss 1);
by (asm_simp_tac (add_ss addsimps [prem]) 1);
result();