src/HOL/MicroJava/BV/LBVComplete.thy
author kleing
Wed, 09 Aug 2000 11:53:00 +0200
changeset 9559 1f99296758c2
parent 9549 40d64cb4f4e6
child 9580 d955914193e0
permissions -rw-r--r--
tuned

(*  Title:      HOL/MicroJava/BV/LBVComplete.thy
    ID:         $Id$
    Author:     Gerwin Klein
    Copyright   2000 Technische Universitaet Muenchen
*)

header {* Completeness of the LBV *}

theory LBVComplete = BVSpec + LBVSpec + StepMono:


constdefs
  is_approx :: "['a option list, 'a list] \\<Rightarrow> bool"
  "is_approx a b \\<equiv> length a = length b \\<and> (\\<forall> n. n < length a \\<longrightarrow>
                   (a!n = None \\<or> a!n = Some (b!n)))"
  
  contains_dead :: "[instr list, certificate, method_type, p_count] \\<Rightarrow> bool"
  "contains_dead ins cert phi pc \\<equiv>
     Suc pc \\<notin> succs (ins!pc) pc \\<and> Suc pc < length phi \\<longrightarrow>
     cert ! (Suc pc) = Some (phi ! Suc pc)"

  contains_targets :: "[instr list, certificate, method_type, p_count] \\<Rightarrow> bool"
  "contains_targets ins cert phi pc \\<equiv> (
     \\<forall> pc' \\<in> succs (ins!pc) pc. pc' \\<noteq> Suc pc \\<and> pc' < length phi \\<longrightarrow> 
     cert!pc' = Some (phi!pc'))" 


  fits :: "[instr list, certificate, method_type] \\<Rightarrow> bool"
  "fits ins cert phi \\<equiv> is_approx cert phi \\<and> length ins < length phi \\<and>
                            (\\<forall> pc. pc < length ins \\<longrightarrow>
                                   contains_dead ins cert phi pc \\<and> 
                                   contains_targets ins cert phi pc)"

  is_target :: "[instr list, p_count] \\<Rightarrow> bool" 
  "is_target ins pc \\<equiv> \\<exists> pc'. pc' < length ins \\<and> pc \\<in> succs (ins!pc') pc'"

  maybe_dead :: "[instr list, p_count] \\<Rightarrow> bool"
  "maybe_dead ins pc \\<equiv> \\<exists> pc'. pc = pc'+1 \\<and> pc \\<notin> succs (ins!pc') pc'"

  mdot :: "[instr list, p_count] \\<Rightarrow> bool"
  "mdot ins pc \\<equiv> maybe_dead ins pc \\<or> is_target ins pc"


consts
  option_filter_n :: "['a list, nat \\<Rightarrow> bool, nat] \\<Rightarrow> 'a option list"
primrec 
  "option_filter_n []    P n = []"  
  "option_filter_n (h#t) P n = (if (P n) then Some h # option_filter_n t P (n+1) 
                                         else None   # option_filter_n t P (n+1))"  
  
constdefs 
  option_filter :: "['a list, nat \\<Rightarrow> bool] \\<Rightarrow> 'a option list" 
  "option_filter l P \\<equiv> option_filter_n l P 0" 
  
  make_cert :: "[instr list, method_type] \\<Rightarrow> certificate"
  "make_cert ins phi \\<equiv> option_filter phi (mdot ins)"
  
  make_Cert :: "[jvm_prog, prog_type] \\<Rightarrow> prog_certificate"
  "make_Cert G Phi \\<equiv>  \\<lambda> C sig.
    let (C,x,y,mdecls) = \\<epsilon> (Cl,x,y,mdecls). (Cl,x,y,mdecls) \\<in> set G \\<and> Cl = C in
      let (sig,rT,maxl,b) = \\<epsilon> (sg,rT,maxl,b). (sg,rT,maxl,b) \\<in> set mdecls \\<and> sg = sig in
        make_cert b (Phi C sig)"
  

lemmas [simp del] = split_paired_Ex

lemma length_ofn [rulify]: "\\<forall>n. length (option_filter_n l P n) = length l"
  by (induct l) auto


lemma is_approx_option_filter: "is_approx (option_filter l P) l" 
proof -
  {
    fix a n
    have "\\<forall>n. is_approx (option_filter_n a P n) a" (is "?P a")
    proof (induct a)
      show "?P []" by (auto simp add: is_approx_def)
    
      fix l ls
      assume Cons: "?P ls"
    
      show "?P (l#ls)"
      proof (unfold is_approx_def, intro allI conjI impI)
        fix n
        show "length (option_filter_n (l # ls) P n) = length (l # ls)" 
          by (simp only: length_ofn)
      
        fix m
        assume "m < length (option_filter_n (l # ls) P n)"
        hence m: "m < Suc (length ls)" by (simp only: length_ofn) simp
      
        show "option_filter_n (l # ls) P n ! m = None \\<or>
              option_filter_n (l # ls) P n ! m = Some ((l # ls) ! m)" 
        proof (cases "m")
          assume "m = 0"
          with m show ?thesis by simp
        next
          fix m' assume Suc: "m = Suc m'"
          from Cons
          show ?thesis
          proof (unfold is_approx_def, elim allE impE conjE)
            from m Suc
            show "m' < length (option_filter_n ls P (Suc n))" by (simp add: length_ofn)
          
            assume "option_filter_n ls P (Suc n) ! m' = None \\<or> 
                    option_filter_n ls P (Suc n) ! m' = Some (ls ! m')"
            with m Suc
            show ?thesis by auto
          qed
        qed
      qed
    qed
  }
  
  thus ?thesis    
    by (auto simp add: option_filter_def)
qed

lemma option_filter_Some:
"\\<lbrakk>n < length l; P n\\<rbrakk> \\<Longrightarrow> option_filter l P ! n = Some (l!n)"
proof -
  
  assume 1: "n < length l" "P n"

  have "\\<forall>n n'. n < length l \\<longrightarrow> P (n+n') \\<longrightarrow>  option_filter_n l P n' ! n = Some (l!n)"
    (is "?P l")
  proof (induct l)
    show "?P []" by simp

    fix l ls assume Cons: "?P ls"
    show "?P (l#ls)"
    proof (intro)
      fix n n'
      assume l: "n < length (l # ls)"
      assume P: "P (n + n')"
      show "option_filter_n (l # ls) P n' ! n = Some ((l # ls) ! n)"
      proof (cases "n")
        assume "n=0"
        with P show ?thesis by simp
      next
        fix m assume "n = Suc m"
        with l P Cons
        show ?thesis by simp
      qed
    qed
  qed

  with 1
  show ?thesis by (auto simp add: option_filter_def)
qed

lemma option_filter_contains_dead:
"contains_dead ins (option_filter phi (mdot ins)) phi pc" 
  by (auto intro: option_filter_Some simp add: contains_dead_def mdot_def maybe_dead_def)

lemma option_filter_contains_targets:
"pc < length ins \\<Longrightarrow> contains_targets ins (option_filter phi (mdot ins)) phi pc"
proof (unfold contains_targets_def, clarsimp)
 
  fix pc'
  assume "pc < length ins" 
         "pc' \\<in> succs (ins ! pc) pc" 
         "pc' \\<noteq> Suc pc" and
    pc': "pc' < length phi"

  hence "is_target ins pc'" by (auto simp add: is_target_def)

  with pc'
  show "option_filter phi (mdot ins) ! pc' = Some (phi ! pc')"
    by (auto intro: option_filter_Some simp add: mdot_def)
qed
  

lemma fits_make_cert:
  "length ins < length phi \\<Longrightarrow> fits ins (make_cert ins phi) phi"
proof -
  assume l: "length ins < length phi"

  thus "fits ins (make_cert ins phi) phi"
  proof (unfold fits_def make_cert_def, intro conjI allI impI)
    show "is_approx (option_filter phi (mdot ins)) phi" 
      by (rule is_approx_option_filter)

    show "length ins < length phi" .

    fix pc
    show "contains_dead ins (option_filter phi (mdot ins)) phi pc" 
      by (rule option_filter_contains_dead)
    
    assume "pc < length ins" 
    thus "contains_targets ins (option_filter phi (mdot ins)) phi pc" 
      by (rule option_filter_contains_targets)
  qed
qed

lemma fitsD: 
"\\<lbrakk>fits ins cert phi; pc' \\<in> succs (ins!pc) pc; pc' \\<noteq> Suc pc; pc < length ins; pc' < length ins\\<rbrakk> 
  \\<Longrightarrow> cert!pc' = Some (phi!pc')"
by (clarsimp simp add: fits_def contains_dead_def contains_targets_def)

lemma fitsD2:
"\\<lbrakk>fits ins cert phi; Suc pc \\<notin> succs (ins!pc) pc;  pc < length ins\\<rbrakk> 
  \\<Longrightarrow> cert ! Suc pc = Some (phi ! Suc pc)"
by (clarsimp simp add: fits_def contains_dead_def contains_targets_def)


lemma wtl_inst_mono:
"\\<lbrakk>wtl_inst i G rT s1 s1' cert mpc pc; fits ins cert phi; pc < length ins; 
  G \\<turnstile> s2 <=s s1; i = ins!pc\\<rbrakk> \\<Longrightarrow> 
 \\<exists> s2'. wtl_inst (ins!pc) G rT s2 s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')";
proof -
  assume pc:   "pc < length ins" "i = ins!pc"
  assume wtl:  "wtl_inst i G rT s1 s1' cert mpc pc"
  assume fits: "fits ins cert phi"
  assume G:    "G \\<turnstile> s2 <=s s1"
  
  let "?step s" = "step (i, G, s)"

  from wtl G
  have app: "app (i, G, rT, s2)" by (auto simp add: wtl_inst_def app_mono)
  
  from wtl G
  have step: "succs i pc \\<noteq> {} \\<Longrightarrow> G \\<turnstile> the (?step s2) <=s the (?step s1)" 
    by - (drule step_mono, auto simp add: wtl_inst_def)
  
  with app
  have some: "succs i pc \\<noteq> {} \\<Longrightarrow> ?step s2 \\<noteq> None" by (simp add: app_step_some)

  {
    fix pc'
    assume 0: "pc' \\<in> succs i pc" "pc' \\<noteq> pc+1"
    hence "succs i pc \\<noteq> {}" by auto
    hence "G \\<turnstile> the (?step s2) <=s the (?step s1)" by (rule step)
    also 
    from wtl 0
    have "G \\<turnstile> the (?step s1) <=s the (cert!pc')"
      by (auto simp add: wtl_inst_def) 
    finally
    have "G\\<turnstile> the (?step s2) <=s the (cert!pc')" .
  } note cert = this
    
  have "\\<exists>s2'. wtl_inst i G rT s2 s2' cert mpc pc \\<and> G \\<turnstile> s2' <=s s1'"
  proof (cases "pc+1 \\<in> succs i pc")
    case True
    with wtl
    have s1': "s1' = the (?step s1)" by (simp add: wtl_inst_def)

    have "wtl_inst i G rT s2 (the (?step s2)) cert mpc pc \\<and> G \\<turnstile> (the (?step s2)) <=s s1'" 
      (is "?wtl \\<and> ?G")
    proof
      from True s1'
      show ?G by (auto intro: step)

      from True app wtl
      show ?wtl
        by (clarsimp intro: cert simp add: wtl_inst_def)
    qed
    thus ?thesis by blast
  next
    case False
    with wtl
    have "s1' = the (cert ! Suc pc)" by (simp add: wtl_inst_def)

    with False app wtl
    have "wtl_inst i G rT s2 s1' cert mpc pc \\<and> G \\<turnstile> s1' <=s s1'"
      by (clarsimp intro: cert simp add: wtl_inst_def)

    thus ?thesis by blast
  qed
  
  with pc show ?thesis by simp
qed
    

lemma wtl_option_mono:
"\\<lbrakk>wtl_inst_option i G rT s1 s1' cert mpc pc; fits ins cert phi; 
  pc < length ins; G \\<turnstile> s2 <=s s1; i = ins!pc\\<rbrakk> \\<Longrightarrow> 
 \\<exists> s2'. wtl_inst_option (ins!pc) G rT s2 s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')"
proof -
  assume wtl:  "wtl_inst_option i G rT s1 s1' cert mpc pc" and
         fits: "fits ins cert phi" "pc < length ins"
               "G \\<turnstile> s2 <=s s1" "i = ins!pc"

  show ?thesis
  proof (cases "cert!pc")
    case None
    with wtl fits;
    show ?thesis; 
      by - (rule wtl_inst_mono [elimify], (simp add: wtl_inst_option_def)+);
  next
    case Some
    with wtl fits;

    have G: "G \\<turnstile> s2 <=s a"
     by - (rule sup_state_trans, (simp add: wtl_inst_option_def)+)

    from Some wtl
    have "wtl_inst i G rT a s1' cert mpc pc"; by (simp add: wtl_inst_option_def)

    with G fits
    have "\\<exists> s2'. wtl_inst (ins!pc) G rT a s2' cert mpc pc \\<and> (G \\<turnstile> s2' <=s s1')"
      by - (rule wtl_inst_mono, (simp add: wtl_inst_option_def)+);
    
    with Some G;
    show ?thesis; by (simp add: wtl_inst_option_def);
  qed
qed


    
lemma wt_instr_imp_wtl_inst:
"\\<lbrakk>wt_instr (ins!pc) G rT phi max_pc pc; fits ins cert phi;
  pc < length ins; length ins = max_pc\\<rbrakk> \\<Longrightarrow> 
  \\<exists> s. wtl_inst (ins!pc) G rT (phi!pc) s cert max_pc pc \\<and> G \\<turnstile> s <=s phi ! Suc pc";
proof -
  assume wt:   "wt_instr (ins!pc) G rT phi max_pc pc" 
  assume fits: "fits ins cert phi"
  assume pc:   "pc < length ins" "length ins = max_pc"

  from wt 
  have app: "app (ins!pc, G, rT, phi!pc)" by (simp add: wt_instr_def);

  from wt pc
  have pc': "!!pc'. pc' \\<in> succs (ins!pc) pc \\<Longrightarrow> pc' < length ins"
    by (simp add: wt_instr_def)

  let ?s' = "the (step (ins!pc,G, phi!pc))"

  from wt
  have G: "!!pc'. pc' \\<in> succs (ins!pc) pc \\<Longrightarrow> G \\<turnstile> ?s' <=s phi ! pc'"
    by (simp add: wt_instr_def)

  from wt fits pc
  have cert: "!!pc'. \\<lbrakk>pc' \\<in> succs (ins!pc) pc; pc' < max_pc; pc' \\<noteq> pc+1\\<rbrakk> 
    \\<Longrightarrow> cert!pc' \\<noteq> None \\<and> G \\<turnstile> ?s' <=s the (cert!pc')"
    by (auto dest: fitsD simp add: wt_instr_def)

  show ?thesis
  proof (cases "pc+1 \\<in> succs (ins!pc) pc")
    case True

    have "wtl_inst (ins!pc) G rT (phi!pc) ?s' cert max_pc pc \\<and> G \\<turnstile> ?s' <=s phi ! Suc pc" (is "?wtl \\<and> ?G")
    proof 
      from True
      show "G \\<turnstile> ?s' <=s phi ! Suc pc"  by (simp add: G)

      from True fits app pc cert pc'
      show "?wtl"
        by (auto simp add: wtl_inst_def)
    qed

    thus ?thesis by blast
    
  next    
    let ?s'' = "the (cert ! Suc pc)"

    case False
    with fits app pc cert pc'
    have "wtl_inst (ins ! pc) G rT (phi ! pc) ?s'' cert max_pc pc \\<and> G \\<turnstile> ?s'' <=s phi ! Suc pc" 
      by (auto dest: fitsD2 simp add: wtl_inst_def)

    thus ?thesis by blast
  qed
qed

  
lemma wt_instr_imp_wtl_option:
"\\<lbrakk>fits ins cert phi; pc < length ins; wt_instr (ins!pc) G rT phi max_pc pc;  max_pc = length ins\\<rbrakk> \\<Longrightarrow> 
 \\<exists> s. wtl_inst_option (ins!pc) G rT (phi!pc) s cert max_pc pc \\<and> G \\<turnstile> s <=s phi ! Suc pc";
proof -
  assume fits : "fits ins cert phi" "pc < length ins" 
         and "wt_instr (ins!pc) G rT phi max_pc pc" 
             "max_pc = length ins";

  hence * : "\\<exists> s. wtl_inst (ins!pc) G rT (phi!pc) s cert max_pc pc \\<and> G \\<turnstile> s <=s phi ! Suc pc";
    by - (rule wt_instr_imp_wtl_inst, simp+);
  
  show ?thesis;
  proof (cases "cert ! pc");
    case None;
    with *;
    show ?thesis; by (simp add: wtl_inst_option_def);

  next;
    case Some;

    from fits; 
    have "pc < length phi"; by (clarsimp simp add: fits_def);
    with fits Some;
    have "cert ! pc = Some (phi!pc)"; by (auto simp add: fits_def is_approx_def);
     
    with *; 
    show ?thesis; by (simp add: wtl_inst_option_def);
  qed
qed


text {*
  \medskip
  Main induction over the instruction list.
*}

theorem wt_imp_wtl_inst_list:
"\\<forall> pc. (\\<forall>pc'. pc' < length all_ins \\<longrightarrow> wt_instr (all_ins ! pc') G rT phi (length all_ins) pc') \\<longrightarrow>   
       fits all_ins cert phi \\<longrightarrow> 
       (\\<exists>l. pc = length l \\<and> all_ins = l@ins) \\<longrightarrow>  
       pc < length all_ins \\<longrightarrow>      
       (\\<forall> s. (G \\<turnstile> s <=s (phi!pc)) \\<longrightarrow> 
             (\\<exists>s'. wtl_inst_list ins G rT s s' cert (length all_ins) pc))" 
(is "\\<forall>pc. ?wt \\<longrightarrow> ?fits \\<longrightarrow> ?l pc ins \\<longrightarrow> ?len pc \\<longrightarrow> ?wtl pc ins" is "\\<forall>pc. ?C pc ins" is "?P ins") 
proof (induct "?P" "ins")
  case Nil
  show "?P []" by simp
next
  fix i ins'
  assume Cons: "?P ins'"

  show "?P (i#ins')" 
  proof (intro allI impI, elim exE conjE)
    fix pc s l
    assume wt  : "\\<forall>pc'. pc' < length all_ins \\<longrightarrow> 
                        wt_instr (all_ins ! pc') G rT phi (length all_ins) pc'"
    assume fits: "fits all_ins cert phi"
    assume G   : "G \\<turnstile> s <=s phi ! pc"
    assume l   : "pc < length all_ins"

    assume pc  : "all_ins = l@i#ins'" "pc = length l"
    hence  i   : "all_ins ! pc = i"
      by (simp add: nth_append)

    from l wt
    have "wt_instr (all_ins!pc) G rT phi (length all_ins) pc" by blast

    with fits l 
    obtain s1 where
          "wtl_inst_option (all_ins!pc) G rT (phi!pc) s1 cert (length all_ins) pc" and
      s1: "G \\<turnstile> s1 <=s phi ! (Suc pc)"
      by - (drule wt_instr_imp_wtl_option, assumption+, simp, elim exE conjE, simp) 
    
    with fits l
    obtain s2 where
      o:  "wtl_inst_option (all_ins!pc) G rT s s2 cert (length all_ins) pc" 
      and "G \\<turnstile> s2 <=s s1"
      by - (drule wtl_option_mono, assumption+, simp, elim exE conjE, rule that) 

    with s1
    have G': "G \\<turnstile> s2 <=s phi ! (Suc pc)"
      by - (rule sup_state_trans, auto)

    from Cons
    have "?C (Suc pc) ins'" by blast
    with wt fits pc
    have IH: "?len (Suc pc) \\<longrightarrow> ?wtl (Suc pc) ins'" by auto

    show "\\<exists>s'. wtl_inst_list (i#ins') G rT s s' cert (length all_ins) pc"
    proof (cases "?len (Suc pc)")
      case False
      with pc
      have "ins' = []" by simp
      with i o 
      show ?thesis by auto
    next
      case True
      with IH
      have "?wtl (Suc pc) ins'" by blast
      with G'
      obtain s' where
        "wtl_inst_list ins' G rT s2 s' cert (length all_ins) (Suc pc)"
        by - (elim allE impE, auto)        
      with i o
      show ?thesis by auto
    qed
  qed
qed
  

lemma fits_imp_wtl_method_complete:
"\\<lbrakk>wt_method G C pTs rT mxl ins phi; fits ins cert phi; wf_prog wf_mb G\\<rbrakk> \\<Longrightarrow> wtl_method G C pTs rT mxl ins cert"
by (simp add: wt_method_def wtl_method_def del: split_paired_Ex)
   (rule wt_imp_wtl_inst_list [rulify, elimify], auto simp add: wt_start_def simp del: split_paired_Ex); 


lemma wtl_method_complete:
"\\<lbrakk>wt_method G C pTs rT mxl ins phi; wf_prog wf_mb G\\<rbrakk> \\<Longrightarrow> wtl_method G C pTs rT mxl ins (make_cert ins phi)";
proof -;
  assume * : "wt_method G C pTs rT mxl ins phi" "wf_prog wf_mb G";
  
  hence "fits ins (make_cert ins phi) phi";
    by - (rule fits_make_cert, simp add: wt_method_def);

  with *;
  show ?thesis; by - (rule fits_imp_wtl_method_complete);
qed;

lemma unique_set:
"(a,b,c,d)\\<in>set l \\<longrightarrow> unique l \\<longrightarrow> (a',b',c',d') \\<in> set l \\<longrightarrow> a = a' \\<longrightarrow> b=b' \\<and> c=c' \\<and> d=d'";
  by (induct "l") auto;

lemma unique_epsilon:
"(a,b,c,d)\\<in>set l \\<longrightarrow> unique l \\<longrightarrow> (\\<epsilon> (a',b',c',d'). (a',b',c',d') \\<in> set l \\<and> a'=a) = (a,b,c,d)";
  by (auto simp add: unique_set);


theorem wtl_complete: "\\<lbrakk>wt_jvm_prog G Phi\\<rbrakk> \\<Longrightarrow> wtl_jvm_prog G (make_Cert G Phi)";
proof (simp only: wt_jvm_prog_def);

  assume wfprog: "wf_prog (\\<lambda>G C (sig,rT,maxl,b). wt_method G C (snd sig) rT maxl b (Phi C sig)) G";

  thus ?thesis; 
  proof (simp add: wtl_jvm_prog_def wf_prog_def wf_cdecl_def wf_mdecl_def, auto);
    fix a aa ab b ac ba ad ae bb; 
    assume 1 : "\\<forall>(C,sc,fs,ms)\\<in>set G.
             Ball (set fs) (wf_fdecl G) \\<and>
             unique fs \\<and>
             (\\<forall>(sig,rT,mb)\\<in>set ms. wf_mhead G sig rT \\<and> (\\<lambda>(maxl,b). wt_method G C (snd sig) rT maxl b (Phi C sig)) mb) \\<and>
             unique ms \\<and>
             (case sc of None \\<Rightarrow> C = Object
              | Some D \\<Rightarrow>
                  is_class G D \\<and>
                  (D, C) \\<notin> (subcls1 G)^* \\<and>
                  (\\<forall>(sig,rT,b)\\<in>set ms. \\<forall>D' rT' b'. method (G, D) sig = Some (D', rT', b') \\<longrightarrow> G\\<turnstile>rT\\<preceq>rT'))"
             "(a, aa, ab, b) \\<in> set G";
  
    assume uG : "unique G"; 
    assume b  : "((ac, ba), ad, ae, bb) \\<in> set b";

    from 1;
    show "wtl_method G a ba ad ae bb (make_Cert G Phi a (ac, ba))";
    proof (rule bspec [elimify], clarsimp);
      assume ub : "unique b";
      assume m: "\\<forall>(sig,rT,mb)\\<in>set b. wf_mhead G sig rT \\<and> (\\<lambda>(maxl,b). wt_method G a (snd sig) rT maxl b (Phi a sig)) mb"; 
      from m b;
      show ?thesis;
      proof (rule bspec [elimify], clarsimp);
        assume "wt_method G a ba ad ae bb (Phi a (ac, ba))";         
        with wfprog uG ub b 1;
        show ?thesis;
          by - (rule wtl_method_complete [elimify], assumption+, simp add: make_Cert_def unique_epsilon);
      qed; 
    qed;
  qed;
qed

lemmas [simp] = split_paired_Ex

end