src/HOLCF/Porder.thy
author wenzelm
Sun, 30 Nov 2008 14:43:29 +0100
changeset 28917 20f43e0e0958
parent 27317 7f4ee574f29c
child 29138 661a8db7e647
permissions -rw-r--r--
tuned;

(*  Title:      HOLCF/Porder.thy
    ID:         $Id$
    Author:     Franz Regensburger and Brian Huffman
*)

header {* Partial orders *}

theory Porder
imports Main
begin

subsection {* Type class for partial orders *}

class sq_ord = type +
  fixes sq_le :: "'a \<Rightarrow> 'a \<Rightarrow> bool"

notation
  sq_le (infixl "<<" 55)

notation (xsymbols)
  sq_le (infixl "\<sqsubseteq>" 55)

class po = sq_ord +
  assumes refl_less [iff]: "x \<sqsubseteq> x"
  assumes trans_less: "\<lbrakk>x \<sqsubseteq> y; y \<sqsubseteq> z\<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
  assumes antisym_less: "\<lbrakk>x \<sqsubseteq> y; y \<sqsubseteq> x\<rbrakk> \<Longrightarrow> x = y"

text {* minimal fixes least element *}

lemma minimal2UU[OF allI] : "\<forall>x::'a::po. uu \<sqsubseteq> x \<Longrightarrow> uu = (THE u. \<forall>y. u \<sqsubseteq> y)"
by (blast intro: theI2 antisym_less)

text {* the reverse law of anti-symmetry of @{term "op <<"} *}

lemma antisym_less_inverse: "(x::'a::po) = y \<Longrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"
by simp

lemma box_less: "\<lbrakk>(a::'a::po) \<sqsubseteq> b; c \<sqsubseteq> a; b \<sqsubseteq> d\<rbrakk> \<Longrightarrow> c \<sqsubseteq> d"
by (rule trans_less [OF trans_less])

lemma po_eq_conv: "((x::'a::po) = y) = (x \<sqsubseteq> y \<and> y \<sqsubseteq> x)"
by (fast elim!: antisym_less_inverse intro!: antisym_less)

lemma rev_trans_less: "\<lbrakk>(y::'a::po) \<sqsubseteq> z; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
by (rule trans_less)

lemma sq_ord_less_eq_trans: "\<lbrakk>a \<sqsubseteq> b; b = c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
by (rule subst)

lemma sq_ord_eq_less_trans: "\<lbrakk>a = b; b \<sqsubseteq> c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"
by (rule ssubst)

lemmas HOLCF_trans_rules [trans] =
  trans_less
  antisym_less
  sq_ord_less_eq_trans
  sq_ord_eq_less_trans

subsection {* Upper bounds *}

definition
  is_ub :: "['a set, 'a::po] \<Rightarrow> bool"  (infixl "<|" 55)  where
  "(S <| x) = (\<forall>y. y \<in> S \<longrightarrow> y \<sqsubseteq> x)"

lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u"
by (simp add: is_ub_def)

lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
by (simp add: is_ub_def)

lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u"
unfolding is_ub_def by fast

lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u"
unfolding is_ub_def by fast

lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x"
unfolding is_ub_def by fast

lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x"
unfolding is_ub_def by fast

lemma is_ub_empty [simp]: "{} <| u"
unfolding is_ub_def by fast

lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)"
unfolding is_ub_def by fast

lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y"
unfolding is_ub_def by (fast intro: trans_less)

subsection {* Least upper bounds *}

definition
  is_lub :: "['a set, 'a::po] \<Rightarrow> bool"  (infixl "<<|" 55)  where
  "(S <<| x) = (S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u))"

definition
  lub :: "'a set \<Rightarrow> 'a::po" where
  "lub S = (THE x. S <<| x)"

syntax
  "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3LUB _:_./ _)" [0,0, 10] 10)

syntax (xsymbols)
  "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0,0, 10] 10)

translations
  "LUB x:A. t" == "CONST lub ((%x. t) ` A)"

abbreviation
  Lub  (binder "LUB " 10) where
  "LUB n. t n == lub (range t)"

notation (xsymbols)
  Lub  (binder "\<Squnion> " 10)

text {* access to some definition as inference rule *}

lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x"
unfolding is_lub_def by fast

lemma is_lub_lub: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"
unfolding is_lub_def by fast

lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x"
unfolding is_lub_def by fast

text {* lubs are unique *}

lemma unique_lub: "\<lbrakk>S <<| x; S <<| y\<rbrakk> \<Longrightarrow> x = y"
apply (unfold is_lub_def is_ub_def)
apply (blast intro: antisym_less)
done

text {* technical lemmas about @{term lub} and @{term is_lub} *}

lemma lubI: "M <<| x \<Longrightarrow> M <<| lub M"
apply (unfold lub_def)
apply (rule theI)
apply assumption
apply (erule (1) unique_lub)
done

lemma thelubI: "M <<| l \<Longrightarrow> lub M = l"
by (rule unique_lub [OF lubI])

lemma is_lub_singleton: "{x} <<| x"
by (simp add: is_lub_def)

lemma lub_singleton [simp]: "lub {x} = x"
by (rule thelubI [OF is_lub_singleton])

lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
by (simp add: is_lub_def)

lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
by (rule is_lub_bin [THEN thelubI])

lemma is_lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> S <<| x"
by (erule is_lubI, erule (1) is_ubD)

lemma lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> lub S = x"
by (rule is_lub_maximal [THEN thelubI])

subsection {* Countable chains *}

definition
  -- {* Here we use countable chains and I prefer to code them as functions! *}
  chain :: "(nat \<Rightarrow> 'a::po) \<Rightarrow> bool" where
  "chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))"

lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y"
unfolding chain_def by fast

lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)"
unfolding chain_def by fast

text {* chains are monotone functions *}

lemma chain_mono_less: "\<lbrakk>chain Y; i < j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"
by (erule less_Suc_induct, erule chainE, erule trans_less)

lemma chain_mono: "\<lbrakk>chain Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"
by (cases "i = j", simp, simp add: chain_mono_less)

lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))"
by (rule chainI, simp, erule chainE)

text {* technical lemmas about (least) upper bounds of chains *}

lemma is_ub_lub: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x"
by (rule is_lubD1 [THEN ub_rangeD])

lemma is_ub_range_shift:
  "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"
apply (rule iffI)
apply (rule ub_rangeI)
apply (rule_tac y="S (i + j)" in trans_less)
apply (erule chain_mono)
apply (rule le_add1)
apply (erule ub_rangeD)
apply (rule ub_rangeI)
apply (erule ub_rangeD)
done

lemma is_lub_range_shift:
  "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"
by (simp add: is_lub_def is_ub_range_shift)

text {* the lub of a constant chain is the constant *}

lemma chain_const [simp]: "chain (\<lambda>i. c)"
by (simp add: chainI)

lemma lub_const: "range (\<lambda>x. c) <<| c"
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)

lemma thelub_const [simp]: "(\<Squnion>i. c) = c"
by (rule lub_const [THEN thelubI])

subsection {* Finite chains *}

definition
  -- {* finite chains, needed for monotony of continuous functions *}
  max_in_chain :: "[nat, nat \<Rightarrow> 'a::po] \<Rightarrow> bool" where
  "max_in_chain i C = (\<forall>j. i \<le> j \<longrightarrow> C i = C j)"

definition
  finite_chain :: "(nat \<Rightarrow> 'a::po) \<Rightarrow> bool" where
  "finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))"

text {* results about finite chains *}

lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y"
unfolding max_in_chain_def by fast

lemma max_in_chainD: "\<lbrakk>max_in_chain i Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i = Y j"
unfolding max_in_chain_def by fast

lemma finite_chainI:
  "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> finite_chain C"
unfolding finite_chain_def by fast

lemma finite_chainE:
  "\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
unfolding finite_chain_def by fast

lemma lub_finch1: "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> range C <<| C i"
apply (rule is_lubI)
apply (rule ub_rangeI, rename_tac j)
apply (rule_tac x=i and y=j in linorder_le_cases)
apply (drule (1) max_in_chainD, simp)
apply (erule (1) chain_mono)
apply (erule ub_rangeD)
done

lemma lub_finch2:
  "finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)"
apply (erule finite_chainE)
apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"])
apply (erule (1) lub_finch1)
done

lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)"
 apply (erule finite_chainE)
 apply (rule_tac B="Y ` {..i}" in finite_subset)
  apply (rule subsetI)
  apply (erule rangeE, rename_tac j)
  apply (rule_tac x=i and y=j in linorder_le_cases)
   apply (subgoal_tac "Y j = Y i", simp)
   apply (simp add: max_in_chain_def)
  apply simp
 apply simp
done

lemma finite_range_has_max:
  fixes f :: "nat \<Rightarrow> 'a" and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
  assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)"
  assumes finite_range: "finite (range f)"
  shows "\<exists>k. \<forall>i. r (f i) (f k)"
proof (intro exI allI)
  fix i :: nat
  let ?j = "LEAST k. f k = f i"
  let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)"
  have "?j \<le> ?k"
  proof (rule Max_ge)
    show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)"
      using finite_range by (rule finite_imageI)
    show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f"
      by (intro imageI rangeI)
  qed
  hence "r (f ?j) (f ?k)"
    by (rule mono)
  also have "f ?j = f i"
    by (rule LeastI, rule refl)
  finally show "r (f i) (f ?k)" .
qed

lemma finite_range_imp_finch:
  "\<lbrakk>chain Y; finite (range Y)\<rbrakk> \<Longrightarrow> finite_chain Y"
 apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k")
  apply (erule exE)
  apply (rule finite_chainI, assumption)
  apply (rule max_in_chainI)
  apply (rule antisym_less)
   apply (erule (1) chain_mono)
  apply (erule spec)
 apply (rule finite_range_has_max)
  apply (erule (1) chain_mono)
 apply assumption
done

lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)"
by (rule chainI, simp)

lemma bin_chainmax:
  "x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)"
unfolding max_in_chain_def by simp

lemma lub_bin_chain:
  "x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y"
apply (frule bin_chain)
apply (drule bin_chainmax)
apply (drule (1) lub_finch1)
apply simp
done

text {* the maximal element in a chain is its lub *}

lemma lub_chain_maxelem: "\<lbrakk>Y i = c; \<forall>i. Y i \<sqsubseteq> c\<rbrakk> \<Longrightarrow> lub (range Y) = c"
by (blast dest: ub_rangeD intro: thelubI is_lubI ub_rangeI)

subsection {* Directed sets *}

definition
  directed :: "'a::po set \<Rightarrow> bool" where
  "directed S = ((\<exists>x. x \<in> S) \<and> (\<forall>x\<in>S. \<forall>y\<in>S. \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z))"

lemma directedI:
  assumes 1: "\<exists>z. z \<in> S"
  assumes 2: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
  shows "directed S"
unfolding directed_def using prems by fast

lemma directedD1: "directed S \<Longrightarrow> \<exists>z. z \<in> S"
unfolding directed_def by fast

lemma directedD2: "\<lbrakk>directed S; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
unfolding directed_def by fast

lemma directedE1:
  assumes S: "directed S"
  obtains z where "z \<in> S"
by (insert directedD1 [OF S], fast)

lemma directedE2:
  assumes S: "directed S"
  assumes x: "x \<in> S" and y: "y \<in> S"
  obtains z where "z \<in> S" "x \<sqsubseteq> z" "y \<sqsubseteq> z"
by (insert directedD2 [OF S x y], fast)

lemma directed_finiteI:
  assumes U: "\<And>U. \<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z"
  shows "directed S"
proof (rule directedI)
  have "finite {}" and "{} \<subseteq> S" by simp_all
  hence "\<exists>z\<in>S. {} <| z" by (rule U)
  thus "\<exists>z. z \<in> S" by simp
next
  fix x y
  assume "x \<in> S" and "y \<in> S"
  hence "finite {x, y}" and "{x, y} \<subseteq> S" by simp_all
  hence "\<exists>z\<in>S. {x, y} <| z" by (rule U)
  thus "\<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" by simp
qed

lemma directed_finiteD:
  assumes S: "directed S"
  shows "\<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z"
proof (induct U set: finite)
  case empty
  from S have "\<exists>z. z \<in> S" by (rule directedD1)
  thus "\<exists>z\<in>S. {} <| z" by simp
next
  case (insert x F)
  from `insert x F \<subseteq> S`
  have xS: "x \<in> S" and FS: "F \<subseteq> S" by simp_all
  from FS have "\<exists>y\<in>S. F <| y" by fact
  then obtain y where yS: "y \<in> S" and Fy: "F <| y" ..
  obtain z where zS: "z \<in> S" and xz: "x \<sqsubseteq> z" and yz: "y \<sqsubseteq> z"
    using S xS yS by (rule directedE2)
  from Fy yz have "F <| z" by (rule is_ub_upward)
  with xz have "insert x F <| z" by simp
  with zS show "\<exists>z\<in>S. insert x F <| z" ..
qed

lemma not_directed_empty [simp]: "\<not> directed {}"
by (rule notI, drule directedD1, simp)

lemma directed_singleton: "directed {x}"
by (rule directedI, auto)

lemma directed_bin: "x \<sqsubseteq> y \<Longrightarrow> directed {x, y}"
by (rule directedI, auto)

lemma directed_chain: "chain S \<Longrightarrow> directed (range S)"
apply (rule directedI)
apply (rule_tac x="S 0" in exI, simp)
apply (clarify, rename_tac m n)
apply (rule_tac x="S (max m n)" in bexI)
apply (simp add: chain_mono)
apply simp
done

end