author paulson
Thu, 18 Jan 1996 10:38:29 +0100
changeset 1444 23ceb1dc9755
parent 1184 94ada3b54caa
child 1535 681a5d04393e
permissions -rw-r--r--
trivial updates


Abramsky, S.,
\newblock The lazy lambda calculus,
\newblock In {\em Resesarch Topics in Functional Programming}, D.~A. Turner,
  Ed. Addison-Wesley, 1977, pp.~65--116

Aczel, P.,
\newblock An introduction to inductive definitions,
\newblock In {\em Handbook of Mathematical Logic}, J.~Barwise, Ed.
  North-Holland, 1977, pp.~739--782

Aczel, P.,
\newblock {\em Non-Well-Founded Sets},
\newblock CSLI, 1988

Boyer, R.~S., Moore, J.~S.,
\newblock {\em A Computational Logic},
\newblock Academic Press, 1979

Camilleri, J., Melham, T.~F.,
\newblock Reasoning with inductively defined relations in the {HOL} theorem
\newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992

Davey, B.~A., Priestley, H.~A.,
\newblock {\em Introduction to Lattices and Order},
\newblock Cambridge Univ. Press, 1990

Dybjer, P.,
\newblock Inductive sets and families in {Martin-L\"of's} type theory and their
  set-theoretic semantics,
\newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge
  Univ. Press, 1991, pp.~280--306

Farmer, W.~M., Guttman, J.~D., Thayer, F.~J.,
\newblock {IMPS}: An interactive mathematical proof system,
\newblock {\em J. Auto. Reas. {\bf 11}}, 2 (1993), 213--248

Hennessy, M.,
\newblock {\em The Semantics of Programming Languages: An Elementary
  Introduction Using Structural Operational Semantics},
\newblock Wiley, 1990

Huet, G.,
\newblock Induction principles formalized in the {Calculus of Constructions},
\newblock In {\em Programming of Future Generation Computers\/} (1988),
  K.~Fuchi, M.~Nivat, Eds., Elsevier, pp.~205--216

Melham, T.~F.,
\newblock Automating recursive type definitions in higher order logic,
\newblock In {\em Current Trends in Hardware Verification and Automated Theorem
  Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989,

Milner, R.,
\newblock How to derive inductions in {LCF},
\newblock note, Dept. Comp. Sci., Univ. Edinburgh, 1980

Milner, R.,
\newblock {\em Communication and Concurrency},
\newblock Prentice-Hall, 1989

Monahan, B.~Q.,
\newblock {\em Data Type Proofs using Edinburgh {LCF}},
\newblock PhD thesis, University of Edinburgh, 1984

Paulin-Mohring, C.,
\newblock Inductive definitions in the system {Coq}: Rules and properties,
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec.

Paulson, L.~C.,
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
\newblock Cambridge Univ. Press, 1987

Paulson, L.~C.,
\newblock {\em {ML} for the Working Programmer},
\newblock Cambridge Univ. Press, 1991

Paulson, L.~C.,
\newblock Co-induction and co-recursion in higher-order logic,
\newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993,
\newblock To appear in the Festscrift for Alonzo Church, edited by A. Anderson
  and M. Zeleny

Paulson, L.~C.,
\newblock Introduction to {Isabelle},
\newblock Tech. Rep. 280, Comp. Lab., Univ. Cambridge, 1993

Paulson, L.~C.,
\newblock Set theory for verification: {I}. {From} foundations to functions,
\newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389

Paulson, L.~C.,
\newblock Set theory for verification: {II}. {Induction} and recursion,
\newblock {\em J. Auto. Reas. {\bf 15}}, 2 (1995), 167--215

Paulson, L.~C.,
\newblock A concrete final coalgebra theorem for {ZF} set theory,
\newblock In {\em Types for Proofs and Programs: International Workshop {TYPES
  '94}\/} (published 1995), P.~Dybjer, B.~Nordstr{\"om},, J.~Smith, Eds., LNCS
  996, Springer, pp.~120--139

Pitts, A.~M.,
\newblock A co-induction principle for recursively defined domains,
\newblock {\em Theoretical Comput. Sci. {\bf 124}\/} (1994), 195--219

Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I.,
\newblock An {EVES} data abstraction example,
\newblock In {\em FME '93: Industrial-Strength Formal Methods\/} (1993),
  J.~C.~P. Woodcock, P.~G. Larsen, Eds., LNCS 670, Springer, pp.~578--596

Szasz, N.,
\newblock A machine checked proof that {Ackermann's} function is not primitive
\newblock In {\em Logical Environments}, G.~Huet, G.~Plotkin, Eds. Cambridge
  Univ. Press, 1993, pp.~317--338