src/Pure/defs.ML
author obua
Tue, 31 May 2005 19:32:41 +0200
changeset 16158 2c3565b74b7a
parent 16113 692fe6595755
child 16177 1af9f5c69745
permissions -rw-r--r--
Removed final_consts from theory data. Now const_deps deals with final constants.

(*  Title:      Pure/General/defs.ML
    ID:         $Id$
    Author:     Steven Obua, TU Muenchen

    Checks if definitions preserve consistency of logic by enforcing that there are no cyclic definitions.
    The algorithm is described in 
    "Cycle-free Overloading in Isabelle", Steven Obua, technical report, to be written :-)
*)

signature DEFS = sig
    
    type graph

    exception DEFS of string
    exception CIRCULAR of (typ * string * string) list
    exception INFINITE_CHAIN of (typ * string * string) list 
    exception FINAL of string * typ
    exception CLASH of string * string * string
    
    val empty : graph
    val declare : graph -> string * typ -> graph  (* exception DEFS *)
    val define : graph -> string * typ -> string -> (string * typ) list -> graph 
      (* exception DEFS, CIRCULAR, INFINITE_CHAIN, CLASH, FINAL *)
    
    val finalize : graph -> string * typ -> graph (* exception DEFS *)

    val finals : graph -> (typ list) Symtab.table

    (* the first argument should be the smaller graph *)
    val merge : graph -> graph -> graph (* exception CIRCULAR, INFINITE_CHAIN, CLASH *)

end

structure Defs :> DEFS = struct

type tyenv = Type.tyenv
type edgelabel = (int * typ * typ * (typ * string * string) list)
type noderef = string

datatype node = Node of
       string  (* name of constant *)
     * typ  (* most general type of constant *)
     * defnode Symtab.table  (* a table of defnodes, each corresponding to 1 definition of the constant for a particular type, 
                             indexed by axiom name *)
     * backref Symtab.table (* a table of all back references to this node, indexed by node name *)
     * typ list (* a list of all finalized types *)
     
and defnode = Defnode of
       typ  (* type of the constant in this particular definition *)
     * ((noderef * (string option * edgelabel list) list) Symtab.table) (* The edges, grouped by nodes. *)

and backref = Backref of
       noderef  (* the name of the node that has defnodes which reference a certain node A *)
     * (unit Symtab.table) (* the names of the defnodes that DIRECTLY reference A. *)

fun getnode graph noderef = the (Symtab.lookup (graph, noderef))
fun get_nodename (Node (n, _, _ ,_, _)) = n
fun get_nodedefs (Node (_, _, defs, _, _)) = defs
fun get_defnode (Node (_, _, defs, _, _)) defname = Symtab.lookup (defs, defname)
fun get_defnode' graph noderef defname = Symtab.lookup (get_nodedefs (the (Symtab.lookup (graph, noderef))), defname)
fun get_nodename (Node (n, _, _ , _, _)) = n

datatype graphaction = Declare of string * typ 
		     | Define of string * typ * string * (string * typ) list
		     | Finalize of string * typ

type graph = (graphaction list) * (node Symtab.table)

val empty = ([], Symtab.empty)

exception DEFS of string;
exception CIRCULAR of (typ * string * string) list;
exception INFINITE_CHAIN of (typ * string * string) list;
exception CLASH of string * string * string;
exception FINAL of string * typ;

fun def_err s = raise (DEFS s)

fun declare (actions, g) (cty as (name, ty)) =
    ((Declare cty)::actions, 
     Symtab.update_new ((name, Node (name, Type.varifyT(Type.strip_sorts ty), Symtab.empty, Symtab.empty, [])), g))
    handle Symtab.DUP _ => def_err "constant is already declared"

fun rename ty1 ty2 = incr_tvar ((maxidx_of_typ ty1)+1) ty2;  

fun subst_incr_tvar inc t =
    if (inc > 0) then 
	let
	    val tv = typ_tvars t
	    val t' = incr_tvar inc t
	    fun update_subst (((n,i), _), s) =
		Vartab.update (((n, i), ([], TVar ((n, i+inc), []))), s)
	in
	    (t',List.foldl update_subst Vartab.empty tv)
	end	
    else
	(t, Vartab.empty)

(* Rename tys2 so that tys2 and tys1 do not have any variables in common any more.
   As a result, return the renamed tys2' and the substitution that takes tys2 to tys2'. *)
fun subst_rename max1 ty2 =
    let
        val max2 = (maxidx_of_typ ty2)
        val (ty2', s) = subst_incr_tvar (max1 + 1) ty2                
    in
	(ty2', s, max1 + max2 + 1)
    end	       

fun subst s ty = Envir.norm_type s ty

fun subst_history s history = map (fn (ty, cn, dn) => (subst s ty, cn, dn)) history

fun is_instance instance_ty general_ty =
    Type.typ_instance Type.empty_tsig (instance_ty, general_ty)

fun is_instance_r instance_ty general_ty =
    is_instance instance_ty (rename instance_ty general_ty)

fun unify ty1 ty2 = 
    SOME (fst (Type.unify Type.empty_tsig (Vartab.empty, 0) (ty1, ty2)))
    handle Type.TUNIFY => NONE

(* 
   Unifies ty1 and ty2, renaming ty1 and ty2 so that they have greater indices than max and so that they
   are different. All indices in ty1 and ty2 are supposed to be less than or equal to max.
   Returns SOME (max', s1, s2), so that s1(ty1) = s2(ty2) and max' is greater or equal than all 
   indices in s1, s2, ty1, ty2.
*)
fun unify_r max ty1 ty2 = 
    let
	val max =  Int.max(max, 0)
	val max1 = max (* >= maxidx_of_typ ty1 *)
	val max2 = max (* >= maxidx_of_typ ty2 *)
	val max = Int.max(max, Int.max (max1, max2))
        val (ty1, s1) = subst_incr_tvar (max+1) ty1
	val (ty2, s2) = subst_incr_tvar (max+max1+2) ty2
        val max = max+max1+max2+2	
	fun merge a b = Vartab.merge (fn _ => false) (a, b)
    in
	case unify ty1 ty2 of
	    NONE => NONE
	  | SOME s => SOME (max, merge s1 s, merge s2 s)
    end

fun can_be_unified_r ty1 ty2 =
    let
	val ty2 = rename ty1 ty2
    in
	case unify ty1 ty2 of
	    NONE => false
	  | _ => true
    end

fun can_be_unified ty1 ty2 =
    case unify ty1 ty2 of
	NONE => false
      | _ => true

fun checkT (Type (a, Ts)) = Type (a, map checkT Ts)
  | checkT (TVar ((a, 0), _)) = TVar ((a, 0), [])
  | checkT (TVar ((a, i), _)) = def_err "type is not clean"
  | checkT (TFree (a, _)) = TVar ((a, 0), [])

fun forall_table P tab = Symtab.foldl (fn (true, e) => P e | (b, _) => b) (true, tab);

fun label_ord NONE NONE = EQUAL
  | label_ord NONE (SOME _) = LESS
  | label_ord (SOME _) NONE = GREATER
  | label_ord (SOME l1) (SOME l2) = string_ord (l1,l2)

fun compare_edges (e1 as (maxidx1, u1, v1, history1)) (e2 as (maxidx2, u2, v2, history2)) =
    let
	val t1 = u1 --> v1
	val t2 = u2 --> v2
    in
	if (is_instance_r t1 t2) then
	    (if is_instance_r t2 t1 then
		 SOME (int_ord (length history2, length history1))
	     else
		 SOME LESS)
	else if (is_instance_r t2 t1) then
	    SOME GREATER
	else
	    NONE
    end

fun merge_edges_1 (x, []) = []
  | merge_edges_1 (x, (y::ys)) = 
    (case compare_edges x y of
	 SOME LESS => (y::ys)
       | SOME EQUAL => (y::ys)
       | SOME GREATER => merge_edges_1 (x, ys)
       | NONE => y::(merge_edges_1 (x, ys)))

fun merge_edges xs ys = foldl merge_edges_1 xs ys

fun pack_edges xs = merge_edges [] xs

fun merge_labelled_edges [] es = es
  | merge_labelled_edges es [] = es
  | merge_labelled_edges ((l1,e1)::es1) ((l2,e2)::es2) = 
    (case label_ord l1 l2 of
	 LESS => (l1, e1)::(merge_labelled_edges es1 ((l2, e2)::es2))
       | GREATER => (l2, e2)::(merge_labelled_edges ((l1, e1)::es1) es2)
       | EQUAL => (l1, merge_edges e1 e2)::(merge_labelled_edges es1 es2))

fun defnode_edges_foldl f a defnode =
    let
	val (Defnode (ty, def_edges)) = defnode
	fun g (b, (_, (n, labelled_edges))) =
	    foldl (fn ((s, edges), b') => 
		      (foldl (fn (e, b'') => f ty n s e b'') b' edges))
		  b
		  labelled_edges		  		     
    in
	Symtab.foldl g (a, def_edges)
    end	

fun define (actions, graph) (name, ty) axname body =
    let
	val ty = checkT ty
	val body = map (fn (n,t) => (n, checkT t)) body		 
	val mainref = name
	val mainnode  = (case Symtab.lookup (graph, mainref) of 
			     NONE => def_err ("constant "^(quote mainref)^" is not declared")
			   | SOME n => n)
	val (Node (n, gty, defs, backs, finals)) = mainnode
	val _ = (if is_instance_r ty gty then () else def_err "type of constant does not match declared type")
	fun check_def (s, Defnode (ty', _)) = 
	    (if can_be_unified_r ty ty' then 
		 raise (CLASH (mainref, axname, s))
	     else if s = axname then
	         def_err "name of axiom is already used for another definition of this constant"
	     else true)	
	val _ = forall_table check_def defs		
	fun check_final finalty = 
	    (if can_be_unified_r finalty ty then
		 raise (FINAL (mainref, finalty))
	     else
		 true)
	val _ = forall check_final finals
	
	(* now we know that the only thing that can prevent acceptance of the definition is a cyclic dependency *)

	(* body contains the constants that this constant definition depends on. For each element of body,
           the function make_edges_to calculates a group of edges that connect this constant with 
           the constant that is denoted by the element of the body *)
	fun make_edges_to (bodyn, bodyty) =
	    let
		val bnode = 
		    (case Symtab.lookup (graph, bodyn) of 
			 NONE => def_err "body of constant definition references undeclared constant"
		       | SOME x => x)
		val (Node (_, general_btyp, bdefs, bbacks, bfinals)) = bnode
	    in
		case unify_r 0 bodyty general_btyp of
		    NONE => NONE
		  | SOME (maxidx, sigma1, sigma2) => 
		    SOME (
		    let
			(* For each definition of the constant in the body, 
			   check if the definition unifies with the type of the constant in the body. *)	                
	              fun make_edges ((swallowed, l),(def_name, Defnode (def_ty, _))) =
			  if swallowed then
			      (swallowed, l)
			  else 
			      (case unify_r 0 bodyty def_ty of
				   NONE => (swallowed, l)
				 | SOME (maxidx, sigma1, sigma2) => 
				   (is_instance_r bodyty def_ty,
				    merge_labelled_edges l [(SOME def_name,[(maxidx, subst sigma1 ty, subst sigma2 def_ty, [])])]))
          	      val (swallowed, edges) = Symtab.foldl make_edges ((false, []), bdefs)
		    in
			if swallowed orelse (exists (is_instance_r bodyty) bfinals) then 
			    (bodyn, edges)
			else 
			    (bodyn, [(NONE, [(maxidx, subst sigma1 ty, subst sigma2 general_btyp,[])])]@edges)
		    end)
	    end 

	fun update_edges (b as (bodyn, bodyty), edges) =
	    (case make_edges_to b of
		 NONE => edges
	       | SOME m =>
		 (case Symtab.lookup (edges, bodyn) of
		      NONE => Symtab.update ((bodyn, m), edges)
		    | SOME (_, es') => 
		      let 
			  val (_, es) = m
			  val es = merge_labelled_edges es es'
		      in
			  Symtab.update ((bodyn, (bodyn, es)), edges)
		      end
		 )
	    )

	val edges = foldl update_edges Symtab.empty body

	fun insert_edge edges (nodename, (defname_opt, edge)) = 
	    let
		val newlink = [(defname_opt, [edge])]
	    in
		case Symtab.lookup (edges, nodename) of
		    NONE => Symtab.update ((nodename, (nodename, newlink)), edges)		    
		  | SOME (_, links) => 
		    let
			val links' = merge_labelled_edges links newlink
		    in
			Symtab.update ((nodename, (nodename, links')), edges)
		    end
	    end				    

        (* We constructed all direct edges that this defnode has. 
           Now we have to construct the transitive hull by going a single step further. *)

        val thisDefnode = Defnode (ty, edges)

	fun make_trans_edges _ noderef defname_opt (max1, alpha1, beta1, history1) edges = 
	    case defname_opt of 
		NONE => edges
	      | SOME defname => 		
		let
		    val defnode = the (get_defnode' graph noderef defname)
		    fun make_trans_edge _ noderef2 defname_opt2 (max2, alpha2, beta2, history2) edges =
			case unify_r (Int.max (max1, max2)) beta1 alpha2 of
			    NONE => edges
			  | SOME (max, sleft, sright) =>
			    insert_edge edges (noderef2, 
					       (defname_opt2, 							  
						(max, subst sleft alpha1, subst sright beta2, 
						 (subst_history sleft history1)@
						 ((subst sleft beta1, noderef, defname)::
						  (subst_history sright history2)))))
		in
		    defnode_edges_foldl make_trans_edge edges defnode
		end

	val edges = defnode_edges_foldl make_trans_edges edges thisDefnode

	val thisDefnode = Defnode (ty, edges)

	(* We also have to add the backreferences that this new defnode induces. *)
	    
	fun hasNONElink ((NONE, _)::_) = true
	  | hasNONElink _ = false
	
	fun install_backref graph noderef pointingnoderef pointingdefname = 
	    let
		val (Node (pname, _, _, _, _)) = getnode graph pointingnoderef
		val (Node (name, ty, defs, backs, finals)) = getnode graph noderef
	    in
		case Symtab.lookup (backs, pname) of
		    NONE => 
		    let 
			val defnames = Symtab.update ((pointingdefname, ()), Symtab.empty)
			val backs = Symtab.update ((pname, Backref (pointingnoderef, defnames)), backs)
		    in
			Symtab.update ((name, Node (name, ty, defs, backs, finals)), graph) 			
		    end
		  | SOME (Backref (pointingnoderef, defnames)) =>
		    let
			val defnames = Symtab.update_new ((pointingdefname, ()), defnames)
			val backs = Symtab.update ((pname, Backref (pointingnoderef, defnames)), backs)
		    in
			Symtab.update ((name, Node (name, ty, defs, backs, finals)), graph)
		    end
		    handle Symtab.DUP _ => graph
	    end

	fun install_backrefs (graph, (_, (noderef, labelled_edges))) =
	    if hasNONElink labelled_edges then
		install_backref graph noderef mainref axname
	    else 
		graph

        val graph = Symtab.foldl install_backrefs (graph, edges)

        val (Node (_, _, _, backs, _)) = getnode graph mainref
	val graph = Symtab.update ((mainref, Node (n, gty, Symtab.update_new 
          ((axname, thisDefnode), defs), backs, finals)), graph)
		    
	(* Now we have to check all backreferences to this node and inform them about the new defnode. 
	   In this section we also check for circularity. *)
        fun update_backrefs ((backs, newedges), (nodename, Backref (noderef, defnames))) =	    
	    let
		val node = getnode graph noderef
		fun update_defs ((defnames, newedges),(defname, _)) =
		    let
			val (Defnode (_, defnode_edges)) = the (get_defnode node defname)
			val (_, labelled_edges) = the (Symtab.lookup (defnode_edges, n))
						      
			(* the type of thisDefnode is ty *)
			fun update (e as (max, alpha, beta, history), (none_edges, this_edges)) = 
			    case unify_r max beta ty of
				NONE => (e::none_edges, this_edges)
			      | SOME (max', s_beta, s_ty) =>
				let
				    val alpha' = subst s_beta alpha
				    val ty' = subst s_ty ty				      
				    val _ = 
					if noderef = mainref andalso defname = axname then
					    (case unify alpha' ty' of
						 NONE => 
						   if (is_instance_r ty' alpha') then
						       raise (INFINITE_CHAIN (
							      (alpha', mainref, axname)::
							      (subst_history s_beta history)@
							      [(ty', mainref, axname)]))
						   else ()
					       | SOME s => raise (CIRCULAR (
								  (subst s alpha', mainref, axname)::
								  (subst_history s (subst_history s_beta history))@
								  [(subst s ty', mainref, axname)])))
					else ()
				    val edge = (max', alpha', ty', subst_history s_beta history)
				in
				    if is_instance_r beta ty then 
					(none_edges, edge::this_edges)
				    else
					(e::none_edges, edge::this_edges)
				end					    			   			    
		    in
			case labelled_edges of 
			    ((NONE, edges)::_) => 
			    let
				val (none_edges, this_edges) = foldl update ([], []) edges
				val defnames = if none_edges = [] then defnames else Symtab.update_new ((defname, ()), defnames) 
			    in
				(defnames, (defname, none_edges, this_edges)::newedges)
			    end			    
			  | _ => sys_error "define: update_defs, internal error, corrupt backrefs"
		    end
		    
		val (defnames, newedges') = Symtab.foldl update_defs ((Symtab.empty, []), defnames)
	    in
		if Symtab.is_empty defnames then 
		    (backs, (noderef, newedges')::newedges)
		else
		    let
			val backs = Symtab.update_new ((nodename, Backref (noderef, defnames)), backs)
		    in
			(backs, newedges)
		    end
	    end
	    

	val (backs, newedges) = Symtab.foldl update_backrefs ((Symtab.empty, []), backs)
						 
	(* If a Circular exception is thrown then we never reach this point. *)
        (* Ok, the definition is consistent, let's update this node. *)
	val graph = Symtab.update ((mainref, Node (n, gty, Symtab.update 
	  ((axname, thisDefnode), defs), backs, finals)), graph)

        (* Furthermore, update all the other nodes that backreference this node. *)
        fun final_update_backrefs graph noderef defname none_edges this_edges =
	    let
		val node = getnode graph noderef
		val (Node (nodename, nodety, defs, backs, finals)) = node
		val (Defnode (defnode_ty, defnode_edges)) = the (get_defnode node defname)
		val (_, defnode_links) = the (Symtab.lookup (defnode_edges, n))

		fun update edges none_edges this_edges =
		    let 
			val u = merge_labelled_edges edges [(SOME axname, pack_edges this_edges)]
		    in
			if none_edges = [] then
			    u
			else
			    (NONE, pack_edges none_edges)::u
		    end
		    
		val defnode_links' = 
		    case defnode_links of 
			((NONE, _) :: edges) => update edges none_edges this_edges
		      | edges => update edges none_edges this_edges
		val defnode_edges' = Symtab.update ((n, (mainref, defnode_links')), defnode_edges)
		val defs' = Symtab.update ((defname, Defnode (defnode_ty, defnode_edges')), defs)
	    in
		Symtab.update ((nodename, Node (nodename, nodety, defs', backs, finals)), graph)
	    end

	val graph = foldl (fn ((noderef, newedges),graph) => foldl (fn ((defname, none_edges, this_edges), graph) =>
           final_update_backrefs graph noderef defname none_edges this_edges) graph newedges) graph newedges		    

    in	    
	((Define (name, ty, axname, body))::actions, graph)	   
    end 

    fun finalize' ((c, ty), graph) = 
      case Symtab.lookup (graph, c) of 
	  NONE => def_err ("finalize: constant "^(quote c)^" is not declared")
	| SOME (Node (noderef, nodety, defs, backs, finals)) =>
	  let 
	      val nodety = checkT nodety 
	  in
	      if (not (is_instance_r ty nodety)) then
		  def_err ("finalize: only type instances of the declared constant "^(quote c)^" can be finalized")
	      else if exists (is_instance_r ty) finals then
		  graph
	      else 
	      let
	          val finals = ty :: finals
		  val graph = Symtab.update ((noderef, Node(noderef, nodety, defs, backs, finals)), graph)
		  fun update_backref ((graph, backs), (backrefname, Backref (_, backdefnames))) =
		  let
		      fun update_backdef ((graph, defnames), (backdefname, _)) = 
	              let 
			  val (backnode as Node (_, backty, backdefs, backbacks, backfinals)) = getnode graph backrefname
			  val (Defnode (def_ty, all_edges)) = the (get_defnode backnode backdefname)						      
			  val (defnames', all_edges') = 
			      case Symtab.lookup (all_edges, noderef) of
				  NONE => sys_error "finalize: corrupt backref"
				| SOME (_, (NONE, edges)::rest) =>
				  let
				      val edges' = List.filter (fn (_, _, beta, _) => not (is_instance_r beta ty)) edges
				  in
				      if edges' = [] then 
					  (defnames, Symtab.update ((noderef, (noderef, rest)), all_edges))
				      else
					  (Symtab.update ((backdefname, ()), defnames), 
					   Symtab.update ((noderef, (noderef, (NONE, edges')::rest)), all_edges))
				  end
			  val defnode' = Defnode (def_ty, all_edges')
			  val backnode' = Node (backrefname, backty, Symtab.update ((backdefname, defnode'), backdefs), 
					   backbacks, backfinals)
		      in
			  (Symtab.update ((backrefname, backnode'), graph), defnames')			  			  
		      end
	  
		      val (graph', defnames') = Symtab.foldl update_backdef ((graph, Symtab.empty), backdefnames)
		  in
		      (graph', if Symtab.is_empty defnames' then backs 
			       else Symtab.update ((backrefname, Backref (backrefname, defnames')), backs))
		  end
		  val (graph', backs') = Symtab.foldl update_backref ((graph, Symtab.empty), backs)
		  val Node (_, _, defs, _, _) = getnode graph' noderef
	      in
		  Symtab.update ((noderef, Node (noderef, nodety, defs, backs', finals)), graph')
	      end
	  end
	   
    fun finalize (history, graph) c_ty = ((Finalize c_ty)::history, finalize' (c_ty, graph))
    
    fun merge' (Declare cty, g) = (declare g cty handle _ => g)
      | merge' (Define (name, ty, axname, body), g as (_, graph)) = 
	(case Symtab.lookup (graph, name) of
	     NONE => define g (name, ty) axname body
	   | SOME (Node (_, _, defs, _, _)) => 
	     (case Symtab.lookup (defs, axname) of
		  NONE => define g (name, ty) axname body
		| SOME _ => g))
      | merge' (Finalize finals, g) = (finalize g finals handle _ => g)
	
    fun merge (actions, _) g = foldr merge' g actions

    fun finals (history, graph) = 
	Symtab.foldl 
	    (fn (finals, (_, Node(name, _, _, _, ftys))) => Symtab.update_new ((name, ftys), finals))  
	    (Symtab.empty, graph)

end;
		


(*fun tvar name = TVar ((name, 0), [])

val bool = Type ("bool", [])
val int = Type ("int", [])
val alpha = tvar "'a"
val beta = tvar "'b"
val gamma = tvar "'c"
fun pair a b = Type ("pair", [a,b])

val _ = print "make empty"
val g = Defs.empty 

val _ = print "declare"
val g = Defs.declare g "M" (alpha --> bool)
val g = Defs.declare g "N" (beta --> bool)

val _ = print "define"
val g = Defs.define g "N" (alpha --> bool) "defN" [("M", alpha --> bool)]
val g = Defs.define g "M" (alpha --> bool) "defM" [("N", int --> alpha)]

val g = Defs.declare g "0" alpha
val g = Defs.define g "0" (pair alpha beta) "zp" [("0", alpha), ("0", beta)]*)