src/Provers/induct_method.ML
author wenzelm
Thu, 10 Nov 2005 20:57:17 +0100
changeset 18147 31634a2af39e
parent 18023 3900037edf3d
child 18178 9e4dfe031525
permissions -rw-r--r--
induct method: fixes; tuned;

(*  Title:      Provers/induct_method.ML
    ID:         $Id$
    Author:     Markus Wenzel, TU Muenchen

Proof by cases and induction on sets and types.
*)

signature INDUCT_METHOD_DATA =
sig
  val dest_concls: term -> term list
  val cases_default: thm
  val local_impI: thm
  val conjI: thm
  val atomize: thm list
  val rulify1: thm list
  val rulify2: thm list
  val localize: thm list
end;

signature INDUCT_METHOD =
sig
  val cases_tac: Proof.context -> bool -> term option list list -> thm option ->
    thm list -> int -> RuleCases.tactic
  val induct_tac: Proof.context -> bool -> term option list list ->
    thm option -> (string * typ) list -> thm list -> int -> RuleCases.tactic
  val setup: (theory -> theory) list
end;

functor InductMethodFun(Data: INDUCT_METHOD_DATA): INDUCT_METHOD =
struct


(** misc utils **)

(* align lists *)

fun align_left msg xs ys =
  let val m = length xs and n = length ys
  in if m < n then raise ERROR_MESSAGE msg else (Library.take (n, xs) ~~ ys) end;

fun align_right msg xs ys =
  let val m = length xs and n = length ys
  in if m < n then raise ERROR_MESSAGE msg else (Library.drop (m - n, xs) ~~ ys) end;


(* prep_inst *)

fun prep_inst align cert tune (tm, ts) =
  let
    fun prep_var (x, SOME t) =
          let
            val cx = cert x;
            val {T = xT, thy, ...} = Thm.rep_cterm cx;
            val ct = cert (tune t);
          in
            if Sign.typ_instance thy (#T (Thm.rep_cterm ct), xT) then SOME (cx, ct)
            else raise ERROR_MESSAGE (Pretty.string_of (Pretty.block
             [Pretty.str "Ill-typed instantiation:", Pretty.fbrk,
              Display.pretty_cterm ct, Pretty.str " ::", Pretty.brk 1,
              Display.pretty_ctyp (#T (Thm.crep_cterm ct))]))
          end
      | prep_var (_, NONE) = NONE;
    val xs = InductAttrib.vars_of tm;
  in
    align "Rule has fewer variables than instantiations given" xs ts
    |> List.mapPartial prep_var
  end;



(** cases method **)

(*
  rule selection scheme:
          cases         - classical case split
    <x:A> cases ...     - set cases
          cases t       - type cases
    ...   cases ... R   - explicit rule
*)

local

fun resolveq_cases_tac make ruleq i st =
  ruleq |> Seq.maps (fn (rule, (cases, facts)) =>
    (Method.insert_tac facts THEN' Tactic.rtac rule) i st
    |> Seq.map (rpair (make (Thm.theory_of_thm rule, Thm.prop_of rule) cases)));

fun find_casesT ctxt ((SOME t :: _) :: _) = InductAttrib.find_casesT ctxt (fastype_of t)
  | find_casesT _ _ = [];

fun find_casesS ctxt (fact :: _) = InductAttrib.find_casesS ctxt fact
  | find_casesS _ _ = [];

in

fun cases_tac ctxt is_open insts opt_rule facts =
  let
    val thy = ProofContext.theory_of ctxt;
    val cert = Thm.cterm_of thy;

    fun inst_rule r =
      if null insts then RuleCases.add r
      else (align_left "Rule has fewer premises than arguments given" (Thm.prems_of r) insts
        |> (List.concat o map (prep_inst align_left cert I))
        |> Drule.cterm_instantiate) r |> rpair (RuleCases.get r);

    val ruleq =
      (case opt_rule of
        NONE =>
          let val rules = find_casesS ctxt facts @ find_casesT ctxt insts @ [Data.cases_default] in
            Method.trace ctxt rules;
            Seq.maps (Seq.try inst_rule) (Seq.of_list rules)
          end
      | SOME r => Seq.single (inst_rule r));

    fun prep_rule (th, (cases, n)) = Seq.map (apsnd (rpair (Library.drop (n, facts))) o rpair cases)
      (Method.multi_resolves (Library.take (n, facts)) [th]);
  in resolveq_cases_tac (RuleCases.make is_open NONE) (Seq.maps prep_rule ruleq) end;

val cases_meth = Method.METHOD_CASES o ((Seq.DETERM o HEADGOAL) oo
  (fn (ctxt, (is_open, (insts, opt_rule))) => cases_tac ctxt is_open insts opt_rule));

end;



(** induct method **)

(*
  rule selection scheme:
    <x:A> induct ...     - set induction
          induct x       - type induction
    ...   induct ... R   - explicit rule
*)

local


(* atomize and rulify *)

fun atomize_term thy =
  ObjectLogic.drop_judgment thy o MetaSimplifier.rewrite_term thy Data.atomize [];

fun rulified_term thm =
  let val thy = Thm.theory_of_thm thm in
    Thm.prop_of thm
    |> MetaSimplifier.rewrite_term thy Data.rulify1 []
    |> MetaSimplifier.rewrite_term thy Data.rulify2 []
    |> pair thy
  end;

val atomize_tac = Tactic.rewrite_goal_tac Data.atomize;

val rulify_tac =
  Tactic.rewrite_goal_tac Data.rulify1 THEN'
  Tactic.rewrite_goal_tac Data.rulify2 THEN'
  Tactic.norm_hhf_tac;

val localize = Goal.norm_hhf o Tactic.simplify false Data.localize;


(* fix_tac *)

local

val meta_spec = PureThy.get_thm Pure.thy (Name "meta_spec");

fun meta_spec_tac ctxt (x, T) i st = SUBGOAL (fn (goal, _) =>
  let
    val thy = Thm.theory_of_thm st;
    val cert = Thm.cterm_of thy;
    val certT = Thm.ctyp_of thy;

    val v = Free (x, T);
    val _ = Term.exists_subterm (fn t => t aconv v) goal orelse
      error ("No occurrence of " ^ ProofContext.string_of_term ctxt v ^ " in subgoal");
    val P = Term.absfree (x, T, goal);
    val rule = meta_spec
      |> Drule.instantiate' [SOME (certT T)] [SOME (cert P), SOME (cert v)]
      |> Thm.rename_params_rule ([x], 1);
  in compose_tac (false, rule, 1) end i) i st;

in

fun fix_tac ctxt fixes = EVERY' (map (meta_spec_tac ctxt) (rev fixes));

end;


(* internalize implications -- limited to atomic prems *)

local

fun imp_intr i raw_th =
  let
    val th = Thm.permute_prems (i - 1) 1 raw_th;
    val {thy, maxidx, ...} = Thm.rep_thm th;
    val cprems = Drule.cprems_of th;
    val As = Library.take (length cprems - 1, cprems);
    val C = Thm.cterm_of thy (Var (("C", maxidx + 1), propT));
  in th COMP Thm.lift_rule (Drule.list_implies (As, C)) Data.local_impI end;

in

fun internalize k th = if k > 0 then internalize (k - 1) (imp_intr k th) else th;

end;


(* join multi-rules *)

val eq_prems = curry (Term.aconvs o pairself Thm.prems_of);

fun join_rules [] = []
  | join_rules [th] = [th]
  | join_rules (rules as r :: rs) =
      if not (forall (eq_prems r) rs) then []
      else
        let
          val th :: ths = map Drule.freeze_all rules;
          val cprems = Drule.cprems_of th;
          val asms = map Thm.assume cprems;
        in
          [foldr1 (fn (x, x') => [x, x'] MRS Data.conjI)
            (map (fn x => Drule.implies_elim_list x asms) (th :: ths))
          |> Drule.implies_intr_list cprems
          |> Drule.standard'
          |> RuleCases.save r]
        end;


(* divinate rule instantiation (cannot handle pending goal parameters) *)

fun dest_env thy (env as Envir.Envir {iTs, ...}) =
  let
    val cert = Thm.cterm_of thy;
    val certT = Thm.ctyp_of thy;
    val pairs = Envir.alist_of env;
    val ts = map (cert o Envir.norm_term env o #2 o #2) pairs;
    val xs = map2 (cert o Var) (map #1 pairs, map (#T o Thm.rep_cterm) ts);
  in (map (fn (xi, (S, T)) => (certT (TVar (xi, S)), certT T)) (Vartab.dest iTs), xs ~~ ts) end;

fun divinate_inst rule i st =
  let
    val {thy, maxidx, ...} = Thm.rep_thm st;
    val goal = Thm.term_of (Thm.cprem_of st i);  (*exception Subscript*)
    val params = rev (rename_wrt_term goal (Logic.strip_params goal));  (*as they are printed :-*)
  in
    if not (null params) then
      (warning ("Cannot determine rule instantiation due to pending parameter(s): " ^
        commas (map (Sign.string_of_term thy o Syntax.mark_boundT) params));
      Seq.single rule)
    else
      let
        val rule' = Thm.incr_indexes (maxidx + 1) rule;
        val concl = Logic.strip_assums_concl goal;
      in
        Unify.smash_unifiers (thy, Envir.empty (#maxidx (Thm.rep_thm rule')),
          [(Thm.concl_of rule', concl)])
        |> Seq.map (fn env => Drule.instantiate (dest_env thy env) rule')
      end
  end handle Subscript => Seq.empty;


(* compose tactics with cases *)

fun resolveq_cases_tac' ctxt make is_open ruleq fixes i st =
  ruleq |> Seq.maps (fn (rule, (cases, k, more_facts)) =>
    (Method.insert_tac more_facts THEN' fix_tac ctxt fixes THEN' atomize_tac) i st
    |> Seq.maps (fn st' =>
      divinate_inst (internalize k rule) i st'
      |> Seq.maps (fn rule' =>
        Tactic.rtac rule' i st'
        |> Seq.map (rpair (make is_open (SOME (Thm.prop_of rule')) (rulified_term rule') cases)))));

infix 1 THEN_ALL_NEW_CASES;

fun (tac1 THEN_ALL_NEW_CASES tac2) i st =
  st |> tac1 i |> Seq.maps (fn (st', cases) =>
    Seq.map (rpair cases) (Seq.INTERVAL tac2 i (i + nprems_of st' - nprems_of st) st'));


(* find rules *)

(*rename all outermost !!-bound vars of type T in all premises of thm to x,
  possibly indexed to avoid clashes*)
fun rename [[SOME (Free (x, Type (T, _)))]] thm =
      let
        fun index i [] = []
          | index i (y :: ys) =
              if x = y then x ^ string_of_int i :: index (i + 1) ys
              else y :: index i ys;
        fun rename_params [] = []
          | rename_params ((y, Type (U, _)) :: ys) =
              (if U = T then x else y) :: rename_params ys
          | rename_params ((y, _) :: ys) = y :: rename_params ys;
        fun rename_asm A =
          let
            val xs = rename_params (Logic.strip_params A);
            val xs' =
              (case List.filter (equal x) xs of
                [] => xs | [_] => xs | _ => index 1 xs);
          in Logic.list_rename_params (xs', A) end;
        fun rename_prop p =
          let val (As, C) = Logic.strip_horn p
          in Logic.list_implies (map rename_asm As, C) end;
        val cp' = cterm_fun rename_prop (Thm.cprop_of thm);
        val thm' = Thm.equal_elim (Thm.reflexive cp') thm;
      in Thm.put_name_tags (Thm.get_name_tags thm) thm' end
  | rename _ thm = thm;

fun find_inductT ctxt insts =
  fold_rev multiply (insts |> List.mapPartial (fn [] => NONE | ts => List.last ts)
    |> map (InductAttrib.find_inductT ctxt o fastype_of)) [[]]
  |> map join_rules |> List.concat |> map (rename insts);

fun find_inductS ctxt (fact :: _) = InductAttrib.find_inductS ctxt fact
  | find_inductS _ _ = [];

in


(* main tactic *)

fun induct_tac ctxt is_open insts opt_rule fixes facts =
  let
    val thy = ProofContext.theory_of ctxt;
    val cert = Thm.cterm_of thy;

    fun rule_versions r = Seq.cons (r, Seq.filter (not o curry Thm.eq_thm r)
        (Seq.make (fn () => SOME (localize r, Seq.empty))))
      |> Seq.map (rpair (RuleCases.get r));

    val inst_rule = apfst (fn r =>
      if null insts then r
      else (align_right "Rule has fewer conclusions than arguments given"
          (Data.dest_concls (Thm.concl_of r)) insts
        |> (List.concat o map (prep_inst align_right cert (atomize_term thy)))
        |> Drule.cterm_instantiate) r);

    val ruleq =
      (case opt_rule of
        NONE =>
          let val rules = find_inductS ctxt facts @ find_inductT ctxt insts in
            conditional (null rules) (fn () => error "Unable to figure out induct rule");
            Method.trace ctxt rules;
            rules |> Seq.of_list |> Seq.maps rule_versions |> Seq.maps (Seq.try inst_rule)
          end
      | SOME r => r |> rule_versions |> Seq.map inst_rule);

    fun prep_rule (th, (cases, n)) =
      Seq.map (rpair (cases, n - length facts, Library.drop (n, facts)))
        (Method.multi_resolves (Library.take (n, facts)) [th]);
    val tac = resolveq_cases_tac' ctxt RuleCases.make is_open (Seq.maps prep_rule ruleq) fixes;
  in tac THEN_ALL_NEW_CASES rulify_tac end;

val induct_meth = Method.RAW_METHOD_CASES o ((Seq.DETERM o HEADGOAL) oo
  (fn (ctxt, (is_open, (insts, (opt_rule, fixes)))) =>
    induct_tac ctxt is_open insts opt_rule fixes));

end;



(** concrete syntax **)

val openN = "open";
val ruleN = "rule";
val ofN = "of";
val fixingN = "fixing";

local

fun named_rule k arg get =
  Scan.lift (Args.$$$ k -- Args.colon) |-- arg :-- (fn name => Scan.peek (fn ctxt =>
    (case get ctxt name of SOME x => Scan.succeed x
    | NONE => error ("No rule for " ^ k ^ " " ^ quote name)))) >> #2;

fun rule get_type get_set =
  named_rule InductAttrib.typeN Args.local_tyname get_type ||
  named_rule InductAttrib.setN Args.local_const get_set ||
  Scan.lift (Args.$$$ ruleN -- Args.colon) |-- Attrib.local_thm;

val cases_rule = rule InductAttrib.lookup_casesT InductAttrib.lookup_casesS;
val induct_rule = rule InductAttrib.lookup_inductT InductAttrib.lookup_inductS;

val more_args =
  (Args.$$$ InductAttrib.typeN || Args.$$$ InductAttrib.setN || Args.$$$ ruleN ||
    Args.$$$ ofN || Args.$$$ fixingN) -- Args.colon;

val term = Scan.unless (Scan.lift more_args) Args.local_term;
val term_dummy = Scan.unless (Scan.lift more_args)
  (Scan.lift (Args.$$$ "_") >> K NONE || Args.local_term >> SOME);

val instss = Args.and_list (Scan.repeat term_dummy);

val free = Scan.state -- Args.local_term >> (fn (_, Free v) => v | (ctxt, t) =>
  error ("Bad free variable: " ^ ProofContext.string_of_term ctxt t));
val fixing = Scan.optional (Scan.lift (Args.$$$ fixingN -- Args.colon) |-- Scan.repeat1 free) [];

in

val cases_args =
  Method.syntax (Args.mode openN -- (instss -- Scan.option cases_rule));
val induct_args =
  Method.syntax (Args.mode openN -- (instss -- (Scan.option induct_rule -- fixing)));

end;



(** theory setup **)

val setup =
  [Method.add_methods
    [(InductAttrib.casesN, cases_meth oo cases_args, "case analysis on types or sets"),
     (InductAttrib.inductN, induct_meth oo induct_args, "induction on types or sets")]];

end;