author blanchet
Mon, 21 May 2012 10:39:32 +0200
changeset 47946 33afcfad3f8d
parent 46950 d0181abdbdac
child 48891 c0eafbd55de3
permissions -rw-r--r--
add an experimental "aggressive" mode to Sledgehammer, to experiment with more complete translations of higher-order features without breaking "metis"

(*  Title:      HOL/Metis.thy
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
    Author:     Jasmin Blanchette, TU Muenchen

header {* Metis Proof Method *}

theory Metis
imports ATP
keywords "try0" :: diag
uses "~~/src/Tools/Metis/metis.ML"

subsection {* Literal selection and lambda-lifting helpers *}

definition select :: "'a \<Rightarrow> 'a" where
[no_atp]: "select = (\<lambda>x. x)"

lemma not_atomize: "(\<not> A \<Longrightarrow> False) \<equiv> Trueprop A"
by (cut_tac atomize_not [of "\<not> A"]) simp

lemma atomize_not_select: "(A \<Longrightarrow> select False) \<equiv> Trueprop (\<not> A)"
unfolding select_def by (rule atomize_not)

lemma not_atomize_select: "(\<not> A \<Longrightarrow> select False) \<equiv> Trueprop A"
unfolding select_def by (rule not_atomize)

lemma select_FalseI: "False \<Longrightarrow> select False" by simp

definition lambda :: "'a \<Rightarrow> 'a" where
[no_atp]: "lambda = (\<lambda>x. x)"

lemma eq_lambdaI: "x \<equiv> y \<Longrightarrow> x \<equiv> lambda y"
unfolding lambda_def by assumption

subsection {* Metis package *}

use "Tools/Metis/metis_generate.ML"
use "Tools/Metis/metis_reconstruct.ML"
use "Tools/Metis/metis_tactic.ML"

setup {* Metis_Tactic.setup *}

hide_const (open) select fFalse fTrue fNot fComp fconj fdisj fimplies fequal
hide_fact (open) select_def not_atomize atomize_not_select not_atomize_select
    select_FalseI fFalse_def fTrue_def fNot_def fconj_def fdisj_def fimplies_def
    fequal_def fTrue_ne_fFalse fNot_table fconj_table fdisj_table fimplies_table
    fequal_table fAll_table fEx_table fNot_law fComp_law fconj_laws fdisj_laws
    fimplies_laws fequal_laws fAll_law fEx_law lambda_def eq_lambdaI

subsection {* Try0 *}

use "Tools/try0.ML"

setup {* Try0.setup *}