src/HOLCF/explicit_domains/Dlist.thy
author oheimb
Fri, 31 Jan 1997 16:51:58 +0100
changeset 2569 3a8604f408c9
parent 1479 21eb5e156d91
permissions -rw-r--r--
moved Coind.*, Dagstuhl.*, Focus_ex.* to HOLCF/ex, marked the remaining files as obsolete (new versions in HOLCF/ex)

(*  Title:      HOLCF/Dlist.thy

    Author:     Franz Regensburger
    ID:         $ $
    Copyright   1994 Technische Universitaet Muenchen

NOT SUPPORTED ANY MORE. USE HOLCF/ex/Dlist.thy INSTEAD.

Theory for finite lists  'a dlist = one ++ ('a ** 'a dlist)

The type is axiomatized as the least solution of the domain equation above.
The functor term that specifies the domain equation is: 

  FT = <++,K_{one},<**,K_{'a},I>>

For details see chapter 5 of:

[Franz Regensburger] HOLCF: Eine konservative Erweiterung von HOL um LCF,
                     Dissertation, Technische Universit"at M"unchen, 1994


*)

Dlist = Stream2 +

types dlist 1

(* ----------------------------------------------------------------------- *)
(* arity axiom is validated by semantic reasoning                          *)
(* partial ordering is implicit in the isomorphism axioms and their cont.  *)

arities dlist::(pcpo)pcpo

consts

(* ----------------------------------------------------------------------- *)
(* essential constants                                                     *)

dlist_rep       :: "('a dlist) -> (one ++ 'a ** 'a dlist)"
dlist_abs       :: "(one ++ 'a ** 'a dlist) -> ('a dlist)"

(* ----------------------------------------------------------------------- *)
(* abstract constants and auxiliary constants                              *)

dlist_copy      :: "('a dlist -> 'a dlist) ->'a dlist -> 'a dlist"

dnil            :: "'a dlist"
dcons           :: "'a -> 'a dlist -> 'a dlist"
dlist_when      :: " 'b -> ('a -> 'a dlist -> 'b) -> 'a dlist -> 'b"
is_dnil         :: "'a dlist -> tr"
is_dcons        :: "'a dlist -> tr"
dhd             :: "'a dlist -> 'a"
dtl             :: "'a dlist -> 'a dlist"
dlist_take      :: "nat => 'a dlist -> 'a dlist"
dlist_finite    :: "'a dlist => bool"
dlist_bisim     :: "('a dlist => 'a dlist => bool) => bool"

rules

(* ----------------------------------------------------------------------- *)
(* axiomatization of recursive type 'a dlist                               *)
(* ----------------------------------------------------------------------- *)
(* ('a dlist,dlist_abs) is the initial F-algebra where                     *)
(* F is the locally continuous functor determined by functor term FT.      *)
(* domain equation: 'a dlist = one ++ ('a ** 'a dlist)                     *)
(* functor term:    FT = <++,K_{one},<**,K_{'a},I>>                        *)
(* ----------------------------------------------------------------------- *)
(* dlist_abs is an isomorphism with inverse dlist_rep                      *)
(* identity is the least endomorphism on 'a dlist                          *)

dlist_abs_iso   "dlist_rep`(dlist_abs`x) = x"
dlist_rep_iso   "dlist_abs`(dlist_rep`x) = x"
dlist_copy_def  "dlist_copy == (LAM f. dlist_abs oo \
\               (sswhen`sinl`(sinr oo (ssplit`(LAM x y. (|x,f`y|) ))))\
\                                oo dlist_rep)"
dlist_reach     "(fix`dlist_copy)`x=x"


defs
(* ----------------------------------------------------------------------- *)
(* properties of additional constants                                      *)
(* ----------------------------------------------------------------------- *)
(* constructors                                                            *)

dnil_def        "dnil  == dlist_abs`(sinl`one)"
dcons_def       "dcons == (LAM x l. dlist_abs`(sinr`(|x,l|) ))"

(* ----------------------------------------------------------------------- *)
(* discriminator functional                                                *)

dlist_when_def 
"dlist_when == (LAM f1 f2 l.\
\   sswhen`(LAM x.f1) `(ssplit`(LAM x l.f2`x`l)) `(dlist_rep`l))"

(* ----------------------------------------------------------------------- *)
(* discriminators and selectors                                            *)

is_dnil_def     "is_dnil  == dlist_when`TT`(LAM x l.FF)"
is_dcons_def    "is_dcons == dlist_when`FF`(LAM x l.TT)"
dhd_def         "dhd == dlist_when`UU`(LAM x l.x)"
dtl_def         "dtl == dlist_when`UU`(LAM x l.l)"

(* ----------------------------------------------------------------------- *)
(* the taker for dlists                                                   *)

dlist_take_def "dlist_take == (%n.iterate n dlist_copy UU)"

(* ----------------------------------------------------------------------- *)

dlist_finite_def        "dlist_finite == (%s.? n.dlist_take n`s=s)"

(* ----------------------------------------------------------------------- *)
(* definition of bisimulation is determined by domain equation             *)
(* simplification and rewriting for abstract constants yields def below    *)

dlist_bisim_def "dlist_bisim ==
 ( %R.!l1 l2.
        R l1 l2 -->
  ((l1=UU & l2=UU) |
   (l1=dnil & l2=dnil) |
   (? x l11 l21. x~=UU & l11~=UU & l21~=UU & 
               l1=dcons`x`l11 & l2 = dcons`x`l21 & R l11 l21)))"

end