author huffman
Fri, 03 Aug 2012 15:38:44 +0200
changeset 48659 40a87b4dac19
parent 42151 4da4fc77664b
child 51717 9e7d1c139569
permissions -rw-r--r--
declare trE and tr_induct as default cases and induct rules for type tr

(*  Title:      HOL/HOLCF/Tr.thy
    Author:     Franz Regensburger

header {* The type of lifted booleans *}

theory Tr
imports Lift

subsection {* Type definition and constructors *}

  tr = "bool lift"

  (type) "tr" <= (type) "bool lift"

  TT :: "tr" where
  "TT = Def True"

  FF :: "tr" where
  "FF = Def False"

text {* Exhaustion and Elimination for type @{typ tr} *}

lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF"
unfolding FF_def TT_def by (induct t) auto

lemma trE [case_names bottom TT FF, cases type: tr]:
  "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
unfolding FF_def TT_def by (induct p) auto

lemma tr_induct [case_names bottom TT FF, induct type: tr]:
  "\<lbrakk>P \<bottom>; P TT; P FF\<rbrakk> \<Longrightarrow> P x"
by (cases x) simp_all

text {* distinctness for type @{typ tr} *}

lemma dist_below_tr [simp]:
  "TT \<notsqsubseteq> \<bottom>" "FF \<notsqsubseteq> \<bottom>" "TT \<notsqsubseteq> FF" "FF \<notsqsubseteq> TT"
unfolding TT_def FF_def by simp_all

lemma dist_eq_tr [simp]:
  "TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT"
unfolding TT_def FF_def by simp_all

lemma TT_below_iff [simp]: "TT \<sqsubseteq> x \<longleftrightarrow> x = TT"
by (induct x) simp_all

lemma FF_below_iff [simp]: "FF \<sqsubseteq> x \<longleftrightarrow> x = FF"
by (induct x) simp_all

lemma not_below_TT_iff [simp]: "x \<notsqsubseteq> TT \<longleftrightarrow> x = FF"
by (induct x) simp_all

lemma not_below_FF_iff [simp]: "x \<notsqsubseteq> FF \<longleftrightarrow> x = TT"
by (induct x) simp_all

subsection {* Case analysis *}

default_sort pcpo

definition tr_case :: "'a \<rightarrow> 'a \<rightarrow> tr \<rightarrow> 'a" where
  "tr_case = (\<Lambda> t e (Def b). if b then t else e)"

  cifte_syn :: "[tr, 'c, 'c] \<Rightarrow> 'c"  ("(If (_)/ then (_)/ else (_))" [0, 0, 60] 60)
  "If b then e1 else e2 == tr_case\<cdot>e1\<cdot>e2\<cdot>b"

  "\<Lambda> (XCONST TT). t" == "CONST tr_case\<cdot>t\<cdot>\<bottom>"
  "\<Lambda> (XCONST FF). t" == "CONST tr_case\<cdot>\<bottom>\<cdot>t"

lemma ifte_thms [simp]:
  "If \<bottom> then e1 else e2 = \<bottom>"
  "If FF then e1 else e2 = e2"
  "If TT then e1 else e2 = e1"
by (simp_all add: tr_case_def TT_def FF_def)

subsection {* Boolean connectives *}

  trand :: "tr \<rightarrow> tr \<rightarrow> tr" where
  andalso_def: "trand = (\<Lambda> x y. If x then y else FF)"
  andalso_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ andalso _" [36,35] 35)  where
  "x andalso y == trand\<cdot>x\<cdot>y"

  tror :: "tr \<rightarrow> tr \<rightarrow> tr" where
  orelse_def: "tror = (\<Lambda> x y. If x then TT else y)"
  orelse_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ orelse _"  [31,30] 30)  where
  "x orelse y == tror\<cdot>x\<cdot>y"

  neg :: "tr \<rightarrow> tr" where
  "neg = flift2 Not"

  If2 :: "[tr, 'c, 'c] \<Rightarrow> 'c" where
  "If2 Q x y = (If Q then x else y)"

text {* tactic for tr-thms with case split *}

lemmas tr_defs = andalso_def orelse_def neg_def tr_case_def TT_def FF_def

text {* lemmas about andalso, orelse, neg and if *}

lemma andalso_thms [simp]:
  "(TT andalso y) = y"
  "(FF andalso y) = FF"
  "(\<bottom> andalso y) = \<bottom>"
  "(y andalso TT) = y"
  "(y andalso y) = y"
apply (unfold andalso_def, simp_all)
apply (cases y, simp_all)
apply (cases y, simp_all)

lemma orelse_thms [simp]:
  "(TT orelse y) = TT"
  "(FF orelse y) = y"
  "(\<bottom> orelse y) = \<bottom>"
  "(y orelse FF) = y"
  "(y orelse y) = y"
apply (unfold orelse_def, simp_all)
apply (cases y, simp_all)
apply (cases y, simp_all)

lemma neg_thms [simp]:
  "neg\<cdot>TT = FF"
  "neg\<cdot>FF = TT"
  "neg\<cdot>\<bottom> = \<bottom>"
by (simp_all add: neg_def TT_def FF_def)

text {* split-tac for If via If2 because the constant has to be a constant *}

lemma split_If2:
  "P (If2 Q x y) = ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))"
apply (unfold If2_def)
apply (cases Q)
apply (simp_all)

ML {*
val split_If_tac =
  simp_tac (HOL_basic_ss addsimps [@{thm If2_def} RS sym])
    THEN' (split_tac [@{thm split_If2}])

subsection "Rewriting of HOLCF operations to HOL functions"

lemma andalso_or:
  "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) = FF) = (t = FF \<or> s = FF)"
apply (cases t)
apply simp_all

lemma andalso_and:
  "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) = (t \<noteq> FF \<and> s \<noteq> FF)"
apply (cases t)
apply simp_all

lemma Def_bool1 [simp]: "(Def x \<noteq> FF) = x"
by (simp add: FF_def)

lemma Def_bool2 [simp]: "(Def x = FF) = (\<not> x)"
by (simp add: FF_def)

lemma Def_bool3 [simp]: "(Def x = TT) = x"
by (simp add: TT_def)

lemma Def_bool4 [simp]: "(Def x \<noteq> TT) = (\<not> x)"
by (simp add: TT_def)

lemma If_and_if:
  "(If Def P then A else B) = (if P then A else B)"
apply (cases "Def P")
apply (auto simp add: TT_def[symmetric] FF_def[symmetric])

subsection {* Compactness *}

lemma compact_TT: "compact TT"
by (rule compact_chfin)

lemma compact_FF: "compact FF"
by (rule compact_chfin)