summary |
shortlog |
changelog |
graph |
tags |
bookmarks |
branches |
files |
changeset |
file |
latest |
revisions |
annotate |
diff |
comparison |
raw |
help

src/FOLP/ex/Foundation.thy

author | wenzelm |

Tue, 06 Oct 2015 15:14:28 +0200 | |

changeset 61337 | 4645502c3c64 |

parent 60770 | 240563fbf41d |

permissions | -rw-r--r-- |

fewer aliases for toplevel theorem statements;

(* Title: FOLP/ex/Foundation.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1991 University of Cambridge *) section "Intuitionistic FOL: Examples from The Foundation of a Generic Theorem Prover" theory Foundation imports IFOLP begin schematic_goal "?p : A&B --> (C-->A&C)" apply (rule impI) apply (rule impI) apply (rule conjI) prefer 2 apply assumption apply (rule conjunct1) apply assumption done text \<open>A form of conj-elimination\<close> schematic_goal assumes "p : A & B" and "!!x y. x : A ==> y : B ==> f(x, y) : C" shows "?p : C" apply (rule assms) apply (rule conjunct1) apply (rule assms) apply (rule conjunct2) apply (rule assms) done schematic_goal assumes "!!A x. x : ~ ~A ==> cla(x) : A" shows "?p : B | ~B" apply (rule assms) apply (rule notI) apply (rule_tac P = "~B" in notE) apply (rule_tac [2] notI) apply (rule_tac [2] P = "B | ~B" in notE) prefer 2 apply assumption apply (rule_tac [2] disjI1) prefer 2 apply assumption apply (rule notI) apply (rule_tac P = "B | ~B" in notE) apply assumption apply (rule disjI2) apply assumption done schematic_goal assumes "!!A x. x : ~ ~A ==> cla(x) : A" shows "?p : B | ~B" apply (rule assms) apply (rule notI) apply (rule notE) apply (rule_tac [2] notI) apply (erule_tac [2] notE) apply (erule_tac [2] disjI1) apply (rule notI) apply (erule notE) apply (erule disjI2) done schematic_goal assumes "p : A | ~A" and "q : ~ ~A" shows "?p : A" apply (rule disjE) apply (rule assms) apply assumption apply (rule FalseE) apply (rule_tac P = "~A" in notE) apply (rule assms) apply assumption done subsection "Examples with quantifiers" schematic_goal assumes "p : ALL z. G(z)" shows "?p : ALL z. G(z)|H(z)" apply (rule allI) apply (rule disjI1) apply (rule assms [THEN spec]) done schematic_goal "?p : ALL x. EX y. x=y" apply (rule allI) apply (rule exI) apply (rule refl) done schematic_goal "?p : EX y. ALL x. x=y" apply (rule exI) apply (rule allI) apply (rule refl)? oops text \<open>Parallel lifting example.\<close> schematic_goal "?p : EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)" apply (rule exI allI) apply (rule exI allI) apply (rule exI allI) apply (rule exI allI) apply (rule exI allI) oops schematic_goal assumes "p : (EX z. F(z)) & B" shows "?p : EX z. F(z) & B" apply (rule conjE) apply (rule assms) apply (rule exE) apply assumption apply (rule exI) apply (rule conjI) apply assumption apply assumption done text \<open>A bigger demonstration of quantifiers -- not in the paper.\<close> schematic_goal "?p : (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))" apply (rule impI) apply (rule allI) apply (rule exE, assumption) apply (rule exI) apply (rule allE, assumption) apply assumption done end