(* Title: Pure/General/rat.ML
ID: $Id$
Author: Tobias Nipkow, TU Muenchen
Canonical implementation of exact rational numbers.
*)
signature RAT =
sig
type rat
exception DIVZERO
val zero: rat
val one: rat
val two: rat
val rat_of_int: Intt.int -> rat
val rat_of_quotient: Intt.int * Intt.int -> rat
val quotient_of_rat: rat -> Intt.int * Intt.int
val string_of_rat: rat -> string
val eq: rat * rat -> bool
val cmp: rat * rat -> order
val le: rat -> rat -> bool
val lt: rat -> rat -> bool
val cmp_zero: rat -> order
val add: rat -> rat -> rat
val mult: rat -> rat -> rat
val neg: rat -> rat
val inv: rat -> rat
val roundup: rat -> rat
val rounddown: rat -> rat
end;
structure Rat : RAT =
struct
datatype rat = Rat of bool * Intt.int * Intt.int;
exception DIVZERO;
val zero = Rat (true, Intt.int 0, Intt.int 1);
val one = Rat (true, Intt.int 1, Intt.int 1);
val two = Rat (true, Intt.int 2, Intt.int 1);
fun rat_of_int i =
if i < Intt.int 0
then Rat (false, ~i, Intt.int 1)
else Rat (true, i, Intt.int 1);
fun norm (a, p, q) =
if p = Intt.int 0 then Rat (true, Intt.int 0, Intt.int 1)
else
let
val absp = abs p
val m = gcd (absp, q)
in Rat(a = (Intt.int 0 <= p), absp div m, q div m) end;
fun common (p1, q1, p2, q2) =
let val q' = lcm (q1, q2)
in (p1 * (q' div q1), p2 * (q' div q2), q') end
fun rat_of_quotient (p, q) =
if q = Intt.int 0 then raise DIVZERO
else norm (Intt.int 0 <= q, p, abs q);
fun quotient_of_rat (Rat (a, p, q)) = (if a then p else ~p, q);
fun string_of_rat r =
let val (p, q) = quotient_of_rat r
in Intt.string_of_int p ^ "/" ^ Intt.string_of_int q end;
fun eq (Rat (false, _, _), Rat (true, _, _)) = false
| eq (Rat (true, _, _), Rat (false, _, _)) = false
| eq (Rat (_, p1, q1), Rat (_, p2, q2)) = p1 = p2 andalso q1 = q2
fun cmp (Rat (false, _, _), Rat (true, _, _)) = LESS
| cmp (Rat (true, _, _), Rat (false, _, _)) = GREATER
| cmp (Rat (a, p1, q1), Rat (_, p2, q2)) =
let val (r1, r2, _) = common (p1, q1, p2, q2)
in if a then Intt.cmp (r1, r2) else Intt.cmp (r2, r1) end;
fun le a b = let val order = cmp (a, b) in order = LESS orelse order = EQUAL end;
fun lt a b = cmp (a, b) = LESS;
fun cmp_zero (Rat (false, _, _)) = LESS
| cmp_zero (Rat (_, 0, _)) = EQUAL
| cmp_zero (Rat (_, _, _)) = GREATER;
fun add (Rat (a1, p1, q1)) (Rat(a2, p2, q2)) =
let
val (r1, r2, den) = common (p1, q1, p2, q2)
val num = (if a1 then r1 else ~r1) + (if a2 then r2 else ~r2)
in norm (true, num, den) end;
fun mult (Rat (a1, p1, q1)) (Rat (a2, p2, q2)) =
norm (a1=a2, p1*p2, q1*q2);
fun neg (r as Rat (b, p, q)) =
if p = Intt.int 0 then r
else Rat (not b, p, q);
fun inv (Rat (a, p, q)) =
if p = Intt.int 0 then raise DIVZERO
else Rat (a, q, p);
fun roundup (r as Rat (a, p, q)) =
if q = Intt.int 1 then r
else
let
fun round true q = Rat (true, q + Intt.int 1, Intt.int 1)
| round false q =
if q = Intt.int 0
then Rat (true, Intt.int 0, Intt.int 1)
else Rat (false, q, Intt.int 1);
in round a (p div q) end;
fun rounddown (r as Rat (a, p, q)) =
if q = Intt.int 1 then r
else
let
fun round true q = Rat (true, q, Intt.int 1)
| round false q = Rat (false, q + Intt.int 1, Intt.int 1)
in round a (p div q) end;
end;
infix 5 +/;
infix 5 -/;
infix 7 */;
infix 7 //;
infix 4 =/ </ <=/ >/ >=/ <>/;
fun a +/ b = Rat.add a b;
fun a -/ b = a +/ Rat.neg b;
fun a */ b = Rat.mult a b;
fun a // b = a */ Rat.inv b;
fun a =/ b = Rat.eq (a,b);
fun a </ b = Rat.lt a b;
fun a <=/ b = Rat.le a b;
fun a >/ b = b </ a;
fun a >=/ b = b <=/ a;
fun a <>/ b = not (a =/ b);