src/HOL/Relation_Power.thy
author wenzelm
Sun, 07 Jan 2001 21:37:40 +0100
changeset 10819 4e056473ae30
parent 10213 01c2744a3786
child 11305 2ce86fccc95b
permissions -rw-r--r--
do not AutoBind.drop_judgment;

(*  Title:      HOL/Relation_Power.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1996  TU Muenchen

R^n = R O ... O R, the n-fold composition of R
*)

Relation_Power = Nat +

instance
  set :: (term) {power}   (* only ('a * 'a) set should be in power! *)

primrec (relpow)
  "R^0 = Id"
  "R^(Suc n) = R O (R^n)"

end