(* Title: HOLCF/IMP/Denotational.ML
ID: $Id$
Author: Tobias Nipkow & Robert Sandner
Copyright 1996 TUM
Equivalence of Denotational Semantics in HOLCF and Evaluation Semantics in HOL
*)
goalw thy [dlift_def] "dlift f`(Def x) = f`(Discr x)";
by(Simp_tac 1);
qed "dlift_Def";
Addsimps [dlift_Def];
goalw thy [dlift_def] "cont(%f. dlift f)";
by(Simp_tac 1);
qed "cont_dlift";
AddIffs [cont_dlift];
goalw thy [dlift_def]
"(dlift f`l = Def y) = (? x. l = Def x & f`(Discr x) = Def y)";
by(simp_tac (!simpset setloop (split_tac[expand_lift_case])) 1);
qed "dlift_is_Def";
Addsimps [dlift_is_Def];
goal thy "!!c. <c,s> -c-> t ==> D c`(Discr s) = (Def t)";
be evalc.induct 1;
by (ALLGOALS Asm_simp_tac);
by (ALLGOALS (rtac (fix_eq RS ssubst) THEN' Asm_full_simp_tac));
qed_spec_mp "eval_implies_D";
goal thy "!s t. D c`(Discr s) = (Def t) --> <c,s> -c-> t";
by (com.induct_tac "c" 1);
by (fast_tac ((HOL_cs addSIs evalc.intrs) addss !simpset) 1);
by (fast_tac ((HOL_cs addSIs evalc.intrs) addss !simpset) 1);
by (fast_tac ((HOL_cs addSIs evalc.intrs) addss !simpset) 1);
by (simp_tac (!simpset setloop (split_tac[expand_if])) 1);
by (fast_tac ((HOL_cs addIs evalc.intrs) addss !simpset) 1);
by (Simp_tac 1);
br fix_ind 1;
by(fast_tac (HOL_cs addSIs (adm_lemmas@[adm_chfindom,ax_flat_lift])) 1);
by (Simp_tac 1);
by (simp_tac (!simpset setloop (split_tac[expand_if])) 1);
by (safe_tac HOL_cs);
by (fast_tac (HOL_cs addIs evalc.intrs) 1);
by (fast_tac ((HOL_cs addSIs evalc.intrs) addss !simpset) 1);
qed_spec_mp "D_implies_eval";
goal thy "(D c`(Discr s) = (Def t)) = (<c,s> -c-> t)";
by (fast_tac (HOL_cs addSEs [D_implies_eval,eval_implies_D]) 1);
qed "D_is_eval";