src/HOL/Real/RealOrd.thy
author paulson
Fri, 28 Nov 2003 12:09:37 +0100
changeset 14269 502a7c95de73
parent 14268 5cf13e80be0e
child 14270 342451d763f9
permissions -rw-r--r--
conversion of some Real theories to Isar scripts

(*  Title:	 Real/RealOrd.thy
    ID: 	 $Id$
    Author:      Jacques D. Fleuriot and Lawrence C. Paulson
    Copyright:   1998  University of Cambridge
*)

header{*The Reals Form an Ordered Field, etc.*}

theory RealOrd = RealDef:

defs (overloaded)
  real_abs_def:  "abs (r::real) == (if 0 \<le> r then r else -r)"



subsection{* The Simproc @{text abel_cancel}*}

(*Deletion of other terms in the formula, seeking the -x at the front of z*)
lemma real_add_cancel_21: "((x::real) + (y + z) = y + u) = ((x + z) = u)"
apply (subst real_add_left_commute)
apply (rule real_add_left_cancel)
done

(*A further rule to deal with the case that
  everything gets cancelled on the right.*)
lemma real_add_cancel_end: "((x::real) + (y + z) = y) = (x = -z)"
apply (subst real_add_left_commute)
apply (rule_tac t = y in real_add_zero_right [THEN subst], subst real_add_left_cancel)
apply (simp add: real_eq_diff_eq [symmetric])
done


ML
{*
val real_add_cancel_21 = thm "real_add_cancel_21";
val real_add_cancel_end = thm "real_add_cancel_end";

structure Real_Cancel_Data =
struct
  val ss		= HOL_ss
  val eq_reflection	= eq_reflection

  val sg_ref		= Sign.self_ref (Theory.sign_of (the_context ()))
  val T			= HOLogic.realT
  val zero		= Const ("0", T)
  val restrict_to_left  = restrict_to_left
  val add_cancel_21	= real_add_cancel_21
  val add_cancel_end	= real_add_cancel_end
  val add_left_cancel	= real_add_left_cancel
  val add_assoc		= real_add_assoc
  val add_commute	= real_add_commute
  val add_left_commute	= real_add_left_commute
  val add_0		= real_add_zero_left
  val add_0_right	= real_add_zero_right

  val eq_diff_eq	= real_eq_diff_eq
  val eqI_rules		= [real_less_eqI, real_eq_eqI, real_le_eqI]
  fun dest_eqI th = 
      #1 (HOLogic.dest_bin "op =" HOLogic.boolT 
	      (HOLogic.dest_Trueprop (concl_of th)))

  val diff_def		= real_diff_def
  val minus_add_distrib	= real_minus_add_distrib
  val minus_minus	= real_minus_minus
  val minus_0		= real_minus_zero
  val add_inverses	= [real_add_minus, real_add_minus_left]
  val cancel_simps	= [real_add_minus_cancel, real_minus_add_cancel]
end;

structure Real_Cancel = Abel_Cancel (Real_Cancel_Data);

Addsimprocs [Real_Cancel.sum_conv, Real_Cancel.rel_conv];
*}

lemma real_minus_diff_eq [simp]: "- (z - y) = y - (z::real)"
by simp


subsection{*Theorems About the Ordering*}

lemma real_gt_zero_preal_Ex: "(0 < x) = (\<exists>y. x = real_of_preal y)"
apply (auto simp add: real_of_preal_zero_less)
apply (cut_tac x = x in real_of_preal_trichotomy)
apply (blast elim!: real_less_irrefl real_of_preal_not_minus_gt_zero [THEN notE])
done

lemma real_gt_preal_preal_Ex: "real_of_preal z < x ==> \<exists>y. x = real_of_preal y"
by (blast dest!: real_of_preal_zero_less [THEN real_less_trans]
             intro: real_gt_zero_preal_Ex [THEN iffD1])

lemma real_ge_preal_preal_Ex: "real_of_preal z \<le> x ==> \<exists>y. x = real_of_preal y"
by (blast dest: order_le_imp_less_or_eq real_gt_preal_preal_Ex)

lemma real_less_all_preal: "y \<le> 0 ==> \<forall>x. y < real_of_preal x"
by (auto elim: order_le_imp_less_or_eq [THEN disjE] 
            intro: real_of_preal_zero_less [THEN [2] real_less_trans] 
            simp add: real_of_preal_zero_less)

lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
by (blast intro!: real_less_all_preal real_leI)

lemma real_of_preal_le_iff: "(real_of_preal m1 \<le> real_of_preal m2) = (m1 \<le> m2)"
apply (auto intro!: preal_leI simp add: real_less_le_iff [symmetric])
apply (drule order_le_less_trans, assumption)
apply (erule preal_less_irrefl)
done

subsection{*Monotonicity of Addition*}

lemma real_add_right_cancel_less [simp]: "(v+z < w+z) = (v < (w::real))"
by simp

lemma real_add_left_cancel_less [simp]: "(z+v < z+w) = (v < (w::real))"
by simp

lemma real_add_right_cancel_le [simp]: "(v+z \<le> w+z) = (v \<le> (w::real))"
by simp

lemma real_add_left_cancel_le [simp]: "(z+v \<le> z+w) = (v \<le> (w::real))"
by simp

lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
apply (auto simp add: real_gt_zero_preal_Ex)
apply (rule_tac x = "y*ya" in exI)
apply (simp (no_asm_use) add: real_of_preal_mult)
done

lemma real_mult_less_mono2: "[| (0::real) < z; x < y |] ==> z * x < z * y"
apply (rule real_sum_gt_zero_less)
apply (drule real_less_sum_gt_zero [of x y])
apply (drule real_mult_order, assumption)
apply (simp add: real_add_mult_distrib2)
done


subsection{*The Reals Form an Ordered Field*}

instance real :: inverse ..

instance real :: ordered_field
proof
  fix x y z :: real
  show "(x + y) + z = x + (y + z)" by (rule real_add_assoc)
  show "x + y = y + x" by (rule real_add_commute)
  show "0 + x = x" by simp
  show "- x + x = 0" by simp
  show "x - y = x + (-y)" by (simp add: real_diff_def)
  show "(x * y) * z = x * (y * z)" by (rule real_mult_assoc)
  show "x * y = y * x" by (rule real_mult_commute)
  show "1 * x = x" by simp
  show "(x + y) * z = x * z + y * z" by (simp add: real_add_mult_distrib)
  show "0 \<noteq> (1::real)" by (rule real_zero_not_eq_one)
  show "x \<le> y ==> z + x \<le> z + y" by simp
  show "x < y ==> 0 < z ==> z * x < z * y" by (simp add: real_mult_less_mono2)
  show "\<bar>x\<bar> = (if x < 0 then -x else x)"
    by (auto dest: order_le_less_trans simp add: real_abs_def linorder_not_le)
  show "x \<noteq> 0 ==> inverse x * x = 1" by simp
  show "y \<noteq> 0 ==> x / y = x * inverse y" by (simp add: real_divide_def)
qed

(*"v\<le>w ==> v+z \<le> w+z"*)
lemmas real_add_less_mono1 = real_add_right_cancel_less [THEN iffD2, standard]

(*"v\<le>w ==> v+z \<le> w+z"*)
lemmas real_add_le_mono1 = real_add_right_cancel_le [THEN iffD2, standard]

lemma real_add_less_le_mono: "!!z z'::real. [| w'<w; z'\<le>z |] ==> w' + z' < w + z"
by (erule real_add_less_mono1 [THEN order_less_le_trans], simp)

lemma real_add_le_less_mono: "!!z z'::real. [| w'\<le>w; z'<z |] ==> w' + z' < w + z"
by (erule real_add_le_mono1 [THEN order_le_less_trans], simp)

lemma real_add_less_mono2: "!!(A::real). A < B ==> C + A < C + B"
by simp

lemma real_less_add_right_cancel: "!!(A::real). A + C < B + C ==> A < B"
apply simp
done

lemma real_less_add_left_cancel: "!!(A::real). C + A < C + B ==> A < B"
apply simp
done

lemma real_le_add_right_cancel: "!!(A::real). A + C \<le> B + C ==> A \<le> B"
apply simp
done

lemma real_le_add_left_cancel: "!!(A::real). C + A \<le> C + B ==> A \<le> B"
apply simp
done

lemma real_zero_less_one: "0 < (1::real)"
  by (rule Ring_and_Field.zero_less_one)

lemma real_add_less_mono: "[| R1 < S1; R2 < S2 |] ==> R1+R2 < S1+(S2::real)"
 by (rule Ring_and_Field.add_strict_mono)

lemma real_add_left_le_mono1: "!!(q1::real). q1 \<le> q2  ==> x + q1 \<le> x + q2"
by simp

lemma real_add_le_mono: "[|i\<le>j;  k\<le>l |] ==> i + k \<le> j + (l::real)"
 by (rule Ring_and_Field.add_mono)

lemma real_le_minus_iff: "(-s \<le> -r) = ((r::real) \<le> s)"
 by (rule Ring_and_Field.neg_le_iff_le)

lemma real_le_square [simp]: "(0::real) \<le> x*x"
 by (rule Ring_and_Field.zero_le_square)


subsection{*Division Lemmas*}

(** Inverse of zero!  Useful to simplify certain equations **)

lemma INVERSE_ZERO [simp]: "inverse 0 = (0::real)"
apply (unfold real_inverse_def)
apply (rule someI2)
apply (auto simp add: real_zero_not_eq_one)
done

lemma DIVISION_BY_ZERO [simp]: "a / (0::real) = 0"
by (simp add: real_divide_def INVERSE_ZERO)

lemma real_mult_left_cancel: "(c::real) ~= 0 ==> (c*a=c*b) = (a=b)"
apply auto
done

lemma real_mult_right_cancel: "(c::real) ~= 0 ==> (a*c=b*c) = (a=b)"
apply (auto ); 
done

lemma real_mult_left_cancel_ccontr: "c*a ~= c*b ==> a ~= b"
by auto

lemma real_mult_right_cancel_ccontr: "a*c ~= b*c ==> a ~= b"
by auto

lemma real_inverse_not_zero: "x ~= 0 ==> inverse(x::real) ~= 0"
  by (rule Ring_and_Field.nonzero_imp_inverse_nonzero)

lemma real_mult_not_zero: "[| x ~= 0; y ~= 0 |] ==> x * y ~= (0::real)"
apply (simp add: ); 
done

lemma real_inverse_inverse: "inverse(inverse (x::real)) = x"
apply (case_tac "x=0", simp)
apply (rule_tac c1 = "inverse x" in real_mult_right_cancel [THEN iffD1])
apply (erule real_inverse_not_zero)
apply (auto dest: real_inverse_not_zero)
done
declare real_inverse_inverse [simp]

lemma real_inverse_1: "inverse((1::real)) = (1::real)"
apply (unfold real_inverse_def)
apply (cut_tac real_zero_not_eq_one [THEN not_sym, THEN real_mult_inv_left_ex])
apply (auto simp add: real_zero_not_eq_one [THEN not_sym])
done
declare real_inverse_1 [simp]

lemma real_minus_inverse: "inverse(-x) = -inverse(x::real)"
apply (case_tac "x=0", simp)
apply (rule_tac c1 = "-x" in real_mult_right_cancel [THEN iffD1])
 prefer 2 apply (subst real_mult_inv_left, auto)
done

lemma real_inverse_distrib: "inverse(x*y) = inverse(x)*inverse(y::real)"
apply (case_tac "x=0", simp)
apply (case_tac "y=0", simp)
apply (frule_tac y = y in real_mult_not_zero, assumption)
apply (rule_tac c1 = x in real_mult_left_cancel [THEN iffD1])
apply (auto simp add: real_mult_assoc [symmetric])
apply (rule_tac c1 = y in real_mult_left_cancel [THEN iffD1])
apply (auto simp add: real_mult_left_commute)
apply (simp add: real_mult_assoc [symmetric])
done

lemma real_times_divide1_eq: "(x::real) * (y/z) = (x*y)/z"
by (simp add: real_divide_def real_mult_assoc)

lemma real_times_divide2_eq: "(y/z) * (x::real) = (y*x)/z"
by (simp add: real_divide_def real_mult_ac)

declare real_times_divide1_eq [simp] real_times_divide2_eq [simp]

lemma real_divide_divide1_eq: "(x::real) / (y/z) = (x*z)/y"
by (simp add: real_divide_def real_inverse_distrib real_mult_ac)

lemma real_divide_divide2_eq: "((x::real) / y) / z = x/(y*z)"
by (simp add: real_divide_def real_inverse_distrib real_mult_assoc)

declare real_divide_divide1_eq [simp] real_divide_divide2_eq [simp]

(** As with multiplication, pull minus signs OUT of the / operator **)

lemma real_minus_divide_eq: "(-x) / (y::real) = - (x/y)"
by (simp add: real_divide_def)
declare real_minus_divide_eq [simp]

lemma real_divide_minus_eq: "(x / -(y::real)) = - (x/y)"
by (simp add: real_divide_def real_minus_inverse)
declare real_divide_minus_eq [simp]

lemma real_add_divide_distrib: "(x+y)/(z::real) = x/z + y/z"
by (simp add: real_divide_def real_add_mult_distrib)

(*The following would e.g. convert (x+y)/2 to x/2 + y/2.  Sometimes that
  leads to cancellations in x or y, but is also prevents "multiplying out"
  the 2 in e.g. (x+y)/2 = 5.

Addsimps [inst "z" "number_of ?w" real_add_divide_distrib]
**)



subsection{*An Embedding of the Naturals in the Reals*}

lemma real_of_posnat_one: "real_of_posnat 0 = (1::real)"
by (simp add: real_of_posnat_def pnat_one_iff [symmetric]
              real_of_preal_def symmetric real_one_def)

lemma real_of_posnat_two: "real_of_posnat (Suc 0) = (1::real) + (1::real)"
by (simp add: real_of_posnat_def real_of_preal_def real_one_def pnat_two_eq
                 real_add
            prat_of_pnat_add [symmetric] preal_of_prat_add [symmetric]
            pnat_add_ac)

lemma real_of_posnat_add: 
     "real_of_posnat n1 + real_of_posnat n2 = real_of_posnat (n1 + n2) + (1::real)"
apply (unfold real_of_posnat_def)
apply (simp (no_asm_use) add: real_of_posnat_one [symmetric] real_of_posnat_def real_of_preal_add [symmetric] preal_of_prat_add [symmetric] prat_of_pnat_add [symmetric] pnat_of_nat_add)
done

lemma real_of_posnat_add_one: "real_of_posnat (n + 1) = real_of_posnat n + (1::real)"
apply (rule_tac x1 = " (1::real) " in real_add_right_cancel [THEN iffD1])
apply (rule real_of_posnat_add [THEN subst])
apply (simp (no_asm_use) add: real_of_posnat_two real_add_assoc)
done

lemma real_of_posnat_Suc: "real_of_posnat (Suc n) = real_of_posnat n + (1::real)"
by (subst real_of_posnat_add_one [symmetric], simp)

lemma inj_real_of_posnat: "inj(real_of_posnat)"
apply (rule inj_onI)
apply (unfold real_of_posnat_def)
apply (drule inj_real_of_preal [THEN injD])
apply (drule inj_preal_of_prat [THEN injD])
apply (drule inj_prat_of_pnat [THEN injD])
apply (erule inj_pnat_of_nat [THEN injD])
done

lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
by (simp add: real_of_nat_def real_of_posnat_one)

lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
by (simp add: real_of_nat_def real_of_posnat_two real_add_assoc)

lemma real_of_nat_add [simp]: 
     "real (m + n) = real (m::nat) + real n"
apply (simp add: real_of_nat_def real_add_assoc)
apply (simp add: real_of_posnat_add real_add_assoc [symmetric])
done

(*Not for addsimps: often the LHS is used to represent a positive natural*)
lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
by (simp add: real_of_nat_def real_of_posnat_Suc real_add_ac)

lemma real_of_nat_less_iff [iff]: 
     "(real (n::nat) < real m) = (n < m)"
by (auto simp add: real_of_nat_def real_of_posnat_def)

lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
by (simp add: linorder_not_less [symmetric])

lemma inj_real_of_nat: "inj (real :: nat => real)"
apply (rule inj_onI)
apply (auto intro!: inj_real_of_posnat [THEN injD]
            simp add: real_of_nat_def real_add_right_cancel)
done

lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
apply (induct_tac "n")
apply (auto simp add: real_of_nat_Suc)
apply (drule real_add_le_less_mono)
apply (rule real_zero_less_one)
apply (simp add: order_less_imp_le)
done

lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
apply (induct_tac "m")
apply (auto simp add: real_of_nat_Suc real_add_mult_distrib real_add_commute)
done

lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
by (auto dest: inj_real_of_nat [THEN injD])

lemma real_of_nat_diff [rule_format]:
     "n \<le> m --> real (m - n) = real (m::nat) - real n"
apply (induct_tac "m")
apply (auto simp add: real_diff_def Suc_diff_le le_Suc_eq real_of_nat_Suc real_of_nat_zero real_add_ac)
done

lemma real_of_nat_zero_iff: "(real (n::nat) = 0) = (n = 0)"
  proof 
    assume "real n = 0"
    have "real n = real (0::nat)" by simp
    then show "n = 0" by (simp only: real_of_nat_inject)
  next
    show "n = 0 \<Longrightarrow> real n = 0" by simp
  qed

lemma real_of_nat_neg_int [simp]: "neg z ==> real (nat z) = 0"
apply (simp add: neg_nat real_of_nat_zero)
done


subsection{*Inverse and Division*}

instance real :: division_by_zero
proof
  fix x :: real
  show "inverse 0 = (0::real)" by (rule INVERSE_ZERO)
  show "x/0 = 0" by (rule DIVISION_BY_ZERO) 
qed


lemma real_inverse_gt_0: "0 < x ==> 0 < inverse (x::real)"
  by (rule Ring_and_Field.inverse_gt_0)

lemma real_inverse_less_0: "x < 0 ==> inverse (x::real) < 0"
  by (rule Ring_and_Field.inverse_less_0)

lemma real_mult_less_cancel1: "[| (0::real) < z; x * z < y * z |] ==> x < y"
by (force simp add: Ring_and_Field.mult_less_cancel_right 
          elim: order_less_asym) 

lemma real_mult_less_cancel2: "[| (0::real) < z; z*x < z*y |] ==> x < y"
apply (erule real_mult_less_cancel1)
apply (simp add: real_mult_commute)
done

lemma real_mult_less_mono1: "[| (0::real) < z; x < y |] ==> x*z < y*z"
 by (rule Ring_and_Field.mult_strict_right_mono)

lemma real_mult_less_mono:
     "[| u<v;  x<y;  (0::real) < v;  0 < x |] ==> u*x < v* y"
 by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le)

lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
by (blast intro: real_mult_less_mono1 real_mult_less_cancel1)

lemma real_mult_less_iff2 [simp]: "(0::real) < z ==> (z*x < z*y) = (x < y)"
by (blast intro: real_mult_less_mono2 real_mult_less_cancel2)

(* 05/00 *)
lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
by (auto simp add: real_le_def)

lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
by (auto simp add: real_le_def)

lemma real_mult_less_mono':
     "[| x < y;  r1 < r2;  (0::real) \<le> r1;  0 \<le> x|] ==> r1 * x < r2 * y"
apply (subgoal_tac "0<r2")
 prefer 2 apply (blast intro: order_le_less_trans)
apply (case_tac "x=0")
apply (auto dest!: order_le_imp_less_or_eq 
            intro: real_mult_less_mono real_mult_order)
done

lemma real_inverse_less_swap:
     "[| 0 < r; r < x |] ==> inverse x < inverse (r::real)"
  by (rule Ring_and_Field.less_imp_inverse_less)

lemma real_mult_is_0 [iff]: "(x*y = 0) = (x = 0 | y = (0::real))"
by auto

lemma real_inverse_add: "[| x \<noteq> 0; y \<noteq> 0 |]  
      ==> inverse x + inverse y = (x + y) * inverse (x * (y::real))"
apply (simp add: real_inverse_distrib real_add_mult_distrib real_mult_assoc [symmetric])
apply (subst real_mult_assoc)
apply (rule real_mult_left_commute [THEN subst])
apply (simp add: real_add_commute)
done

lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
apply (drule real_add_minus_eq_minus)
apply (cut_tac x = x in real_le_square)
apply (auto, drule real_le_anti_sym, auto)
done

lemma real_sum_squares_cancel2: "x * x + y * y = 0 ==> y = (0::real)"
apply (rule_tac y = x in real_sum_squares_cancel)
apply (simp add: real_add_commute)
done


subsection{*Convenient Biconditionals for Products of Signs*}

lemma real_0_less_mult_iff: "((0::real) < x*y) = (0<x & 0<y | x<0 & y<0)"
  by (rule Ring_and_Field.zero_less_mult_iff) 

lemma real_0_le_mult_iff: "((0::real)\<le>x*y) = (0\<le>x & 0\<le>y | x\<le>0 & y\<le>0)"
  by (rule zero_le_mult_iff) 

lemma real_mult_less_0_iff: "(x*y < (0::real)) = (0<x & y<0 | x<0 & 0<y)"
  by (rule mult_less_0_iff) 

lemma real_mult_le_0_iff: "(x*y \<le> (0::real)) = (0\<le>x & y\<le>0 | x\<le>0 & 0\<le>y)"
  by (rule mult_le_0_iff) 

subsection{*Hardly Used Theorems to be Deleted*}

lemma real_add_order: "[| 0 < x; 0 < y |] ==> (0::real) < x + y"
apply (erule order_less_trans)
apply (drule real_add_less_mono2)
apply simp
done

lemma real_le_add_order: "[| 0 \<le> x; 0 \<le> y |] ==> (0::real) \<le> x + y"
apply (drule order_le_imp_less_or_eq)+
apply (auto intro: real_add_order order_less_imp_le)
done

(*One use in HahnBanach/Aux.thy*)
lemma real_mult_le_less_mono1: "[| (0::real) \<le> z; x < y |] ==> x*z \<le> y*z"
apply (rule real_less_or_eq_imp_le)
apply (drule order_le_imp_less_or_eq)
apply (auto intro: real_mult_less_mono1)
done


lemma real_of_posnat_gt_zero: "0 < real_of_posnat n"
apply (unfold real_of_posnat_def)
apply (rule real_gt_zero_preal_Ex [THEN iffD2])
apply blast
done

declare real_of_posnat_gt_zero [simp]

lemmas real_inv_real_of_posnat_gt_zero =  real_of_posnat_gt_zero [THEN real_inverse_gt_0, standard]
declare real_inv_real_of_posnat_gt_zero [simp]

lemmas real_of_posnat_ge_zero = real_of_posnat_gt_zero [THEN order_less_imp_le, standard]
declare real_of_posnat_ge_zero [simp]

lemma real_of_posnat_not_eq_zero: "real_of_posnat n ~= 0"
apply (rule real_of_posnat_gt_zero [THEN real_not_refl2, THEN not_sym])
done
declare real_of_posnat_not_eq_zero [simp]

declare real_of_posnat_not_eq_zero [THEN real_mult_inv_left, simp]
declare real_of_posnat_not_eq_zero [THEN real_mult_inv_right, simp]

lemma real_of_posnat_ge_one: "1 <= real_of_posnat n"
apply (simp (no_asm) add: real_of_posnat_one [symmetric])
apply (induct_tac "n")
apply (auto simp add: real_of_posnat_Suc real_of_posnat_one order_less_imp_le)
done
declare real_of_posnat_ge_one [simp]

lemma real_of_posnat_real_inv_not_zero: "inverse(real_of_posnat n) ~= 0"
apply (rule real_inverse_not_zero) 
apply (rule real_of_posnat_gt_zero [THEN real_not_refl2, THEN not_sym])
done
declare real_of_posnat_real_inv_not_zero [simp]

lemma real_of_posnat_real_inv_inj: "inverse(real_of_posnat x) = inverse(real_of_posnat y) ==> x = y"
apply (rule inj_real_of_posnat [THEN injD])
apply (rule real_of_posnat_real_inv_not_zero
              [THEN real_mult_left_cancel, THEN iffD1, of x])
apply (simp add: real_mult_inv_left
             real_of_posnat_gt_zero [THEN real_not_refl2, THEN not_sym])
done

lemma real_mult_less_self: "0 < r ==> r*(1 + -inverse(real_of_posnat n)) < r"
apply (simp (no_asm) add: real_add_mult_distrib2)
apply (rule_tac C = "-r" in real_less_add_left_cancel)
apply (auto intro: real_mult_order simp add: real_add_assoc [symmetric] real_minus_zero_less_iff2)
done

lemma real_of_posnat_inv_Ex_iff: "(EX n. inverse(real_of_posnat n) < r) = (EX n. 1 < r * real_of_posnat n)"
apply safe
apply (drule_tac n1 = "n" in real_of_posnat_gt_zero [THEN real_mult_less_mono1])
apply (drule_tac [2] n2=n in real_of_posnat_gt_zero [THEN real_inverse_gt_0, THEN real_mult_less_mono1])
apply (auto simp add: real_of_posnat_gt_zero [THEN real_not_refl2, THEN not_sym] real_mult_assoc)
done

lemma real_of_posnat_inv_iff: "(inverse(real_of_posnat n) < r) = (1 < r * real_of_posnat n)"
apply safe
apply (drule_tac n1 = "n" in real_of_posnat_gt_zero [THEN real_mult_less_mono1])
apply (drule_tac [2] n2=n in real_of_posnat_gt_zero [THEN real_inverse_gt_0, THEN real_mult_less_mono1]) 
apply (auto simp add: real_mult_assoc)
done

lemma real_mult_le_le_mono1: "[| (0::real) <=z; x<=y |] ==> z*x<=z*y"
  by (rule Ring_and_Field.mult_left_mono)

lemma real_mult_le_le_mono2: "[| (0::real)<=z; x<=y |] ==> x*z<=y*z"
  by (rule Ring_and_Field.mult_right_mono)

lemma real_of_posnat_inv_le_iff: "(inverse(real_of_posnat n) <= r) = (1 <= r * real_of_posnat n)"
apply safe
apply (drule_tac n2=n in real_of_posnat_gt_zero [THEN order_less_imp_le, THEN real_mult_le_le_mono1])
apply (drule_tac [2] n3=n in real_of_posnat_gt_zero [THEN real_inverse_gt_0, THEN order_less_imp_le, THEN real_mult_le_le_mono1])
apply (auto simp add: real_mult_ac)
done

lemma real_of_posnat_less_iff: 
      "(real_of_posnat n < real_of_posnat m) = (n < m)"
apply (unfold real_of_posnat_def)
apply auto
done
declare real_of_posnat_less_iff [simp]

lemma real_of_posnat_le_iff: "(real_of_posnat n <= real_of_posnat m) = (n <= m)"
apply (auto dest: inj_real_of_posnat [THEN injD] simp add: real_le_less le_eq_less_or_eq)
done
declare real_of_posnat_le_iff [simp]

lemma real_mult_less_cancel3: "[| (0::real)<z; x*z<y*z |] ==> x<y"
apply auto
done

lemma real_mult_less_cancel4: "[| (0::real)<z; z*x<z*y |] ==> x<y"
apply auto
done

lemma real_of_posnat_less_inv_iff: "0 < u  ==> (u < inverse (real_of_posnat n)) = (real_of_posnat n < inverse(u))"
apply safe
apply (rule_tac n2=n in real_of_posnat_gt_zero [THEN real_inverse_gt_0, THEN real_mult_less_cancel3])
apply (rule_tac [2] x1 = "u" in real_inverse_gt_0 [THEN real_mult_less_cancel3])
apply (auto simp add: real_not_refl2 [THEN not_sym])
apply (rule_tac z = "u" in real_mult_less_cancel4)
apply (rule_tac [3] n1 = "n" in real_of_posnat_gt_zero [THEN real_mult_less_cancel4])
apply (auto simp add: real_not_refl2 [THEN not_sym] real_mult_assoc [symmetric])
done

lemma real_of_posnat_inv_eq_iff: "0 < u ==> (u = inverse(real_of_posnat n)) = (real_of_posnat n = inverse u)"
apply auto
done

lemma real_add_one_minus_inv_ge_zero: "0 <= 1 + -inverse(real_of_posnat n)"
apply (rule_tac C = "inverse (real_of_posnat n) " in real_le_add_right_cancel)
apply (simp (no_asm) add: real_add_assoc real_of_posnat_inv_le_iff)
done

lemma real_mult_add_one_minus_ge_zero: "0 < r ==> 0 <= r*(1 + -inverse(real_of_posnat n))"
apply (drule real_add_one_minus_inv_ge_zero [THEN real_mult_le_less_mono1])
apply auto
done

lemma real_inverse_unique: "x*y = (1::real) ==> y = inverse x"
apply (case_tac "x ~= 0")
apply (rule_tac c1 = "x" in real_mult_left_cancel [THEN iffD1])
apply auto
done

lemma real_inverse_gt_one: "[| (0::real) < x; x < 1 |] ==> 1 < inverse x"
apply (auto dest: real_inverse_less_swap)
done

lemma real_of_nat_gt_zero_cancel_iff: "(0 < real (n::nat)) = (0 < n)"
apply (rule real_of_nat_less_iff [THEN subst])
apply auto
done
declare real_of_nat_gt_zero_cancel_iff [simp]

lemma real_of_nat_le_zero_cancel_iff: "(real (n::nat) <= 0) = (n = 0)"
apply (rule real_of_nat_zero [THEN subst])
apply (subst real_of_nat_le_iff)
apply auto
done
declare real_of_nat_le_zero_cancel_iff [simp]

lemma not_real_of_nat_less_zero: "~ real (n::nat) < 0"
apply (simp (no_asm) add: real_le_def [symmetric] real_of_nat_ge_zero)
done
declare not_real_of_nat_less_zero [simp]

lemma real_of_nat_ge_zero_cancel_iff: 
      "(0 <= real (n::nat)) = (0 <= n)"
apply (unfold real_le_def le_def)
apply (simp (no_asm))
done
declare real_of_nat_ge_zero_cancel_iff [simp]

lemma real_of_nat_num_if: "real n = (if n=0 then 0 else 1 + real ((n::nat) - 1))"
apply (case_tac "n")
apply (auto simp add: real_of_nat_Suc)
done

(*RING AND FIELD*)
		lemma mult_less_imp_less_left:
		    "[|c*a < c*b; 0 < c|] ==> a < (b::'a::ordered_ring)"
		  by (force elim: order_less_asym simp add: mult_less_cancel_left)

		lemma mult_less_imp_less_right:
		    "[|a*c < b*c; 0 < c|] ==> a < (b::'a::ordered_ring)"
		  by (force elim: order_less_asym simp add: mult_less_cancel_right)

ML
{*
val real_abs_def = thm "real_abs_def";

val real_minus_diff_eq = thm "real_minus_diff_eq";
val real_gt_zero_preal_Ex = thm "real_gt_zero_preal_Ex";
val real_gt_preal_preal_Ex = thm "real_gt_preal_preal_Ex";
val real_ge_preal_preal_Ex = thm "real_ge_preal_preal_Ex";
val real_less_all_preal = thm "real_less_all_preal";
val real_less_all_real2 = thm "real_less_all_real2";
val real_of_preal_le_iff = thm "real_of_preal_le_iff";
val real_mult_order = thm "real_mult_order";
val real_zero_less_one = thm "real_zero_less_one";
val real_add_right_cancel_less = thm "real_add_right_cancel_less";
val real_add_left_cancel_less = thm "real_add_left_cancel_less";
val real_add_right_cancel_le = thm "real_add_right_cancel_le";
val real_add_left_cancel_le = thm "real_add_left_cancel_le";
val real_add_less_mono1 = thm "real_add_less_mono1";
val real_add_le_mono1 = thm "real_add_le_mono1";
val real_add_less_le_mono = thm "real_add_less_le_mono";
val real_add_le_less_mono = thm "real_add_le_less_mono";
val real_add_less_mono2 = thm "real_add_less_mono2";
val real_less_add_right_cancel = thm "real_less_add_right_cancel";
val real_less_add_left_cancel = thm "real_less_add_left_cancel";
val real_le_add_right_cancel = thm "real_le_add_right_cancel";
val real_le_add_left_cancel = thm "real_le_add_left_cancel";
val real_add_order = thm "real_add_order";
val real_le_add_order = thm "real_le_add_order";
val real_add_less_mono = thm "real_add_less_mono";
val real_add_left_le_mono1 = thm "real_add_left_le_mono1";
val real_add_le_mono = thm "real_add_le_mono";
val real_le_minus_iff = thm "real_le_minus_iff";
val real_le_square = thm "real_le_square";
val real_mult_less_mono1 = thm "real_mult_less_mono1";
val real_mult_less_mono2 = thm "real_mult_less_mono2";
val real_of_posnat_one = thm "real_of_posnat_one";
val real_of_posnat_two = thm "real_of_posnat_two";
val real_of_posnat_add = thm "real_of_posnat_add";
val real_of_posnat_add_one = thm "real_of_posnat_add_one";
val real_of_posnat_Suc = thm "real_of_posnat_Suc";
val inj_real_of_posnat = thm "inj_real_of_posnat";
val real_of_nat_zero = thm "real_of_nat_zero";
val real_of_nat_one = thm "real_of_nat_one";
val real_of_nat_add = thm "real_of_nat_add";
val real_of_nat_Suc = thm "real_of_nat_Suc";
val real_of_nat_less_iff = thm "real_of_nat_less_iff";
val real_of_nat_le_iff = thm "real_of_nat_le_iff";
val inj_real_of_nat = thm "inj_real_of_nat";
val real_of_nat_ge_zero = thm "real_of_nat_ge_zero";
val real_of_nat_mult = thm "real_of_nat_mult";
val real_of_nat_inject = thm "real_of_nat_inject";
val real_of_nat_diff = thm "real_of_nat_diff";
val real_of_nat_zero_iff = thm "real_of_nat_zero_iff";
val real_of_nat_neg_int = thm "real_of_nat_neg_int";
val real_inverse_gt_0 = thm "real_inverse_gt_0";
val real_inverse_less_0 = thm "real_inverse_less_0";
val real_mult_less_cancel1 = thm "real_mult_less_cancel1";
val real_mult_less_cancel2 = thm "real_mult_less_cancel2";
val real_mult_less_iff1 = thm "real_mult_less_iff1";
val real_mult_less_iff2 = thm "real_mult_less_iff2";
val real_mult_le_cancel_iff1 = thm "real_mult_le_cancel_iff1";
val real_mult_le_cancel_iff2 = thm "real_mult_le_cancel_iff2";
val real_mult_less_mono = thm "real_mult_less_mono";
val real_mult_less_mono' = thm "real_mult_less_mono'";
val real_inverse_less_swap = thm "real_inverse_less_swap";
val real_mult_is_0 = thm "real_mult_is_0";
val real_inverse_add = thm "real_inverse_add";
val real_sum_squares_cancel = thm "real_sum_squares_cancel";
val real_sum_squares_cancel2 = thm "real_sum_squares_cancel2";
val real_0_less_mult_iff = thm "real_0_less_mult_iff";
val real_0_le_mult_iff = thm "real_0_le_mult_iff";
val real_mult_less_0_iff = thm "real_mult_less_0_iff";
val real_mult_le_0_iff = thm "real_mult_le_0_iff";

val real_of_posnat_gt_zero = thm "real_of_posnat_gt_zero";
val real_inv_real_of_posnat_gt_zero = thm "real_inv_real_of_posnat_gt_zero";
val real_of_posnat_ge_zero = thm "real_of_posnat_ge_zero";
val real_of_posnat_not_eq_zero = thm "real_of_posnat_not_eq_zero";
val real_of_posnat_ge_one = thm "real_of_posnat_ge_one";
val real_of_posnat_real_inv_not_zero = thm "real_of_posnat_real_inv_not_zero";
val real_of_posnat_real_inv_inj = thm "real_of_posnat_real_inv_inj";
val real_mult_less_self = thm "real_mult_less_self";
val real_of_posnat_inv_Ex_iff = thm "real_of_posnat_inv_Ex_iff";
val real_of_posnat_inv_iff = thm "real_of_posnat_inv_iff";
val real_mult_le_le_mono1 = thm "real_mult_le_le_mono1";
val real_mult_le_le_mono2 = thm "real_mult_le_le_mono2";
val real_of_posnat_inv_le_iff = thm "real_of_posnat_inv_le_iff";
val real_of_posnat_less_iff = thm "real_of_posnat_less_iff";
val real_of_posnat_le_iff = thm "real_of_posnat_le_iff";
val real_mult_less_cancel3 = thm "real_mult_less_cancel3";
val real_mult_less_cancel4 = thm "real_mult_less_cancel4";
val real_of_posnat_less_inv_iff = thm "real_of_posnat_less_inv_iff";
val real_of_posnat_inv_eq_iff = thm "real_of_posnat_inv_eq_iff";
val real_add_one_minus_inv_ge_zero = thm "real_add_one_minus_inv_ge_zero";
val real_mult_add_one_minus_ge_zero = thm "real_mult_add_one_minus_ge_zero";
val real_inverse_unique = thm "real_inverse_unique";
val real_inverse_gt_one = thm "real_inverse_gt_one";
val real_of_nat_gt_zero_cancel_iff = thm "real_of_nat_gt_zero_cancel_iff";
val real_of_nat_le_zero_cancel_iff = thm "real_of_nat_le_zero_cancel_iff";
val not_real_of_nat_less_zero = thm "not_real_of_nat_less_zero";
val real_of_nat_ge_zero_cancel_iff = thm "real_of_nat_ge_zero_cancel_iff";
val real_of_nat_num_if = thm "real_of_nat_num_if";

val INVERSE_ZERO = thm"INVERSE_ZERO";
val DIVISION_BY_ZERO = thm"DIVISION_BY_ZERO";
val real_mult_left_cancel = thm"real_mult_left_cancel";
val real_mult_right_cancel = thm"real_mult_right_cancel";
val real_mult_left_cancel_ccontr = thm"real_mult_left_cancel_ccontr";
val real_mult_right_cancel_ccontr = thm"real_mult_right_cancel_ccontr";
val real_inverse_not_zero = thm"real_inverse_not_zero";
val real_mult_not_zero = thm"real_mult_not_zero";
val real_inverse_inverse = thm"real_inverse_inverse";
val real_inverse_1 = thm"real_inverse_1";
val real_minus_inverse = thm"real_minus_inverse";
val real_inverse_distrib = thm"real_inverse_distrib";
val real_times_divide1_eq = thm"real_times_divide1_eq";
val real_times_divide2_eq = thm"real_times_divide2_eq";
val real_divide_divide1_eq = thm"real_divide_divide1_eq";
val real_divide_divide2_eq = thm"real_divide_divide2_eq";
val real_minus_divide_eq = thm"real_minus_divide_eq";
val real_divide_minus_eq = thm"real_divide_minus_eq";
val real_add_divide_distrib = thm"real_add_divide_distrib";
*}

end