author nipkow
Mon, 02 Jun 2008 13:21:06 +0200
changeset 27034 5257bc7e0c06
parent 24824 b7866aea0815
child 36862 952b2b102a0a
permissions -rw-r--r--
tuned proofs

(*  Title:      HOL/Induct/PropLog.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1994  TU Muenchen & University of Cambridge

header {* Meta-theory of propositional logic *}

theory PropLog imports Main begin

text {*
  Datatype definition of propositional logic formulae and inductive
  definition of the propositional tautologies.

  Inductive definition of propositional logic.  Soundness and
  completeness w.r.t.\ truth-tables.

  Prove: If @{text "H |= p"} then @{text "G |= p"} where @{text "G \<in>

subsection {* The datatype of propositions *}

datatype 'a pl =
  false |
  var 'a ("#_" [1000]) |
  imp "'a pl" "'a pl" (infixr "->" 90)

subsection {* The proof system *}

  thms :: "['a pl set, 'a pl] => bool"  (infixl "|-" 50)
  for H :: "'a pl set"
    H [intro]:  "p\<in>H ==> H |- p"
  | K:          "H |- p->q->p"
  | S:          "H |- (p->q->r) -> (p->q) -> p->r"
  | DN:         "H |- ((p->false) -> false) -> p"
  | MP:         "[| H |- p->q; H |- p |] ==> H |- q"

subsection {* The semantics *}

subsubsection {* Semantics of propositional logic. *}

  eval  :: "['a set, 'a pl] => bool"      ("_[[_]]" [100,0] 100)

primrec     "tt[[false]] = False"
            "tt[[#v]]    = (v \<in> tt)"
  eval_imp: "tt[[p->q]]  = (tt[[p]] --> tt[[q]])"

text {*
  A finite set of hypotheses from @{text t} and the @{text Var}s in
  @{text p}.

  hyps  :: "['a pl, 'a set] => 'a pl set"

  "hyps false  tt = {}"
  "hyps (#v)   tt = {if v \<in> tt then #v else #v->false}"
  "hyps (p->q) tt = hyps p tt Un hyps q tt"

subsubsection {* Logical consequence *}

text {*
  For every valuation, if all elements of @{text H} are true then so
  is @{text p}.

  sat :: "['a pl set, 'a pl] => bool"   (infixl "|=" 50) where
    "H |= p  =  (\<forall>tt. (\<forall>q\<in>H. tt[[q]]) --> tt[[p]])"

subsection {* Proof theory of propositional logic *}

lemma thms_mono: "G<=H ==> thms(G) <= thms(H)"
apply (rule predicate1I)
apply (erule thms.induct)
apply (auto intro: thms.intros)

lemma thms_I: "H |- p->p"
  -- {*Called @{text I} for Identity Combinator, not for Introduction. *}
by (best intro: thms.K thms.S thms.MP)

subsubsection {* Weakening, left and right *}

lemma weaken_left: "[| G \<subseteq> H;  G|-p |] ==> H|-p"
  -- {* Order of premises is convenient with @{text THEN} *}
  by (erule thms_mono [THEN predicate1D])

lemmas weaken_left_insert = subset_insertI [THEN weaken_left]

lemmas weaken_left_Un1  = Un_upper1 [THEN weaken_left]
lemmas weaken_left_Un2  = Un_upper2 [THEN weaken_left]

lemma weaken_right: "H |- q ==> H |- p->q"
by (fast intro: thms.K thms.MP)

subsubsection {* The deduction theorem *}

theorem deduction: "insert p H |- q  ==>  H |- p->q"
apply (induct set: thms)
apply (fast intro: thms_I thms.H thms.K thms.S thms.DN
                   thms.S [THEN thms.MP, THEN thms.MP] weaken_right)+

subsubsection {* The cut rule *}

lemmas cut = deduction [THEN thms.MP]

lemmas thms_falseE = weaken_right [THEN thms.DN [THEN thms.MP]]

lemmas thms_notE = thms.MP [THEN thms_falseE, standard]

subsubsection {* Soundness of the rules wrt truth-table semantics *}

theorem soundness: "H |- p ==> H |= p"
apply (unfold sat_def)
apply (induct set: thms)
apply auto

subsection {* Completeness *}

subsubsection {* Towards the completeness proof *}

lemma false_imp: "H |- p->false ==> H |- p->q"
apply (rule deduction)
apply (metis H insert_iff weaken_left_insert thms_notE)

lemma imp_false:
    "[| H |- p;  H |- q->false |] ==> H |- (p->q)->false"
apply (rule deduction)
apply (metis H MP insert_iff weaken_left_insert)

lemma hyps_thms_if: "hyps p tt |- (if tt[[p]] then p else p->false)"
  -- {* Typical example of strengthening the induction statement. *}
apply simp
apply (induct p)
apply (simp_all add: thms_I thms.H)
apply (blast intro: weaken_left_Un1 weaken_left_Un2 weaken_right
                    imp_false false_imp)

lemma sat_thms_p: "{} |= p ==> hyps p tt |- p"
  -- {* Key lemma for completeness; yields a set of assumptions
        satisfying @{text p} *}
apply (unfold sat_def)
apply (drule spec, erule mp [THEN if_P, THEN subst],
       rule_tac [2] hyps_thms_if, simp)

text {*
  For proving certain theorems in our new propositional logic.

declare deduction [intro!]
declare thms.H [THEN thms.MP, intro]

text {*
  The excluded middle in the form of an elimination rule.

lemma thms_excluded_middle: "H |- (p->q) -> ((p->false)->q) -> q"
apply (rule deduction [THEN deduction])
apply (rule thms.DN [THEN thms.MP], best)

lemma thms_excluded_middle_rule:
    "[| insert p H |- q;  insert (p->false) H |- q |] ==> H |- q"
  -- {* Hard to prove directly because it requires cuts *}
by (rule thms_excluded_middle [THEN thms.MP, THEN thms.MP], auto)

subsection{* Completeness -- lemmas for reducing the set of assumptions*}

text {*
  For the case @{prop "hyps p t - insert #v Y |- p"} we also have @{prop
  "hyps p t - {#v} \<subseteq> hyps p (t-{v})"}.

lemma hyps_Diff: "hyps p (t-{v}) <= insert (#v->false) ((hyps p t)-{#v})"
by (induct p) auto

text {*
  For the case @{prop "hyps p t - insert (#v -> Fls) Y |- p"} we also have
  @{prop "hyps p t-{#v->Fls} \<subseteq> hyps p (insert v t)"}.

lemma hyps_insert: "hyps p (insert v t) <= insert (#v) (hyps p t-{#v->false})"
by (induct p) auto

text {* Two lemmas for use with @{text weaken_left} *}

lemma insert_Diff_same: "B-C <= insert a (B-insert a C)"
by fast

lemma insert_Diff_subset2: "insert a (B-{c}) - D <= insert a (B-insert c D)"
by fast

text {*
  The set @{term "hyps p t"} is finite, and elements have the form
  @{term "#v"} or @{term "#v->Fls"}.

lemma hyps_finite: "finite(hyps p t)"
by (induct p) auto

lemma hyps_subset: "hyps p t <= (UN v. {#v, #v->false})"
by (induct p) auto

lemmas Diff_weaken_left = Diff_mono [OF _ subset_refl, THEN weaken_left]

subsubsection {* Completeness theorem *}

text {*
  Induction on the finite set of assumptions @{term "hyps p t0"}.  We
  may repeatedly subtract assumptions until none are left!

lemma completeness_0_lemma:
    "{} |= p ==> \<forall>t. hyps p t - hyps p t0 |- p"
apply (rule hyps_subset [THEN hyps_finite [THEN finite_subset_induct]])
 apply (simp add: sat_thms_p, safe)
 txt{*Case @{text"hyps p t-insert(#v,Y) |- p"} *}
 apply (iprover intro: thms_excluded_middle_rule
                     insert_Diff_same [THEN weaken_left]
                     insert_Diff_subset2 [THEN weaken_left]
                     hyps_Diff [THEN Diff_weaken_left])
txt{*Case @{text"hyps p t-insert(#v -> false,Y) |- p"} *}
 apply (iprover intro: thms_excluded_middle_rule
                     insert_Diff_same [THEN weaken_left]
                     insert_Diff_subset2 [THEN weaken_left]
                     hyps_insert [THEN Diff_weaken_left])

text{*The base case for completeness*}
lemma completeness_0:  "{} |= p ==> {} |- p"
apply (rule Diff_cancel [THEN subst])
apply (erule completeness_0_lemma [THEN spec])

text{*A semantic analogue of the Deduction Theorem*}
lemma sat_imp: "insert p H |= q ==> H |= p->q"
by (unfold sat_def, auto)

theorem completeness: "finite H ==> H |= p ==> H |- p"
apply (induct arbitrary: p rule: finite_induct)
 apply (blast intro: completeness_0)
apply (iprover intro: sat_imp thms.H insertI1 weaken_left_insert [THEN thms.MP])

theorem syntax_iff_semantics: "finite H ==> (H |- p) = (H |= p)"
by (blast intro: soundness completeness)