src/FOLP/ex/Foundation.thy
 author wenzelm Wed, 12 Jan 2011 16:33:04 +0100 changeset 41526 54b4686704af parent 36319 8feb2c4bef1a child 41777 1f7cbe39d425 permissions -rw-r--r--
eliminated global prems;
```
(*  Title:      FOLP/ex/Foundation.ML
Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

header "Intuitionistic FOL: Examples from The Foundation of a Generic Theorem Prover"

theory Foundation
imports IFOLP
begin

schematic_lemma "?p : A&B  --> (C-->A&C)"
apply (rule impI)
apply (rule impI)
apply (rule conjI)
prefer 2 apply assumption
apply (rule conjunct1)
apply assumption
done

text {*A form of conj-elimination*}
schematic_lemma
assumes "p : A & B"
and "!!x y. x : A ==> y : B ==> f(x, y) : C"
shows "?p : C"
apply (rule assms)
apply (rule conjunct1)
apply (rule assms)
apply (rule conjunct2)
apply (rule assms)
done

schematic_lemma
assumes "!!A x. x : ~ ~A ==> cla(x) : A"
shows "?p : B | ~B"
apply (rule assms)
apply (rule notI)
apply (rule_tac P = "~B" in notE)
apply (rule_tac [2] notI)
apply (rule_tac [2] P = "B | ~B" in notE)
prefer 2 apply assumption
apply (rule_tac [2] disjI1)
prefer 2 apply assumption
apply (rule notI)
apply (rule_tac P = "B | ~B" in notE)
apply assumption
apply (rule disjI2)
apply assumption
done

schematic_lemma
assumes "!!A x. x : ~ ~A ==> cla(x) : A"
shows "?p : B | ~B"
apply (rule assms)
apply (rule notI)
apply (rule notE)
apply (rule_tac [2] notI)
apply (erule_tac [2] notE)
apply (erule_tac [2] disjI1)
apply (rule notI)
apply (erule notE)
apply (erule disjI2)
done

schematic_lemma
assumes "p : A | ~A"
and "q : ~ ~A"
shows "?p : A"
apply (rule disjE)
apply (rule assms)
apply assumption
apply (rule FalseE)
apply (rule_tac P = "~A" in notE)
apply (rule assms)
apply assumption
done

subsection "Examples with quantifiers"

schematic_lemma
assumes "p : ALL z. G(z)"
shows "?p : ALL z. G(z)|H(z)"
apply (rule allI)
apply (rule disjI1)
apply (rule assms [THEN spec])
done

schematic_lemma "?p : ALL x. EX y. x=y"
apply (rule allI)
apply (rule exI)
apply (rule refl)
done

schematic_lemma "?p : EX y. ALL x. x=y"
apply (rule exI)
apply (rule allI)
apply (rule refl)?
oops

text {* Parallel lifting example. *}
schematic_lemma "?p : EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)"
apply (rule exI allI)
apply (rule exI allI)
apply (rule exI allI)
apply (rule exI allI)
apply (rule exI allI)
oops

schematic_lemma
assumes "p : (EX z. F(z)) & B"
shows "?p : EX z. F(z) & B"
apply (rule conjE)
apply (rule assms)
apply (rule exE)
apply assumption
apply (rule exI)
apply (rule conjI)
apply assumption
apply assumption
done

text {* A bigger demonstration of quantifiers -- not in the paper. *}
schematic_lemma "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
apply (rule impI)
apply (rule allI)
apply (rule exE, assumption)
apply (rule exI)
apply (rule allE, assumption)
apply assumption
done

end
```