src/HOL/Finite.ML
author oheimb
Mon, 30 Mar 1998 21:09:46 +0200
changeset 4763 56072b72d730
parent 4746 a5dcd7e4a37d
child 4768 c342d63173e9
permissions -rw-r--r--
adapted proof of finite_converse

(*  Title:      HOL/Finite.thy
    ID:         $Id$
    Author:     Lawrence C Paulson & Tobias Nipkow
    Copyright   1995  University of Cambridge & TU Muenchen

Finite sets and their cardinality
*)

open Finite;

section "finite";

(*
goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
by (rtac lfp_mono 1);
by (REPEAT (ares_tac basic_monos 1));
qed "Fin_mono";

goalw Finite.thy Fin.defs "Fin(A) <= Pow(A)";
by (blast_tac (claset() addSIs [lfp_lowerbound]) 1);
qed "Fin_subset_Pow";

(* A : Fin(B) ==> A <= B *)
val FinD = Fin_subset_Pow RS subsetD RS PowD;
*)

(*Discharging ~ x:y entails extra work*)
val major::prems = goal Finite.thy 
    "[| finite F;  P({}); \
\       !!F x. [| finite F;  x ~: F;  P(F) |] ==> P(insert x F) \
\    |] ==> P(F)";
by (rtac (major RS Finites.induct) 1);
by (excluded_middle_tac "a:A" 2);
by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3);   (*backtracking!*)
by (REPEAT (ares_tac prems 1));
qed "finite_induct";

val major::subs::prems = goal Finite.thy 
    "[| finite F;  F <= A; \
\       P({}); \
\       !!F a. [| finite F; a:A; a ~: F;  P(F) |] ==> P(insert a F) \
\    |] ==> P(F)";
by (rtac (subs RS rev_mp) 1);
by (rtac (major RS finite_induct) 1);
by (ALLGOALS (blast_tac (claset() addIs prems)));
qed "finite_subset_induct";

Addsimps Finites.intrs;
AddSIs Finites.intrs;

(*The union of two finite sets is finite*)
val major::prems = goal Finite.thy
    "[| finite F;  finite G |] ==> finite(F Un G)";
by (rtac (major RS finite_induct) 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));
qed "finite_UnI";

(*Every subset of a finite set is finite*)
goal Finite.thy "!!B. finite B ==> ALL A. A<=B --> finite A";
by (etac finite_induct 1);
by (Simp_tac 1);
by (safe_tac (claset() addSDs [subset_insert_iff RS iffD1]));
by (eres_inst_tac [("t","A")] (insert_Diff RS subst) 2);
by (ALLGOALS Asm_simp_tac);
val lemma = result();

goal Finite.thy "!!A. [| A<=B;  finite B |] ==> finite A";
by (dtac lemma 1);
by (Blast_tac 1);
qed "finite_subset";

goal Finite.thy "finite(F Un G) = (finite F & finite G)";
by (blast_tac (claset() 
	         addIs [read_instantiate [("B", "?AA Un ?BB")] finite_subset, 
			finite_UnI]) 1);
qed "finite_Un";
AddIffs[finite_Un];

goal Finite.thy "finite(insert a A) = finite A";
by (stac insert_is_Un 1);
by (simp_tac (HOL_ss addsimps [finite_Un]) 1);
by (Blast_tac 1);
qed "finite_insert";
Addsimps[finite_insert];

(*The image of a finite set is finite *)
goal Finite.thy  "!!F. finite F ==> finite(h``F)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (Asm_simp_tac 1);
qed "finite_imageI";

val major::prems = goal Finite.thy 
    "[| finite c;  finite b;                                  \
\       P(b);                                                   \
\       !!x y. [| finite y;  x:y;  P(y) |] ==> P(y-{x}) \
\    |] ==> c<=b --> P(b-c)";
by (rtac (major RS finite_induct) 1);
by (stac Diff_insert 2);
by (ALLGOALS (asm_simp_tac
                (simpset() addsimps (prems@[Diff_subset RS finite_subset]))));
val lemma = result();

val prems = goal Finite.thy 
    "[| finite A;                                       \
\       P(A);                                           \
\       !!a A. [| finite A;  a:A;  P(A) |] ==> P(A-{a}) \
\    |] ==> P({})";
by (rtac (Diff_cancel RS subst) 1);
by (rtac (lemma RS mp) 1);
by (REPEAT (ares_tac (subset_refl::prems) 1));
qed "finite_empty_induct";


(* finite B ==> finite (B - Ba) *)
bind_thm ("finite_Diff", Diff_subset RS finite_subset);
Addsimps [finite_Diff];

goal Finite.thy "finite(A-{a}) = finite(A)";
by (case_tac "a:A" 1);
by (rtac (finite_insert RS sym RS trans) 1);
by (stac insert_Diff 1);
by (ALLGOALS Asm_simp_tac);
qed "finite_Diff_singleton";
AddIffs [finite_Diff_singleton];

(*Lemma for proving finite_imageD*)
goal Finite.thy "!!A. finite B ==> !A. f``A = B --> inj_onto f A --> finite A";
by (etac finite_induct 1);
 by (ALLGOALS Asm_simp_tac);
by (Clarify_tac 1);
by (subgoal_tac "EX y:A. f y = x & F = f``(A-{y})" 1);
 by (Clarify_tac 1);
 by (full_simp_tac (simpset() addsimps [inj_onto_def]) 1);
 by (Blast_tac 1);
by (thin_tac "ALL A. ?PP(A)" 1);
by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1);
by (Clarify_tac 1);
by (res_inst_tac [("x","xa")] bexI 1);
by (ALLGOALS 
    (asm_full_simp_tac (simpset() addsimps [inj_onto_image_set_diff])));
val lemma = result();

goal Finite.thy "!!A. [| finite(f``A);  inj_onto f A |] ==> finite A";
by (dtac lemma 1);
by (Blast_tac 1);
qed "finite_imageD";

(** The finite UNION of finite sets **)

val [prem] = goal Finite.thy
 "finite A ==> (!a:A. finite(B a)) --> finite(UN a:A. B a)";
by (rtac (prem RS finite_induct) 1);
by (ALLGOALS Asm_simp_tac);
bind_thm("finite_UnionI", ballI RSN (2, result() RS mp));
Addsimps [finite_UnionI];

(** Sigma of finite sets **)

goalw Finite.thy [Sigma_def]
 "!!A. [| finite A; !a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)";
by (blast_tac (claset() addSIs [finite_UnionI]) 1);
bind_thm("finite_SigmaI", ballI RSN (2,result()));
Addsimps [finite_SigmaI];

(** The powerset of a finite set **)

goal Finite.thy "!!A. finite(Pow A) ==> finite A";
by (subgoal_tac "finite ((%x.{x})``A)" 1);
by (rtac finite_subset 2);
by (assume_tac 3);
by (ALLGOALS
    (fast_tac (claset() addSDs [rewrite_rule [inj_onto_def] finite_imageD])));
val lemma = result();

goal Finite.thy "finite(Pow A) = finite A";
by (rtac iffI 1);
by (etac lemma 1);
(*Opposite inclusion: finite A ==> finite (Pow A) *)
by (etac finite_induct 1);
by (ALLGOALS 
    (asm_simp_tac
     (simpset() addsimps [finite_UnI, finite_imageI, Pow_insert])));
qed "finite_Pow_iff";
AddIffs [finite_Pow_iff];

goal Finite.thy "finite(r^-1) = finite r";
by (subgoal_tac "r^-1 = (%(x,y).(y,x))``r" 1);
 by (Asm_simp_tac 1);
 by (rtac iffI 1);
  by (etac (rewrite_rule [inj_onto_def] finite_imageD) 1);
  by (simp_tac (simpset() addsplits [expand_split]) 1);
 by (etac finite_imageI 1);
by (simp_tac (simpset() addsimps [converse_def,image_def]) 1);
by Auto_tac;
 by (rtac bexI 1);
 by (assume_tac 2);
by (Simp_tac 1);
qed "finite_converse";
AddIffs [finite_converse];

section "Finite cardinality -- 'card'";

goal Set.thy "{f i |i. (P i | i=n)} = insert (f n) {f i|i. P i}";
by (Blast_tac 1);
val Collect_conv_insert = result();

goalw Finite.thy [card_def] "card {} = 0";
by (rtac Least_equality 1);
by (ALLGOALS Asm_full_simp_tac);
qed "card_empty";
Addsimps [card_empty];

val [major] = goal Finite.thy
  "finite A ==> ? (n::nat) f. A = {f i |i. i<n}";
by (rtac (major RS finite_induct) 1);
 by (res_inst_tac [("x","0")] exI 1);
 by (Simp_tac 1);
by (etac exE 1);
by (etac exE 1);
by (hyp_subst_tac 1);
by (res_inst_tac [("x","Suc n")] exI 1);
by (res_inst_tac [("x","%i. if i<n then f i else x")] exI 1);
by (asm_simp_tac (simpset() addsimps [Collect_conv_insert, less_Suc_eq]
                          addcongs [rev_conj_cong]) 1);
qed "finite_has_card";

goal Finite.thy
  "!!A.[| x ~: A; insert x A = {f i|i. i<n} |] ==> \
\  ? m::nat. m<n & (? g. A = {g i|i. i<m})";
by (res_inst_tac [("n","n")] natE 1);
 by (hyp_subst_tac 1);
 by (Asm_full_simp_tac 1);
by (rename_tac "m" 1);
by (hyp_subst_tac 1);
by (case_tac "? a. a:A" 1);
 by (res_inst_tac [("x","0")] exI 2);
 by (Simp_tac 2);
 by (Blast_tac 2);
by (etac exE 1);
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1);
by (rtac exI 1);
by (rtac (refl RS disjI2 RS conjI) 1);
by (etac equalityE 1);
by (asm_full_simp_tac
     (simpset() addsimps [subset_insert,Collect_conv_insert, less_Suc_eq]) 1);
by Safe_tac;
  by (Asm_full_simp_tac 1);
  by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
  by (SELECT_GOAL Safe_tac 1);
   by (subgoal_tac "x ~= f m" 1);
    by (Blast_tac 2);
   by (subgoal_tac "? k. f k = x & k<m" 1);
    by (Blast_tac 2);
   by (SELECT_GOAL Safe_tac 1);
   by (res_inst_tac [("x","k")] exI 1);
   by (Asm_simp_tac 1);
  by (Simp_tac 1);
  by (Blast_tac 1);
 by (dtac sym 1);
 by (rotate_tac ~1 1);
 by (Asm_full_simp_tac 1);
 by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
 by (SELECT_GOAL Safe_tac 1);
  by (subgoal_tac "x ~= f m" 1);
   by (Blast_tac 2);
  by (subgoal_tac "? k. f k = x & k<m" 1);
   by (Blast_tac 2);
  by (SELECT_GOAL Safe_tac 1);
  by (res_inst_tac [("x","k")] exI 1);
  by (Asm_simp_tac 1);
 by (Simp_tac 1);
 by (Blast_tac 1);
by (res_inst_tac [("x","%j. if f j = f i then f m else f j")] exI 1);
by (SELECT_GOAL Safe_tac 1);
 by (subgoal_tac "x ~= f i" 1);
  by (Blast_tac 2);
 by (case_tac "x = f m" 1);
  by (res_inst_tac [("x","i")] exI 1);
  by (Asm_simp_tac 1);
 by (subgoal_tac "? k. f k = x & k<m" 1);
  by (Blast_tac 2);
 by (SELECT_GOAL Safe_tac 1);
 by (res_inst_tac [("x","k")] exI 1);
 by (Asm_simp_tac 1);
by (Simp_tac 1);
by (Blast_tac 1);
val lemma = result();

goal Finite.thy "!!A. [| finite A; x ~: A |] ==> \
\ (LEAST n. ? f. insert x A = {f i|i. i<n}) = Suc(LEAST n. ? f. A={f i|i. i<n})";
by (rtac Least_equality 1);
 by (dtac finite_has_card 1);
 by (etac exE 1);
 by (dres_inst_tac [("P","%n.? f. A={f i|i. i<n}")] LeastI 1);
 by (etac exE 1);
 by (res_inst_tac
   [("x","%i. if i<(LEAST n. ? f. A={f i |i. i < n}) then f i else x")] exI 1);
 by (simp_tac
    (simpset() addsimps [Collect_conv_insert, less_Suc_eq] 
              addcongs [rev_conj_cong]) 1);
 by (etac subst 1);
 by (rtac refl 1);
by (rtac notI 1);
by (etac exE 1);
by (dtac lemma 1);
 by (assume_tac 1);
by (etac exE 1);
by (etac conjE 1);
by (dres_inst_tac [("P","%x. ? g. A = {g i |i. i < x}")] Least_le 1);
by (dtac le_less_trans 1 THEN atac 1);
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1);
by (etac disjE 1);
by (etac less_asym 1 THEN atac 1);
by (hyp_subst_tac 1);
by (Asm_full_simp_tac 1);
val lemma = result();

goalw Finite.thy [card_def]
  "!!A. [| finite A; x ~: A |] ==> card(insert x A) = Suc(card A)";
by (etac lemma 1);
by (assume_tac 1);
qed "card_insert_disjoint";
Addsimps [card_insert_disjoint];

goal Finite.thy  "!!A. finite A ==> !B. B <= A --> card(B) <= card(A)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (Clarify_tac 1);
by (case_tac "x:B" 1);
 by (dres_inst_tac [("A","B")] mk_disjoint_insert 1);
 by (SELECT_GOAL Safe_tac 1);
 by (rotate_tac ~1 1);
 by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
by (rotate_tac ~1 1);
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
qed_spec_mp "card_mono";

goal Finite.thy "!!A B. [| finite A; finite B |]\
\                       ==> A Int B = {} --> card(A Un B) = card A + card B";
by (etac finite_induct 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Int_insert_left])));
qed_spec_mp "card_Un_disjoint";

goal Finite.thy "!!A. [| finite A; B<=A |] ==> card A - card B = card (A - B)";
by (subgoal_tac "(A-B) Un B = A" 1);
by (Blast_tac 2);
by (rtac (add_right_cancel RS iffD1) 1);
by (rtac (card_Un_disjoint RS subst) 1);
by (etac ssubst 4);
by (Blast_tac 3);
by (ALLGOALS 
    (asm_simp_tac
     (simpset() addsimps [add_commute, not_less_iff_le, 
			 add_diff_inverse, card_mono, finite_subset])));
qed "card_Diff_subset";

goal Finite.thy "!!A. [| finite A; x: A |] ==> Suc(card(A-{x})) = card A";
by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
by (assume_tac 1);
by (Asm_simp_tac 1);
qed "card_Suc_Diff";

goal Finite.thy "!!A. [| finite A; x: A |] ==> card(A-{x}) < card A";
by (rtac Suc_less_SucD 1);
by (asm_simp_tac (simpset() addsimps [card_Suc_Diff]) 1);
qed "card_Diff";


(*** Cardinality of the Powerset ***)

val [major] = goal Finite.thy
  "finite A ==> card(insert x A) = Suc(card(A-{x}))";
by (case_tac "x:A" 1);
by (asm_simp_tac (simpset() addsimps [insert_absorb]) 1);
by (dtac mk_disjoint_insert 1);
by (etac exE 1);
by (Asm_simp_tac 1);
by (rtac card_insert_disjoint 1);
by (rtac (major RSN (2,finite_subset)) 1);
by (Blast_tac 1);
by (Blast_tac 1);
by (asm_simp_tac (simpset() addsimps [major RS card_insert_disjoint]) 1);
qed "card_insert";
Addsimps [card_insert];

goal Finite.thy "!!A. finite(A) ==> inj_onto f A --> card (f `` A) = card A";
by (etac finite_induct 1);
by (ALLGOALS Asm_simp_tac);
by Safe_tac;
by (rewtac inj_onto_def);
by (Blast_tac 1);
by (stac card_insert_disjoint 1);
by (etac finite_imageI 1);
by (Blast_tac 1);
by (Blast_tac 1);
qed_spec_mp "card_image";

goal thy "!!A. finite A ==> card (Pow A) = 2 ^ card A";
by (etac finite_induct 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Pow_insert])));
by (stac card_Un_disjoint 1);
by (EVERY (map (blast_tac (claset() addIs [finite_imageI])) [3,2,1]));
by (subgoal_tac "inj_onto (insert x) (Pow F)" 1);
by (asm_simp_tac (simpset() addsimps [card_image, Pow_insert]) 1);
by (rewtac inj_onto_def);
by (blast_tac (claset() addSEs [equalityE]) 1);
qed "card_Pow";
Addsimps [card_Pow];


(*Proper subsets*)
goalw Finite.thy [psubset_def]
"!!B. finite B ==> !A. A < B --> card(A) < card(B)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (Clarify_tac 1);
by (case_tac "x:A" 1);
(*1*)
by (dres_inst_tac [("A","A")]mk_disjoint_insert 1);
by (etac exE 1);
by (etac conjE 1);
by (hyp_subst_tac 1);
by (rotate_tac ~1 1);
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
by (Blast_tac 1);
(*2*)
by (rotate_tac ~1 1);
by (eres_inst_tac [("P","?a<?b")] notE 1);
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
by (case_tac "A=F" 1);
by (ALLGOALS Asm_simp_tac);
qed_spec_mp "psubset_card" ;


(*Relates to equivalence classes.   Based on a theorem of F. Kammueller's.
  The "finite C" premise is redundant*)
goal thy "!!C. finite C ==> finite (Union C) --> \
\          (! c : C. k dvd card c) -->  \
\          (! c1: C. ! c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
\          --> k dvd card(Union C)";
by (etac finite_induct 1);
by (ALLGOALS Asm_simp_tac);
by (Clarify_tac 1);
by (stac card_Un_disjoint 1);
by (ALLGOALS
    (asm_full_simp_tac (simpset()
			 addsimps [dvd_add, disjoint_eq_subset_Compl])));
by (thin_tac "!c:F. ?PP(c)" 1);
by (thin_tac "!c:F. ?PP(c) & ?QQ(c)" 1);
by (Clarify_tac 1);
by (ball_tac 1);
by (Blast_tac 1);
qed_spec_mp "dvd_partition";