Separation of theory Event into two parts:
Shared for general shared-key material
NS_Shared for the Needham-Schroeder shared-key protocol
(* Title: HOL/Auth/Shared
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
Theory of Shared Keys (common to all symmetric-key protocols)
Server keys; initial states of agents; new nonces and keys; function "sees"
*)
Shared = Message + List +
consts
serverKey :: agent => key (*symmetric keys*)
rules
isSym_serverKey "isSymKey (serverKey A)"
consts (*Initial states of agents -- parameter of the construction*)
initState :: agent => msg set
primrec initState agent
(*Server knows all keys; other agents know only their own*)
initState_Server "initState Server = Key `` range serverKey"
initState_Friend "initState (Friend i) = {Key (serverKey (Friend i))}"
initState_Enemy "initState Enemy = {Key (serverKey Enemy)}"
datatype (*Messages, and components of agent stores*)
event = Says agent agent msg
| Notes agent msg
consts
sees1 :: [agent, event] => msg set
primrec sees1 event
(*First agent recalls all that it says, but NOT everything
that is sent to it; it must note such things if/when received*)
sees1_Says "sees1 A (Says A' B X) = (if A:{A',Enemy} then {X} else {})"
(*part of A's internal state*)
sees1_Notes "sees1 A (Notes A' X) = (if A=A' then {X} else {})"
consts
sees :: [agent, event list] => msg set
primrec sees list
(*Initial knowledge includes all public keys and own private key*)
sees_Nil "sees A [] = initState A"
sees_Cons "sees A (ev#evs) = sees1 A ev Un sees A evs"
(*Agents generate "random" nonces. Different traces always yield
different nonces. Same applies for keys.*)
consts
newN :: "event list => nat"
newK :: "event list => key"
rules
inj_serverKey "inj serverKey"
inj_newN "inj newN"
fresh_newN "Nonce (newN evs) ~: parts (initState B)"
inj_newK "inj newK"
fresh_newK "Key (newK evs) ~: parts (initState B)"
isSym_newK "isSymKey (newK evs)"
end