src/HOL/Wellfounded.thy
author urbanc
Thu, 12 Jun 2008 10:03:45 +0200
changeset 27163 587ad1fba128
parent 26976 cf147f69b3df
child 27823 52971512d1a2
permissions -rw-r--r--
added CK_Machine to the nominal section

(*  ID:         $Id$
    Author:     Tobias Nipkow
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Author:     Konrad Slind, Alexander Krauss
    Copyright   1992-2008  University of Cambridge and TU Muenchen
*)

header {*Well-founded Recursion*}

theory Wellfounded
imports Finite_Set Nat
uses ("Tools/function_package/size.ML")
begin

subsection {* Basic Definitions *}

inductive
  wfrec_rel :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b => bool"
  for R :: "('a * 'a) set"
  and F :: "('a => 'b) => 'a => 'b"
where
  wfrecI: "ALL z. (z, x) : R --> wfrec_rel R F z (g z) ==>
            wfrec_rel R F x (F g x)"

constdefs
  wf         :: "('a * 'a)set => bool"
  "wf(r) == (!P. (!x. (!y. (y,x):r --> P(y)) --> P(x)) --> (!x. P(x)))"

  wfP :: "('a => 'a => bool) => bool"
  "wfP r == wf {(x, y). r x y}"

  acyclic :: "('a*'a)set => bool"
  "acyclic r == !x. (x,x) ~: r^+"

  cut        :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b"
  "cut f r x == (%y. if (y,x):r then f y else arbitrary)"

  adm_wf :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => bool"
  "adm_wf R F == ALL f g x.
     (ALL z. (z, x) : R --> f z = g z) --> F f x = F g x"

  wfrec :: "('a * 'a) set => (('a => 'b) => 'a => 'b) => 'a => 'b"
  [code func del]: "wfrec R F == %x. THE y. wfrec_rel R (%f x. F (cut f R x) x) x y"

abbreviation acyclicP :: "('a => 'a => bool) => bool" where
  "acyclicP r == acyclic {(x, y). r x y}"

class wellorder = linorder +
  assumes wf: "wf {(x, y). x < y}"


lemma wfP_wf_eq [pred_set_conv]: "wfP (\<lambda>x y. (x, y) \<in> r) = wf r"
  by (simp add: wfP_def)

lemma wfUNIVI: 
   "(!!P x. (ALL x. (ALL y. (y,x) : r --> P(y)) --> P(x)) ==> P(x)) ==> wf(r)"
  unfolding wf_def by blast

lemmas wfPUNIVI = wfUNIVI [to_pred]

text{*Restriction to domain @{term A} and range @{term B}.  If @{term r} is
    well-founded over their intersection, then @{term "wf r"}*}
lemma wfI: 
 "[| r \<subseteq> A <*> B; 
     !!x P. [|\<forall>x. (\<forall>y. (y,x) : r --> P y) --> P x;  x : A; x : B |] ==> P x |]
  ==>  wf r"
  unfolding wf_def by blast

lemma wf_induct: 
    "[| wf(r);           
        !!x.[| ALL y. (y,x): r --> P(y) |] ==> P(x)  
     |]  ==>  P(a)"
  unfolding wf_def by blast

lemmas wfP_induct = wf_induct [to_pred]

lemmas wf_induct_rule = wf_induct [rule_format, consumes 1, case_names less, induct set: wf]

lemmas wfP_induct_rule = wf_induct_rule [to_pred, induct set: wfP]

lemma wf_not_sym: "wf r ==> (a, x) : r ==> (x, a) ~: r"
  by (induct a arbitrary: x set: wf) blast

(* [| wf r;  ~Z ==> (a,x) : r;  (x,a) ~: r ==> Z |] ==> Z *)
lemmas wf_asym = wf_not_sym [elim_format]

lemma wf_not_refl [simp]: "wf r ==> (a, a) ~: r"
  by (blast elim: wf_asym)

(* [| wf r;  (a,a) ~: r ==> PROP W |] ==> PROP W *)
lemmas wf_irrefl = wf_not_refl [elim_format]

subsection {* Basic Results *}

text{*transitive closure of a well-founded relation is well-founded! *}
lemma wf_trancl:
  assumes "wf r"
  shows "wf (r^+)"
proof -
  {
    fix P and x
    assume induct_step: "!!x. (!!y. (y, x) : r^+ ==> P y) ==> P x"
    have "P x"
    proof (rule induct_step)
      fix y assume "(y, x) : r^+"
      with `wf r` show "P y"
      proof (induct x arbitrary: y)
	case (less x)
	note hyp = `\<And>x' y'. (x', x) : r ==> (y', x') : r^+ ==> P y'`
	from `(y, x) : r^+` show "P y"
	proof cases
	  case base
	  show "P y"
	  proof (rule induct_step)
	    fix y' assume "(y', y) : r^+"
	    with `(y, x) : r` show "P y'" by (rule hyp [of y y'])
	  qed
	next
	  case step
	  then obtain x' where "(x', x) : r" and "(y, x') : r^+" by simp
	  then show "P y" by (rule hyp [of x' y])
	qed
      qed
    qed
  } then show ?thesis unfolding wf_def by blast
qed

lemmas wfP_trancl = wf_trancl [to_pred]

lemma wf_converse_trancl: "wf (r^-1) ==> wf ((r^+)^-1)"
  apply (subst trancl_converse [symmetric])
  apply (erule wf_trancl)
  done


text{*Minimal-element characterization of well-foundedness*}
lemma wf_eq_minimal: "wf r = (\<forall>Q x. x\<in>Q --> (\<exists>z\<in>Q. \<forall>y. (y,z)\<in>r --> y\<notin>Q))"
proof (intro iffI strip)
  fix Q :: "'a set" and x
  assume "wf r" and "x \<in> Q"
  then show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q"
    unfolding wf_def
    by (blast dest: spec [of _ "%x. x\<in>Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (y,z) \<in> r \<longrightarrow> y\<notin>Q)"]) 
next
  assume 1: "\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q)"
  show "wf r"
  proof (rule wfUNIVI)
    fix P :: "'a \<Rightarrow> bool" and x
    assume 2: "\<forall>x. (\<forall>y. (y, x) \<in> r \<longrightarrow> P y) \<longrightarrow> P x"
    let ?Q = "{x. \<not> P x}"
    have "x \<in> ?Q \<longrightarrow> (\<exists>z \<in> ?Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> ?Q)"
      by (rule 1 [THEN spec, THEN spec])
    then have "\<not> P x \<longrightarrow> (\<exists>z. \<not> P z \<and> (\<forall>y. (y, z) \<in> r \<longrightarrow> P y))" by simp
    with 2 have "\<not> P x \<longrightarrow> (\<exists>z. \<not> P z \<and> P z)" by fast
    then show "P x" by simp
  qed
qed

lemma wfE_min: 
  assumes "wf R" "x \<in> Q"
  obtains z where "z \<in> Q" "\<And>y. (y, z) \<in> R \<Longrightarrow> y \<notin> Q"
  using assms unfolding wf_eq_minimal by blast

lemma wfI_min:
  "(\<And>x Q. x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q)
  \<Longrightarrow> wf R"
  unfolding wf_eq_minimal by blast

lemmas wfP_eq_minimal = wf_eq_minimal [to_pred]

text {* Well-foundedness of subsets *}
lemma wf_subset: "[| wf(r);  p<=r |] ==> wf(p)"
  apply (simp (no_asm_use) add: wf_eq_minimal)
  apply fast
  done

lemmas wfP_subset = wf_subset [to_pred]

text {* Well-foundedness of the empty relation *}
lemma wf_empty [iff]: "wf({})"
  by (simp add: wf_def)

lemmas wfP_empty [iff] =
  wf_empty [to_pred bot_empty_eq2, simplified bot_fun_eq bot_bool_eq]

lemma wf_Int1: "wf r ==> wf (r Int r')"
  apply (erule wf_subset)
  apply (rule Int_lower1)
  done

lemma wf_Int2: "wf r ==> wf (r' Int r)"
  apply (erule wf_subset)
  apply (rule Int_lower2)
  done  

text{*Well-foundedness of insert*}
lemma wf_insert [iff]: "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)"
apply (rule iffI)
 apply (blast elim: wf_trancl [THEN wf_irrefl]
              intro: rtrancl_into_trancl1 wf_subset 
                     rtrancl_mono [THEN [2] rev_subsetD])
apply (simp add: wf_eq_minimal, safe)
apply (rule allE, assumption, erule impE, blast) 
apply (erule bexE)
apply (rename_tac "a", case_tac "a = x")
 prefer 2
apply blast 
apply (case_tac "y:Q")
 prefer 2 apply blast
apply (rule_tac x = "{z. z:Q & (z,y) : r^*}" in allE)
 apply assumption
apply (erule_tac V = "ALL Q. (EX x. x : Q) --> ?P Q" in thin_rl) 
  --{*essential for speed*}
txt{*Blast with new substOccur fails*}
apply (fast intro: converse_rtrancl_into_rtrancl)
done

text{*Well-foundedness of image*}
lemma wf_prod_fun_image: "[| wf r; inj f |] ==> wf(prod_fun f f ` r)"
apply (simp only: wf_eq_minimal, clarify)
apply (case_tac "EX p. f p : Q")
apply (erule_tac x = "{p. f p : Q}" in allE)
apply (fast dest: inj_onD, blast)
done


subsection {* Well-Foundedness Results for Unions *}

lemma wf_union_compatible:
  assumes "wf R" "wf S"
  assumes "S O R \<subseteq> R"
  shows "wf (R \<union> S)"
proof (rule wfI_min)
  fix x :: 'a and Q 
  let ?Q' = "{x \<in> Q. \<forall>y. (y, x) \<in> R \<longrightarrow> y \<notin> Q}"
  assume "x \<in> Q"
  obtain a where "a \<in> ?Q'"
    by (rule wfE_min [OF `wf R` `x \<in> Q`]) blast
  with `wf S`
  obtain z where "z \<in> ?Q'" and zmin: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> ?Q'" by (erule wfE_min)
  { 
    fix y assume "(y, z) \<in> S"
    then have "y \<notin> ?Q'" by (rule zmin)

    have "y \<notin> Q"
    proof 
      assume "y \<in> Q"
      with `y \<notin> ?Q'` 
      obtain w where "(w, y) \<in> R" and "w \<in> Q" by auto
      from `(w, y) \<in> R` `(y, z) \<in> S` have "(w, z) \<in> S O R" by (rule rel_compI)
      with `S O R \<subseteq> R` have "(w, z) \<in> R" ..
      with `z \<in> ?Q'` have "w \<notin> Q" by blast 
      with `w \<in> Q` show False by contradiction
    qed
  }
  with `z \<in> ?Q'` show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<union> S \<longrightarrow> y \<notin> Q" by blast
qed


text {* Well-foundedness of indexed union with disjoint domains and ranges *}

lemma wf_UN: "[| ALL i:I. wf(r i);  
         ALL i:I. ALL j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {}  
      |] ==> wf(UN i:I. r i)"
apply (simp only: wf_eq_minimal, clarify)
apply (rename_tac A a, case_tac "EX i:I. EX a:A. EX b:A. (b,a) : r i")
 prefer 2
 apply force 
apply clarify
apply (drule bspec, assumption)  
apply (erule_tac x="{a. a:A & (EX b:A. (b,a) : r i) }" in allE)
apply (blast elim!: allE)  
done

lemmas wfP_SUP = wf_UN [where I=UNIV and r="\<lambda>i. {(x, y). r i x y}",
  to_pred SUP_UN_eq2 bot_empty_eq pred_equals_eq, simplified, standard]

lemma wf_Union: 
 "[| ALL r:R. wf r;  
     ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {}  
  |] ==> wf(Union R)"
apply (simp add: Union_def)
apply (blast intro: wf_UN)
done

(*Intuition: we find an (R u S)-min element of a nonempty subset A
             by case distinction.
  1. There is a step a -R-> b with a,b : A.
     Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}.
     By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the
     subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot
     have an S-successor and is thus S-min in A as well.
  2. There is no such step.
     Pick an S-min element of A. In this case it must be an R-min
     element of A as well.

*)
lemma wf_Un:
     "[| wf r; wf s; Domain r Int Range s = {} |] ==> wf(r Un s)"
  using wf_union_compatible[of s r] 
  by (auto simp: Un_ac)

lemma wf_union_merge: 
  "wf (R \<union> S) = wf (R O R \<union> R O S \<union> S)" (is "wf ?A = wf ?B")
proof
  assume "wf ?A"
  with wf_trancl have wfT: "wf (?A^+)" .
  moreover have "?B \<subseteq> ?A^+"
    by (subst trancl_unfold, subst trancl_unfold) blast
  ultimately show "wf ?B" by (rule wf_subset)
next
  assume "wf ?B"

  show "wf ?A"
  proof (rule wfI_min)
    fix Q :: "'a set" and x 
    assume "x \<in> Q"

    with `wf ?B`
    obtain z where "z \<in> Q" and "\<And>y. (y, z) \<in> ?B \<Longrightarrow> y \<notin> Q" 
      by (erule wfE_min)
    then have A1: "\<And>y. (y, z) \<in> R O R \<Longrightarrow> y \<notin> Q"
      and A2: "\<And>y. (y, z) \<in> R O S \<Longrightarrow> y \<notin> Q"
      and A3: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> Q"
      by auto
    
    show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> ?A \<longrightarrow> y \<notin> Q"
    proof (cases "\<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q")
      case True
      with `z \<in> Q` A3 show ?thesis by blast
    next
      case False 
      then obtain z' where "z'\<in>Q" "(z', z) \<in> R" by blast

      have "\<forall>y. (y, z') \<in> ?A \<longrightarrow> y \<notin> Q"
      proof (intro allI impI)
        fix y assume "(y, z') \<in> ?A"
        then show "y \<notin> Q"
        proof
          assume "(y, z') \<in> R" 
          then have "(y, z) \<in> R O R" using `(z', z) \<in> R` ..
          with A1 show "y \<notin> Q" .
        next
          assume "(y, z') \<in> S" 
          then have "(y, z) \<in> R O S" using  `(z', z) \<in> R` ..
          with A2 show "y \<notin> Q" .
        qed
      qed
      with `z' \<in> Q` show ?thesis ..
    qed
  qed
qed

lemma wf_comp_self: "wf R = wf (R O R)"  -- {* special case *}
  by (rule wf_union_merge [where S = "{}", simplified])


subsubsection {* acyclic *}

lemma acyclicI: "ALL x. (x, x) ~: r^+ ==> acyclic r"
  by (simp add: acyclic_def)

lemma wf_acyclic: "wf r ==> acyclic r"
apply (simp add: acyclic_def)
apply (blast elim: wf_trancl [THEN wf_irrefl])
done

lemmas wfP_acyclicP = wf_acyclic [to_pred]

lemma acyclic_insert [iff]:
     "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)"
apply (simp add: acyclic_def trancl_insert)
apply (blast intro: rtrancl_trans)
done

lemma acyclic_converse [iff]: "acyclic(r^-1) = acyclic r"
by (simp add: acyclic_def trancl_converse)

lemmas acyclicP_converse [iff] = acyclic_converse [to_pred]

lemma acyclic_impl_antisym_rtrancl: "acyclic r ==> antisym(r^*)"
apply (simp add: acyclic_def antisym_def)
apply (blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl)
done

(* Other direction:
acyclic = no loops
antisym = only self loops
Goalw [acyclic_def,antisym_def] "antisym( r^* ) ==> acyclic(r - Id)
==> antisym( r^* ) = acyclic(r - Id)";
*)

lemma acyclic_subset: "[| acyclic s; r <= s |] ==> acyclic r"
apply (simp add: acyclic_def)
apply (blast intro: trancl_mono)
done

text{* Wellfoundedness of finite acyclic relations*}

lemma finite_acyclic_wf [rule_format]: "finite r ==> acyclic r --> wf r"
apply (erule finite_induct, blast)
apply (simp (no_asm_simp) only: split_tupled_all)
apply simp
done

lemma finite_acyclic_wf_converse: "[|finite r; acyclic r|] ==> wf (r^-1)"
apply (erule finite_converse [THEN iffD2, THEN finite_acyclic_wf])
apply (erule acyclic_converse [THEN iffD2])
done

lemma wf_iff_acyclic_if_finite: "finite r ==> wf r = acyclic r"
by (blast intro: finite_acyclic_wf wf_acyclic)


subsection{*Well-Founded Recursion*}

text{*cut*}

lemma cuts_eq: "(cut f r x = cut g r x) = (ALL y. (y,x):r --> f(y)=g(y))"
by (simp add: expand_fun_eq cut_def)

lemma cut_apply: "(x,a):r ==> (cut f r a)(x) = f(x)"
by (simp add: cut_def)

text{*Inductive characterization of wfrec combinator; for details see:  
John Harrison, "Inductive definitions: automation and application"*}

lemma wfrec_unique: "[| adm_wf R F; wf R |] ==> EX! y. wfrec_rel R F x y"
apply (simp add: adm_wf_def)
apply (erule_tac a=x in wf_induct) 
apply (rule ex1I)
apply (rule_tac g = "%x. THE y. wfrec_rel R F x y" in wfrec_rel.wfrecI)
apply (fast dest!: theI')
apply (erule wfrec_rel.cases, simp)
apply (erule allE, erule allE, erule allE, erule mp)
apply (fast intro: the_equality [symmetric])
done

lemma adm_lemma: "adm_wf R (%f x. F (cut f R x) x)"
apply (simp add: adm_wf_def)
apply (intro strip)
apply (rule cuts_eq [THEN iffD2, THEN subst], assumption)
apply (rule refl)
done

lemma wfrec: "wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"
apply (simp add: wfrec_def)
apply (rule adm_lemma [THEN wfrec_unique, THEN the1_equality], assumption)
apply (rule wfrec_rel.wfrecI)
apply (intro strip)
apply (erule adm_lemma [THEN wfrec_unique, THEN theI'])
done

subsection {* Code generator setup *}

consts_code
  "wfrec"   ("\<module>wfrec?")
attach {*
fun wfrec f x = f (wfrec f) x;
*}


subsection {*LEAST and wellorderings*}

text{* See also @{text wf_linord_ex_has_least} and its consequences in
 @{text Wellfounded_Relations.ML}*}

lemma wellorder_Least_lemma [rule_format]:
     "P (k::'a::wellorder) --> P (LEAST x. P(x)) & (LEAST x. P(x)) <= k"
apply (rule_tac a = k in wf [THEN wf_induct])
apply (rule impI)
apply (rule classical)
apply (rule_tac s = x in Least_equality [THEN ssubst], auto)
apply (auto simp add: linorder_not_less [symmetric])
done

lemmas LeastI   = wellorder_Least_lemma [THEN conjunct1, standard]
lemmas Least_le = wellorder_Least_lemma [THEN conjunct2, standard]

-- "The following 3 lemmas are due to Brian Huffman"
lemma LeastI_ex: "EX x::'a::wellorder. P x ==> P (Least P)"
apply (erule exE)
apply (erule LeastI)
done

lemma LeastI2:
  "[| P (a::'a::wellorder); !!x. P x ==> Q x |] ==> Q (Least P)"
by (blast intro: LeastI)

lemma LeastI2_ex:
  "[| EX a::'a::wellorder. P a; !!x. P x ==> Q x |] ==> Q (Least P)"
by (blast intro: LeastI_ex)

lemma not_less_Least: "[| k < (LEAST x. P x) |] ==> ~P (k::'a::wellorder)"
apply (simp (no_asm_use) add: linorder_not_le [symmetric])
apply (erule contrapos_nn)
apply (erule Least_le)
done

subsection {* @{typ nat} is well-founded *}

lemma less_nat_rel: "op < = (\<lambda>m n. n = Suc m)^++"
proof (rule ext, rule ext, rule iffI)
  fix n m :: nat
  assume "m < n"
  then show "(\<lambda>m n. n = Suc m)^++ m n"
  proof (induct n)
    case 0 then show ?case by auto
  next
    case (Suc n) then show ?case
      by (auto simp add: less_Suc_eq_le le_less intro: tranclp.trancl_into_trancl)
  qed
next
  fix n m :: nat
  assume "(\<lambda>m n. n = Suc m)^++ m n"
  then show "m < n"
    by (induct n)
      (simp_all add: less_Suc_eq_le reflexive le_less)
qed

definition
  pred_nat :: "(nat * nat) set" where
  "pred_nat = {(m, n). n = Suc m}"

definition
  less_than :: "(nat * nat) set" where
  "less_than = pred_nat^+"

lemma less_eq: "(m, n) \<in> pred_nat^+ \<longleftrightarrow> m < n"
  unfolding less_nat_rel pred_nat_def trancl_def by simp

lemma pred_nat_trancl_eq_le:
  "(m, n) \<in> pred_nat^* \<longleftrightarrow> m \<le> n"
  unfolding less_eq rtrancl_eq_or_trancl by auto

lemma wf_pred_nat: "wf pred_nat"
  apply (unfold wf_def pred_nat_def, clarify)
  apply (induct_tac x, blast+)
  done

lemma wf_less_than [iff]: "wf less_than"
  by (simp add: less_than_def wf_pred_nat [THEN wf_trancl])

lemma trans_less_than [iff]: "trans less_than"
  by (simp add: less_than_def trans_trancl)

lemma less_than_iff [iff]: "((x,y): less_than) = (x<y)"
  by (simp add: less_than_def less_eq)

lemma wf_less: "wf {(x, y::nat). x < y}"
  using wf_less_than by (simp add: less_than_def less_eq [symmetric])

text {* Type @{typ nat} is a wellfounded order *}

instance nat :: wellorder
  by intro_classes
    (assumption |
      rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+

text {* @{text LEAST} theorems for type @{typ nat}*}

lemma Least_Suc:
     "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
  apply (case_tac "n", auto)
  apply (frule LeastI)
  apply (drule_tac P = "%x. P (Suc x) " in LeastI)
  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
  apply (erule_tac [2] Least_le)
  apply (case_tac "LEAST x. P x", auto)
  apply (drule_tac P = "%x. P (Suc x) " in Least_le)
  apply (blast intro: order_antisym)
  done

lemma Least_Suc2:
   "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
  apply (erule (1) Least_Suc [THEN ssubst])
  apply simp
  done

lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)"
  apply (cases n)
   apply blast
  apply (rule_tac x="LEAST k. P(k)" in exI)
  apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex)
  done

lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)"
  apply (cases n)
   apply blast
  apply (frule (1) ex_least_nat_le)
  apply (erule exE)
  apply (case_tac k)
   apply simp
  apply (rename_tac k1)
  apply (rule_tac x=k1 in exI)
  apply fastsimp
  done


subsection {* Accessible Part *}

text {*
 Inductive definition of the accessible part @{term "acc r"} of a
 relation; see also \cite{paulin-tlca}.
*}

inductive_set
  acc :: "('a * 'a) set => 'a set"
  for r :: "('a * 'a) set"
  where
    accI: "(!!y. (y, x) : r ==> y : acc r) ==> x : acc r"

abbreviation
  termip :: "('a => 'a => bool) => 'a => bool" where
  "termip r == accp (r\<inverse>\<inverse>)"

abbreviation
  termi :: "('a * 'a) set => 'a set" where
  "termi r == acc (r\<inverse>)"

lemmas accpI = accp.accI

text {* Induction rules *}

theorem accp_induct:
  assumes major: "accp r a"
  assumes hyp: "!!x. accp r x ==> \<forall>y. r y x --> P y ==> P x"
  shows "P a"
  apply (rule major [THEN accp.induct])
  apply (rule hyp)
   apply (rule accp.accI)
   apply fast
  apply fast
  done

theorems accp_induct_rule = accp_induct [rule_format, induct set: accp]

theorem accp_downward: "accp r b ==> r a b ==> accp r a"
  apply (erule accp.cases)
  apply fast
  done

lemma not_accp_down:
  assumes na: "\<not> accp R x"
  obtains z where "R z x" and "\<not> accp R z"
proof -
  assume a: "\<And>z. \<lbrakk>R z x; \<not> accp R z\<rbrakk> \<Longrightarrow> thesis"

  show thesis
  proof (cases "\<forall>z. R z x \<longrightarrow> accp R z")
    case True
    hence "\<And>z. R z x \<Longrightarrow> accp R z" by auto
    hence "accp R x"
      by (rule accp.accI)
    with na show thesis ..
  next
    case False then obtain z where "R z x" and "\<not> accp R z"
      by auto
    with a show thesis .
  qed
qed

lemma accp_downwards_aux: "r\<^sup>*\<^sup>* b a ==> accp r a --> accp r b"
  apply (erule rtranclp_induct)
   apply blast
  apply (blast dest: accp_downward)
  done

theorem accp_downwards: "accp r a ==> r\<^sup>*\<^sup>* b a ==> accp r b"
  apply (blast dest: accp_downwards_aux)
  done

theorem accp_wfPI: "\<forall>x. accp r x ==> wfP r"
  apply (rule wfPUNIVI)
  apply (induct_tac P x rule: accp_induct)
   apply blast
  apply blast
  done

theorem accp_wfPD: "wfP r ==> accp r x"
  apply (erule wfP_induct_rule)
  apply (rule accp.accI)
  apply blast
  done

theorem wfP_accp_iff: "wfP r = (\<forall>x. accp r x)"
  apply (blast intro: accp_wfPI dest: accp_wfPD)
  done


text {* Smaller relations have bigger accessible parts: *}

lemma accp_subset:
  assumes sub: "R1 \<le> R2"
  shows "accp R2 \<le> accp R1"
proof (rule predicate1I)
  fix x assume "accp R2 x"
  then show "accp R1 x"
  proof (induct x)
    fix x
    assume ih: "\<And>y. R2 y x \<Longrightarrow> accp R1 y"
    with sub show "accp R1 x"
      by (blast intro: accp.accI)
  qed
qed


text {* This is a generalized induction theorem that works on
  subsets of the accessible part. *}

lemma accp_subset_induct:
  assumes subset: "D \<le> accp R"
    and dcl: "\<And>x z. \<lbrakk>D x; R z x\<rbrakk> \<Longrightarrow> D z"
    and "D x"
    and istep: "\<And>x. \<lbrakk>D x; (\<And>z. R z x \<Longrightarrow> P z)\<rbrakk> \<Longrightarrow> P x"
  shows "P x"
proof -
  from subset and `D x`
  have "accp R x" ..
  then show "P x" using `D x`
  proof (induct x)
    fix x
    assume "D x"
      and "\<And>y. R y x \<Longrightarrow> D y \<Longrightarrow> P y"
    with dcl and istep show "P x" by blast
  qed
qed


text {* Set versions of the above theorems *}

lemmas acc_induct = accp_induct [to_set]

lemmas acc_induct_rule = acc_induct [rule_format, induct set: acc]

lemmas acc_downward = accp_downward [to_set]

lemmas not_acc_down = not_accp_down [to_set]

lemmas acc_downwards_aux = accp_downwards_aux [to_set]

lemmas acc_downwards = accp_downwards [to_set]

lemmas acc_wfI = accp_wfPI [to_set]

lemmas acc_wfD = accp_wfPD [to_set]

lemmas wf_acc_iff = wfP_accp_iff [to_set]

lemmas acc_subset = accp_subset [to_set pred_subset_eq]

lemmas acc_subset_induct = accp_subset_induct [to_set pred_subset_eq]


subsection {* Tools for building wellfounded relations *}

text {* Inverse Image *}

lemma wf_inv_image [simp,intro!]: "wf(r) ==> wf(inv_image r (f::'a=>'b))"
apply (simp (no_asm_use) add: inv_image_def wf_eq_minimal)
apply clarify
apply (subgoal_tac "EX (w::'b) . w : {w. EX (x::'a) . x: Q & (f x = w) }")
prefer 2 apply (blast del: allE)
apply (erule allE)
apply (erule (1) notE impE)
apply blast
done

lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)"
  by (auto simp:inv_image_def)

text {* Measure functions into @{typ nat} *}

definition measure :: "('a => nat) => ('a * 'a)set"
where "measure == inv_image less_than"

lemma in_measure[simp]: "((x,y) : measure f) = (f x < f y)"
  by (simp add:measure_def)

lemma wf_measure [iff]: "wf (measure f)"
apply (unfold measure_def)
apply (rule wf_less_than [THEN wf_inv_image])
done

text{* Lexicographic combinations *}

definition
 lex_prod  :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
               (infixr "<*lex*>" 80)
where
    "ra <*lex*> rb == {((a,b),(a',b')). (a,a') : ra | a=a' & (b,b') : rb}"

lemma wf_lex_prod [intro!]: "[| wf(ra); wf(rb) |] ==> wf(ra <*lex*> rb)"
apply (unfold wf_def lex_prod_def) 
apply (rule allI, rule impI)
apply (simp (no_asm_use) only: split_paired_All)
apply (drule spec, erule mp) 
apply (rule allI, rule impI)
apply (drule spec, erule mp, blast) 
done

lemma in_lex_prod[simp]: 
  "(((a,b),(a',b')): r <*lex*> s) = ((a,a'): r \<or> (a = a' \<and> (b, b') : s))"
  by (auto simp:lex_prod_def)

text{* @{term "op <*lex*>"} preserves transitivity *}

lemma trans_lex_prod [intro!]: 
    "[| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)"
by (unfold trans_def lex_prod_def, blast) 

text {* lexicographic combinations with measure functions *}

definition 
  mlex_prod :: "('a \<Rightarrow> nat) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (infixr "<*mlex*>" 80)
where
  "f <*mlex*> R = inv_image (less_than <*lex*> R) (%x. (f x, x))"

lemma wf_mlex: "wf R \<Longrightarrow> wf (f <*mlex*> R)"
unfolding mlex_prod_def
by auto

lemma mlex_less: "f x < f y \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
unfolding mlex_prod_def by simp

lemma mlex_leq: "f x \<le> f y \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
unfolding mlex_prod_def by auto

text {* proper subset relation on finite sets *}

definition finite_psubset  :: "('a set * 'a set) set"
where "finite_psubset == {(A,B). A < B & finite B}"

lemma wf_finite_psubset: "wf(finite_psubset)"
apply (unfold finite_psubset_def)
apply (rule wf_measure [THEN wf_subset])
apply (simp add: measure_def inv_image_def less_than_def less_eq)
apply (fast elim!: psubset_card_mono)
done

lemma trans_finite_psubset: "trans finite_psubset"
by (simp add: finite_psubset_def less_le trans_def, blast)




text {*Wellfoundedness of @{text same_fst}*}

definition
 same_fst :: "('a => bool) => ('a => ('b * 'b)set) => (('a*'b)*('a*'b))set"
where
    "same_fst P R == {((x',y'),(x,y)) . x'=x & P x & (y',y) : R x}"
   --{*For @{text rec_def} declarations where the first n parameters
       stay unchanged in the recursive call. 
       See @{text "Library/While_Combinator.thy"} for an application.*}

lemma same_fstI [intro!]:
     "[| P x; (y',y) : R x |] ==> ((x,y'),(x,y)) : same_fst P R"
by (simp add: same_fst_def)

lemma wf_same_fst:
  assumes prem: "(!!x. P x ==> wf(R x))"
  shows "wf(same_fst P R)"
apply (simp cong del: imp_cong add: wf_def same_fst_def)
apply (intro strip)
apply (rename_tac a b)
apply (case_tac "wf (R a)")
 apply (erule_tac a = b in wf_induct, blast)
apply (blast intro: prem)
done


subsection{*Weakly decreasing sequences (w.r.t. some well-founded order) 
   stabilize.*}

text{*This material does not appear to be used any longer.*}

lemma lemma1: "[| ALL i. (f (Suc i), f i) : r^* |] ==> (f (i+k), f i) : r^*"
apply (induct_tac "k", simp_all)
apply (blast intro: rtrancl_trans)
done

lemma lemma2: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]  
      ==> ALL m. f m = x --> (EX i. ALL k. f (m+i+k) = f (m+i))"
apply (erule wf_induct, clarify)
apply (case_tac "EX j. (f (m+j), f m) : r^+")
 apply clarify
 apply (subgoal_tac "EX i. ALL k. f ((m+j) +i+k) = f ( (m+j) +i) ")
  apply clarify
  apply (rule_tac x = "j+i" in exI)
  apply (simp add: add_ac, blast)
apply (rule_tac x = 0 in exI, clarsimp)
apply (drule_tac i = m and k = k in lemma1)
apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
done

lemma wf_weak_decr_stable: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]  
      ==> EX i. ALL k. f (i+k) = f i"
apply (drule_tac x = 0 in lemma2 [THEN spec], auto)
done

(* special case of the theorem above: <= *)
lemma weak_decr_stable:
     "ALL i. f (Suc i) <= ((f i)::nat) ==> EX i. ALL k. f (i+k) = f i"
apply (rule_tac r = pred_nat in wf_weak_decr_stable)
apply (simp add: pred_nat_trancl_eq_le)
apply (intro wf_trancl wf_pred_nat)
done


subsection {* size of a datatype value *}

use "Tools/function_package/size.ML"

setup Size.setup

lemma nat_size [simp, code func]: "size (n\<Colon>nat) = n"
  by (induct n) simp_all


end