1 section {* Demonstrating the interface SVC *}
7 subsubsection {* Propositional Logic *}
10 @{text "blast"}'s runtime for this type of problem appears to be exponential
11 in its length, though @{text "fast"} manages.
13 lemma "P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P=P"
14 by (tactic {* svc_tac 1 *})
17 subsection {* Some big tautologies supplied by John Harrison *}
20 @{text "auto"} manages; @{text "blast"} and @{text "fast"} take a minute or more.
22 lemma puz013_1: "~(~v12 &
33 (~v10 | ~v0 | ~v4 | v11) &
42 by (tactic {* svc_tac 1 *})
45 "(GE17 <-> ~IN4 & ~IN3 & ~IN2 & ~IN1) &
46 (GE0 <-> GE17 & ~IN5) &
47 (GE22 <-> ~IN9 & ~IN7 & ~IN6 & IN0) &
48 (GE19 <-> ~IN5 & ~IN4 & ~IN3 & ~IN0) &
49 (GE20 <-> ~IN7 & ~IN6) &
50 (GE18 <-> ~IN6 & ~IN2 & ~IN1 & ~IN0) &
51 (GE21 <-> IN9 & ~IN7 & IN6 & ~IN0) &
52 (GE23 <-> GE22 & GE0) &
53 (GE25 <-> ~IN9 & ~IN7 & IN6 & ~IN0) &
54 (GE26 <-> IN9 & ~IN7 & ~IN6 & IN0) &
55 (GE2 <-> GE20 & GE19) &
56 (GE1 <-> GE18 & ~IN7) &
57 (GE24 <-> GE23 | GE21 & GE0) &
58 (GE5 <-> ~IN5 & IN4 | IN5 & ~IN4) &
59 (GE6 <-> GE0 & IN7 & ~IN6 & ~IN0) &
60 (GE12 <-> GE26 & GE0 | GE25 & GE0) &
61 (GE14 <-> GE2 & IN8 & ~IN2 & IN1) &
62 (GE27 <-> ~IN8 & IN5 & ~IN4 & ~IN3) &
63 (GE9 <-> GE1 & ~IN5 & ~IN4 & IN3) &
64 (GE7 <-> GE24 | GE2 & IN2 & ~IN1) &
65 (GE10 <-> GE6 | GE5 & GE1 & ~IN3) &
66 (GE15 <-> ~IN8 | IN9) &
67 (GE16 <-> GE12 | GE14 & ~IN9) &
69 GE5 & GE1 & IN8 & ~IN3 |
70 GE0 & ~IN7 & IN6 & ~IN0 |
72 (GE13 <-> GE27 & GE1) &
73 (GE11 <-> GE9 | GE6 & ~IN8) &
74 (GE8 <-> GE1 & ~IN5 & IN4 & ~IN3 | GE2 & ~IN2 & IN1) &
75 (OUT0 <-> GE7 & ~IN8) &
76 (OUT1 <-> GE7 & IN8) &
77 (OUT2 <-> GE8 & ~IN9 | GE10 & IN8) &
78 (OUT3 <-> GE8 & IN9 & ~IN8 | GE11 & ~IN9 | GE12 & ~IN8) &
79 (OUT4 <-> GE11 & IN9 | GE12 & IN8) &
80 (OUT5 <-> GE14 & IN9) &
81 (OUT6 <-> GE13 & ~IN9) &
82 (OUT7 <-> GE13 & IN9) &
83 (OUT8 <-> GE9 & ~IN8 | GE15 & GE6 | GE4 & IN9) &
84 (OUT9 <-> GE9 & IN8 | ~GE15 & GE10 | GE16) &
86 (WRES0 <-> ~IN5 & ~IN4 & ~IN3 & ~IN2 & ~IN1) &
87 (WRES1 <-> ~IN7 & ~IN6 & ~IN2 & ~IN1 & ~IN0) &
88 (WRES2 <-> ~IN7 & ~IN6 & ~IN5 & ~IN4 & ~IN3 & ~IN0) &
89 (WRES5 <-> ~IN5 & IN4 | IN5 & ~IN4) &
90 (WRES6 <-> WRES0 & IN7 & ~IN6 & ~IN0) &
91 (WRES9 <-> WRES1 & ~IN5 & ~IN4 & IN3) &
93 WRES0 & ~IN9 & ~IN7 & ~IN6 & IN0 |
94 WRES0 & IN9 & ~IN7 & IN6 & ~IN0 |
96 (WRES10 <-> WRES6 | WRES5 & WRES1 & ~IN3) &
98 WRES0 & IN9 & ~IN7 & ~IN6 & IN0 |
99 WRES0 & ~IN9 & ~IN7 & IN6 & ~IN0) &
100 (WRES14 <-> WRES2 & IN8 & ~IN2 & IN1) &
101 (WRES15 <-> ~IN8 | IN9) &
103 WRES5 & WRES1 & IN8 & ~IN3 |
105 WRES0 & ~IN7 & IN6 & ~IN0) &
106 (WRES13 <-> WRES1 & ~IN8 & IN5 & ~IN4 & ~IN3) &
107 (WRES11 <-> WRES9 | WRES6 & ~IN8) &
108 (WRES8 <-> WRES1 & ~IN5 & IN4 & ~IN3 | WRES2 & ~IN2 & IN1)
109 --> (OUT10 <-> WRES7) &
110 (OUT9 <-> WRES9 & IN8 | WRES12 | WRES14 & ~IN9 | ~WRES15 & WRES10) &
111 (OUT8 <-> WRES9 & ~IN8 | WRES15 & WRES6 | WRES4 & IN9) &
112 (OUT7 <-> WRES13 & IN9) &
113 (OUT6 <-> WRES13 & ~IN9) &
114 (OUT5 <-> WRES14 & IN9) &
115 (OUT4 <-> WRES11 & IN9 | WRES12 & IN8) &
116 (OUT3 <-> WRES8 & IN9 & ~IN8 | WRES11 & ~IN9 | WRES12 & ~IN8) &
117 (OUT2 <-> WRES8 & ~IN9 | WRES10 & IN8) &
118 (OUT1 <-> WRES7 & IN8) &
119 (OUT0 <-> WRES7 & ~IN8)"
120 by (tactic {* svc_tac 1 *})
122 text {* @{text "fast"} only takes a couple of seconds. *}
124 lemma sqn_be: "(GE0 <-> IN6 & IN1 | ~IN6 & ~IN1) &
125 (GE8 <-> ~IN3 & ~IN1) &
126 (GE5 <-> IN6 | IN5) &
127 (GE9 <-> ~GE0 | IN2 | ~IN5) &
128 (GE1 <-> IN3 | ~IN0) &
129 (GE11 <-> GE8 & IN4) &
130 (GE3 <-> ~IN4 | ~IN2) &
131 (GE34 <-> ~GE5 & IN4 | ~GE9) &
132 (GE2 <-> ~IN4 & IN1) &
133 (GE14 <-> ~GE1 & ~IN4) &
134 (GE19 <-> GE11 & ~GE5) &
135 (GE13 <-> GE8 & ~GE3 & ~IN0) &
136 (GE20 <-> ~IN5 & IN2 | GE34) &
137 (GE12 <-> GE2 & ~IN3) &
138 (GE27 <-> GE14 & IN6 | GE19) &
139 (GE10 <-> ~IN6 | IN5) &
140 (GE28 <-> GE13 | GE20 & ~GE1) &
141 (GE6 <-> ~IN5 | IN6) &
142 (GE15 <-> GE2 & IN2) &
143 (GE29 <-> GE27 | GE12 & GE5) &
144 (GE4 <-> IN3 & ~IN0) &
145 (GE21 <-> ~GE10 & ~IN1 | ~IN5 & ~IN2) &
146 (GE30 <-> GE28 | GE14 & IN2) &
147 (GE31 <-> GE29 | GE15 & ~GE6) &
148 (GE7 <-> ~IN6 | ~IN5) &
149 (GE17 <-> ~GE3 & ~IN1) &
150 (GE18 <-> GE4 & IN2) &
151 (GE16 <-> GE2 & IN0) &
152 (GE23 <-> GE19 | GE9 & ~GE1) &
153 (GE32 <-> GE15 & ~IN6 & ~IN0 | GE21 & GE4 & ~IN4 | GE30 | GE31) &
159 (GE25 <-> GE14 & ~GE6 | GE13 & ~GE5 | GE16 & ~IN5 | GE15 & GE1) &
165 (GE24 <-> GE23 | GE16 & GE7) &
167 GE6 & IN4 & ~IN1 & IN0 | GE18 & GE0 & ~IN5 | GE12 & ~GE10 | GE24) &
168 (OUT1 <-> GE26 | GE25 | ~GE5 & GE4 & GE3 | GE7 & ~GE1 & IN1) &
169 (OUT2 <-> GE33 | GE32) &
170 (WRES8 <-> ~IN3 & ~IN1) &
171 (WRES0 <-> IN6 & IN1 | ~IN6 & ~IN1) &
172 (WRES2 <-> ~IN4 & IN1) &
173 (WRES3 <-> ~IN4 | ~IN2) &
174 (WRES1 <-> IN3 | ~IN0) &
175 (WRES4 <-> IN3 & ~IN0) &
176 (WRES5 <-> IN6 | IN5) &
177 (WRES11 <-> WRES8 & IN4) &
178 (WRES9 <-> ~WRES0 | IN2 | ~IN5) &
179 (WRES10 <-> ~IN6 | IN5) &
180 (WRES6 <-> ~IN5 | IN6) &
181 (WRES7 <-> ~IN6 | ~IN5) &
182 (WRES12 <-> WRES2 & ~IN3) &
183 (WRES13 <-> WRES8 & ~WRES3 & ~IN0) &
184 (WRES14 <-> ~WRES1 & ~IN4) &
185 (WRES15 <-> WRES2 & IN2) &
186 (WRES17 <-> ~WRES3 & ~IN1) &
187 (WRES18 <-> WRES4 & IN2) &
188 (WRES19 <-> WRES11 & ~WRES5) &
189 (WRES20 <-> ~IN5 & IN2 | ~WRES5 & IN4 | ~WRES9) &
190 (WRES21 <-> ~WRES10 & ~IN1 | ~IN5 & ~IN2) &
191 (WRES16 <-> WRES2 & IN0)
193 WRES11 & IN5 & ~IN0 |
194 ~WRES7 & WRES4 & ~WRES3 |
200 WRES15 & ~IN6 & ~IN0 |
201 WRES17 & ~WRES7 & IN3 |
202 WRES18 & ~WRES6 & ~IN4 |
204 WRES21 & WRES4 & ~IN4 |
207 ~WRES5 & WRES4 & WRES3 |
208 WRES7 & ~WRES1 & IN1 |
210 WRES10 & WRES4 & IN1 |
211 WRES12 & IN5 & ~IN2 |
216 WRES17 & ~WRES6 & IN0) &
218 WRES6 & IN4 & ~IN1 & IN0 |
222 WRES18 & WRES0 & ~IN5 |
224 by (tactic {* svc_tac 1 *})
227 subsection {* Linear arithmetic *}
229 lemma "x ~= 14 & x ~= 13 & x ~= 12 & x ~= 11 & x ~= 10 & x ~= 9 &
230 x ~= 8 & x ~= 7 & x ~= 6 & x ~= 5 & x ~= 4 & x ~= 3 &
231 x ~= 2 & x ~= 1 & 0 < x & x < 16 --> 15 = (x::int)"
232 by (tactic {* svc_tac 1 *})
234 text {*merely to test polarity handling in the presence of biconditionals*}
235 lemma "(x < (y::int)) = (x+1 <= y)"
236 by (tactic {* svc_tac 1 *})
239 subsection {* Natural number examples requiring implicit "non-negative" assumptions *}
241 lemma "(3::nat)*a <= 2 + 4*b + 6*c & 11 <= 2*a + b + 2*c &
242 a + 3*b <= 5 + 2*c --> 2 + 3*b <= 2*a + 6*c"
243 by (tactic {* svc_tac 1 *})
245 lemma "(n::nat) < 2 ==> (n = 0) | (n = 1)"
246 by (tactic {* svc_tac 1 *})