Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
1 (* Title: HOL/Tools/semiring_normalizer.ML
2 Author: Amine Chaieb, TU Muenchen
4 Normalization of expressions in semirings.
7 signature SEMIRING_NORMALIZER =
10 val match: Proof.context -> cterm -> entry option
11 val the_semiring: Proof.context -> thm -> cterm list * thm list
12 val the_ring: Proof.context -> thm -> cterm list * thm list
13 val the_field: Proof.context -> thm -> cterm list * thm list
14 val the_idom: Proof.context -> thm -> thm list
15 val the_ideal: Proof.context -> thm -> thm list
16 val declare: thm -> {semiring: term list * thm list, ring: term list * thm list,
17 field: term list * thm list, idom: thm list, ideal: thm list} ->
18 local_theory -> local_theory
20 val semiring_normalize_conv: Proof.context -> conv
21 val semiring_normalize_ord_conv: Proof.context -> (cterm -> cterm -> bool) -> conv
22 val semiring_normalize_wrapper: Proof.context -> entry -> conv
23 val semiring_normalize_ord_wrapper: Proof.context -> entry
24 -> (cterm -> cterm -> bool) -> conv
25 val semiring_normalizers_conv: cterm list -> cterm list * thm list
26 -> cterm list * thm list -> cterm list * thm list ->
27 (cterm -> bool) * conv * conv * conv -> (cterm -> cterm -> bool) ->
28 {add: Proof.context -> conv,
29 mul: Proof.context -> conv,
30 neg: Proof.context -> conv,
31 main: Proof.context -> conv,
32 pow: Proof.context -> conv,
33 sub: Proof.context -> conv}
34 val semiring_normalizers_ord_wrapper: Proof.context -> entry ->
35 (cterm -> cterm -> bool) ->
36 {add: Proof.context -> conv,
37 mul: Proof.context -> conv,
38 neg: Proof.context -> conv,
39 main: Proof.context -> conv,
40 pow: Proof.context -> conv,
41 sub: Proof.context -> conv}
44 structure Semiring_Normalizer: SEMIRING_NORMALIZER =
51 semiring: cterm list * thm list,
52 ring: cterm list * thm list,
53 field: cterm list * thm list,
56 {is_const: cterm -> bool,
57 dest_const: cterm -> Rat.rat,
58 mk_const: ctyp -> Rat.rat -> cterm,
59 conv: Proof.context -> cterm -> thm};
61 structure Data = Generic_Data
63 type T = (thm * entry) list;
66 fun merge data = AList.merge Thm.eq_thm (K true) data;
69 fun the_rules ctxt = fst o the o AList.lookup Thm.eq_thm (Data.get (Context.Proof ctxt))
71 val the_semiring = #semiring oo the_rules
72 val the_ring = #ring oo the_rules
73 val the_field = #field oo the_rules
74 val the_idom = #idom oo the_rules
75 val the_ideal = #ideal oo the_rules
80 ({vars, semiring = (sr_ops, sr_rules),
81 ring = (r_ops, r_rules), field = (f_ops, f_rules), idom, ideal},
86 val substT = Thm.instantiate (instT, []);
87 val substT_cterm = Drule.cterm_rule substT;
89 val vars' = map substT_cterm vars;
90 val semiring' = (map substT_cterm sr_ops, map substT sr_rules);
91 val ring' = (map substT_cterm r_ops, map substT r_rules);
92 val field' = (map substT_cterm f_ops, map substT f_rules);
93 val idom' = map substT idom;
94 val ideal' = map substT ideal;
96 val result = ({vars = vars', semiring = semiring',
97 ring = ring', field = field', idom = idom', ideal = ideal'}, fns);
99 in (case try Thm.match (pat, tm) of
101 | SOME (instT, _) => h instT)
105 entry as ({semiring = (sr_ops, _), ring = (r_ops, _), field = (f_ops, _), ...}, _): entry) =
106 get_first (match_inst entry) (sr_ops @ r_ops @ f_ops);
107 in get_first match_struct (Data.get (Context.Proof ctxt)) end;
110 (* extra-logical functions *)
112 val semiring_norm_ss =
113 simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms semiring_norm});
116 {is_const = can HOLogic.dest_number o Thm.term_of,
117 dest_const = (fn ct =>
119 (HOLogic.dest_number (Thm.term_of ct)
120 handle TERM _ => error "ring_dest_const"))),
121 mk_const = (fn cT => fn x => Numeral.mk_cnumber cT
122 (case Rat.quotient_of_rat x of (i, 1) => i | _ => error "int_of_rat: bad int")),
124 Simplifier.rewrite (put_simpset semiring_norm_ss ctxt)
125 then_conv Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms numeral_One}))};
127 val divide_const = Thm.cterm_of @{context} (Logic.varify_global @{term "op /"});
128 val [divide_tvar] = Term.add_tvars (Thm.term_of divide_const) [];
132 fun numeral_is_const ct =
133 case Thm.term_of ct of
134 Const (@{const_name Rings.divide},_) $ a $ b =>
135 can HOLogic.dest_number a andalso can HOLogic.dest_number b
136 | Const (@{const_name Fields.inverse},_)$t => can HOLogic.dest_number t
137 | t => can HOLogic.dest_number t
138 fun dest_const ct = ((case Thm.term_of ct of
139 Const (@{const_name Rings.divide},_) $ a $ b=>
140 Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b))
141 | Const (@{const_name Fields.inverse},_)$t =>
142 Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t)))
143 | t => Rat.rat_of_int (snd (HOLogic.dest_number t)))
144 handle TERM _ => error "ring_dest_const")
146 let val (a, b) = Rat.quotient_of_rat x
147 in if b = 1 then Numeral.mk_cnumber cT a
149 (Thm.apply (Thm.instantiate_cterm ([(divide_tvar, cT)], []) divide_const)
150 (Numeral.mk_cnumber cT a))
151 (Numeral.mk_cnumber cT b)
154 {is_const = numeral_is_const,
155 dest_const = dest_const,
157 conv = Numeral_Simprocs.field_comp_conv}
161 (* logical content *)
163 val semiringN = "semiring";
165 val fieldN = "field";
169 {semiring = raw_semiring0, ring = raw_ring0, field = raw_field0, idom = raw_idom, ideal = raw_ideal}
172 val ctxt' = fold Variable.auto_fixes (fst raw_semiring0 @ fst raw_ring0 @ fst raw_field0) lthy;
173 val prepare_ops = apfst (Variable.export_terms ctxt' lthy #> map (Thm.cterm_of lthy));
174 val raw_semiring = prepare_ops raw_semiring0;
175 val raw_ring = prepare_ops raw_ring0;
176 val raw_field = prepare_ops raw_field0;
178 lthy |> Local_Theory.declaration {syntax = false, pervasive = false} (fn phi => fn context =>
180 val ctxt = Context.proof_of context;
181 val key = Morphism.thm phi raw_key;
182 fun transform_ops_rules (ops, rules) =
183 (map (Morphism.cterm phi) ops, Morphism.fact phi rules);
184 val (sr_ops, sr_rules) = transform_ops_rules raw_semiring;
185 val (r_ops, r_rules) = transform_ops_rules raw_ring;
186 val (f_ops, f_rules) = transform_ops_rules raw_field;
187 val idom = Morphism.fact phi raw_idom;
188 val ideal = Morphism.fact phi raw_ideal;
190 fun check kind name xs n =
191 null xs orelse length xs = n orelse
192 error ("Expected " ^ string_of_int n ^ " " ^ kind ^ " for " ^ name);
193 val check_ops = check "operations";
194 val check_rules = check "rules";
196 check_ops semiringN sr_ops 5 andalso
197 check_rules semiringN sr_rules 36 andalso
198 check_ops ringN r_ops 2 andalso
199 check_rules ringN r_rules 2 andalso
200 check_ops fieldN f_ops 2 andalso
201 check_rules fieldN f_rules 2 andalso
202 check_rules idomN idom 2;
204 val mk_meta = Local_Defs.meta_rewrite_rule ctxt;
205 val sr_rules' = map mk_meta sr_rules;
206 val r_rules' = map mk_meta r_rules;
207 val f_rules' = map mk_meta f_rules;
209 fun rule i = nth sr_rules' (i - 1);
211 val (cx, cy) = Thm.dest_binop (hd sr_ops);
212 val cz = rule 34 |> Thm.rhs_of |> Thm.dest_arg |> Thm.dest_arg;
213 val cn = rule 36 |> Thm.rhs_of |> Thm.dest_arg |> Thm.dest_arg;
214 val ((clx, crx), (cly, cry)) =
215 rule 13 |> Thm.rhs_of |> Thm.dest_binop |> apply2 Thm.dest_binop;
216 val ((ca, cb), (cc, cd)) =
217 rule 20 |> Thm.lhs_of |> Thm.dest_binop |> apply2 Thm.dest_binop;
218 val cm = rule 1 |> Thm.rhs_of |> Thm.dest_arg;
219 val (cp, cq) = rule 26 |> Thm.lhs_of |> Thm.dest_binop |> apply2 Thm.dest_arg;
221 val vars = [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry];
223 val semiring = (sr_ops, sr_rules');
224 val ring = (r_ops, r_rules');
225 val field = (f_ops, f_rules');
226 val ideal' = map (Thm.symmetric o mk_meta) ideal
229 |> Data.map (AList.update Thm.eq_thm (key,
230 ({vars = vars, semiring = semiring, ring = ring, field = field, idom = idom, ideal = ideal'},
231 (if null f_ops then semiring_funs else field_funs))))
239 (case Thm.term_of ct of
243 val concl = Thm.cprop_of #> Thm.dest_arg;
245 fun is_binop ct ct' =
246 (case Thm.term_of ct' of
247 c $ _ $ _ => Thm.term_of ct aconv c
250 fun dest_binop ct ct' =
251 if is_binop ct ct' then Thm.dest_binop ct'
252 else raise CTERM ("dest_binop: bad binop", [ct, ct'])
254 fun inst_thm inst = Thm.instantiate ([], map (apfst (dest_Var o Thm.term_of)) inst);
256 val dest_number = Thm.term_of #> HOLogic.dest_number #> snd;
257 val is_number = can dest_number;
259 fun numeral01_conv ctxt =
260 Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps [@{thm numeral_One}]);
262 fun zero1_numeral_conv ctxt =
263 Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps [@{thm numeral_One} RS sym]);
265 fun zerone_conv ctxt cv =
266 zero1_numeral_conv ctxt then_conv cv then_conv numeral01_conv ctxt;
268 val nat_add_ss = simpset_of
269 (put_simpset HOL_basic_ss @{context}
270 addsimps @{thms arith_simps} @ @{thms diff_nat_numeral} @ @{thms rel_simps}
271 @ @{thms if_False if_True Nat.add_0 add_Suc add_numeral_left Suc_eq_plus1}
272 @ map (fn th => th RS sym) @{thms numerals});
274 fun nat_add_conv ctxt =
275 zerone_conv ctxt (Simplifier.rewrite (put_simpset nat_add_ss ctxt));
277 val zeron_tm = @{cterm "0::nat"};
278 val onen_tm = @{cterm "1::nat"};
279 val true_tm = @{cterm "True"};
282 (** normalizing conversions **)
284 (* core conversion *)
286 fun semiring_normalizers_conv vars (sr_ops, sr_rules) (r_ops, r_rules) (f_ops, f_rules)
287 (is_semiring_constant, semiring_add_conv, semiring_mul_conv, semiring_pow_conv) =
290 val [pthm_02, pthm_03, pthm_04, pthm_05, pthm_07, pthm_08,
291 pthm_09, pthm_10, pthm_11, pthm_12, pthm_13, pthm_14, pthm_15, pthm_16,
292 pthm_17, pthm_18, pthm_19, pthm_21, pthm_22, pthm_23, pthm_24,
293 pthm_25, pthm_26, pthm_27, pthm_28, pthm_29, pthm_30, pthm_31, pthm_32,
294 pthm_33, pthm_34, pthm_35, pthm_36, pthm_37, pthm_38, _] = sr_rules;
296 val [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry] = vars;
297 val [add_pat, mul_pat, pow_pat, zero_tm, one_tm] = sr_ops;
298 val [add_tm, mul_tm, pow_tm] = map (Thm.dest_fun o Thm.dest_fun) [add_pat, mul_pat, pow_pat];
300 val dest_add = dest_binop add_tm
301 val dest_mul = dest_binop mul_tm
303 let val (l,r) = dest_binop pow_tm tm
304 in if is_number r then (l,r) else raise CTERM ("dest_pow",[tm])
306 val is_add = is_binop add_tm
307 val is_mul = is_binop mul_tm
309 val (neg_mul, sub_add, sub_tm, neg_tm, dest_sub, cx', cy') =
310 (case (r_ops, r_rules) of
311 ([sub_pat, neg_pat], [neg_mul, sub_add]) =>
313 val sub_tm = Thm.dest_fun (Thm.dest_fun sub_pat)
314 val neg_tm = Thm.dest_fun neg_pat
315 val dest_sub = dest_binop sub_tm
316 in (neg_mul, sub_add, sub_tm, neg_tm, dest_sub, neg_mul |> concl |> Thm.dest_arg,
317 sub_add |> concl |> Thm.dest_arg |> Thm.dest_arg)
319 | _ => (TrueI, TrueI, true_tm, true_tm, (fn t => (t,t)), true_tm, true_tm));
321 val (divide_inverse, divide_tm, inverse_tm) =
322 (case (f_ops, f_rules) of
323 ([divide_pat, inverse_pat], [div_inv, _]) =>
324 let val div_tm = funpow 2 Thm.dest_fun divide_pat
325 val inv_tm = Thm.dest_fun inverse_pat
326 in (div_inv, div_tm, inv_tm)
328 | _ => (TrueI, true_tm, true_tm));
330 in fn variable_order =>
333 (* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible. *)
334 (* Also deals with "const * const", but both terms must involve powers of *)
335 (* the same variable, or both be constants, or behaviour may be incorrect. *)
337 fun powvar_mul_conv ctxt tm =
339 val (l,r) = dest_mul tm
340 in if is_semiring_constant l andalso is_semiring_constant r
341 then semiring_mul_conv tm
344 val (lx,ln) = dest_pow l
346 ((let val (_, rn) = dest_pow r
347 val th1 = inst_thm [(cx,lx),(cp,ln),(cq,rn)] pthm_29
348 val (tm1,tm2) = Thm.dest_comb(concl th1) in
349 Thm.transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv ctxt tm2)) end)
351 (let val th1 = inst_thm [(cx,lx),(cq,ln)] pthm_31
352 val (tm1,tm2) = Thm.dest_comb(concl th1) in
353 Thm.transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv ctxt tm2)) end)) end)
355 ((let val (rx,rn) = dest_pow r
356 val th1 = inst_thm [(cx,rx),(cq,rn)] pthm_30
357 val (tm1,tm2) = Thm.dest_comb(concl th1) in
358 Thm.transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv ctxt tm2)) end)
359 handle CTERM _ => inst_thm [(cx,l)] pthm_32
364 (* Remove "1 * m" from a monomial, and just leave m. *)
366 fun monomial_deone th =
367 (let val (l,r) = dest_mul(concl th) in
369 then Thm.transitive th (inst_thm [(ca,r)] pthm_13) else th end)
370 handle CTERM _ => th;
372 (* Conversion for "(monomial)^n", where n is a numeral. *)
374 fun monomial_pow_conv ctxt =
376 fun monomial_pow tm bod ntm =
378 then Thm.reflexive tm
380 if is_semiring_constant bod
381 then semiring_pow_conv tm
384 val (lopr,r) = Thm.dest_comb bod
385 in if not(is_comb lopr)
386 then Thm.reflexive tm
389 val (opr,l) = Thm.dest_comb lopr
391 if opr aconvc pow_tm andalso is_number r
393 let val th1 = inst_thm [(cx,l),(cp,r),(cq,ntm)] pthm_34
394 val (l,r) = Thm.dest_comb(concl th1)
395 in Thm.transitive th1 (Drule.arg_cong_rule l (nat_add_conv ctxt r))
401 val th1 = inst_thm [(cx,l),(cy,r),(cq,ntm)] pthm_33
402 val (xy,z) = Thm.dest_comb(concl th1)
403 val (x,y) = Thm.dest_comb xy
404 val thl = monomial_pow y l ntm
405 val thr = monomial_pow z r ntm
406 in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule x thl) thr)
408 else Thm.reflexive tm
413 val (lopr,r) = Thm.dest_comb tm
414 val (opr,l) = Thm.dest_comb lopr
415 in if not (opr aconvc pow_tm) orelse not(is_number r)
416 then raise CTERM ("monomial_pow_conv", [tm])
417 else if r aconvc zeron_tm
418 then inst_thm [(cx,l)] pthm_35
419 else if r aconvc onen_tm
420 then inst_thm [(cx,l)] pthm_36
421 else monomial_deone(monomial_pow tm l r)
425 (* Multiplication of canonical monomials. *)
426 fun monomial_mul_conv ctxt =
429 if is_semiring_constant tm then one_tm
431 ((let val (lopr,r) = Thm.dest_comb tm
432 val (opr,l) = Thm.dest_comb lopr
433 in if opr aconvc pow_tm andalso is_number r then l
434 else raise CTERM ("monomial_mul_conv",[tm]) end)
435 handle CTERM _ => tm) (* FIXME !? *)
439 if x aconvc one_tm then ~1
440 else if y aconvc one_tm then 1
441 else if variable_order x y then ~1 else 1
442 fun monomial_mul tm l r =
443 ((let val (lx,ly) = dest_mul l val vl = powvar lx
446 val (rx,ry) = dest_mul r
448 val ord = vorder vl vr
453 val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] pthm_15
454 val (tm1,tm2) = Thm.dest_comb(concl th1)
455 val (tm3,tm4) = Thm.dest_comb tm1
456 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv ctxt tm4)) tm2
457 val th3 = Thm.transitive th1 th2
458 val (tm5,tm6) = Thm.dest_comb(concl th3)
459 val (tm7,tm8) = Thm.dest_comb tm6
460 val th4 = monomial_mul tm6 (Thm.dest_arg tm7) tm8
461 in Thm.transitive th3 (Drule.arg_cong_rule tm5 th4)
464 let val th0 = if ord < 0 then pthm_16 else pthm_17
465 val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] th0
466 val (tm1,tm2) = Thm.dest_comb(concl th1)
467 val (tm3,tm4) = Thm.dest_comb tm2
468 in Thm.transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
472 (let val vr = powvar r val ord = vorder vl vr
476 val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_18
477 val (tm1,tm2) = Thm.dest_comb(concl th1)
478 val (tm3,tm4) = Thm.dest_comb tm1
479 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv ctxt tm4)) tm2
480 in Thm.transitive th1 th2
484 let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_19
485 val (tm1,tm2) = Thm.dest_comb(concl th1)
486 val (tm3,tm4) = Thm.dest_comb tm2
487 in Thm.transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
489 else inst_thm [(ca,l),(cb,r)] pthm_09
492 (let val vl = powvar l in
494 val (rx,ry) = dest_mul r
496 val ord = vorder vl vr
498 let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_21
499 val (tm1,tm2) = Thm.dest_comb(concl th1)
500 val (tm3,tm4) = Thm.dest_comb tm1
501 in Thm.transitive th1 (Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv ctxt tm4)) tm2)
504 let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_22
505 val (tm1,tm2) = Thm.dest_comb(concl th1)
506 val (tm3,tm4) = Thm.dest_comb tm2
507 in Thm.transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
509 else Thm.reflexive tm
512 (let val vr = powvar r
513 val ord = vorder vl vr
514 in if ord = 0 then powvar_mul_conv ctxt tm
515 else if ord > 0 then inst_thm [(ca,l),(cb,r)] pthm_09
516 else Thm.reflexive tm
518 in fn tm => let val (l,r) = dest_mul tm in monomial_deone(monomial_mul tm l r)
521 (* Multiplication by monomial of a polynomial. *)
523 fun polynomial_monomial_mul_conv ctxt =
526 let val (l,r) = dest_mul tm
528 ((let val (y,z) = dest_add r
529 val th1 = inst_thm [(cx,l),(cy,y),(cz,z)] pthm_37
530 val (tm1,tm2) = Thm.dest_comb(concl th1)
531 val (tm3,tm4) = Thm.dest_comb tm1
533 Thm.combination (Drule.arg_cong_rule tm3 (monomial_mul_conv ctxt tm4)) (pmm_conv tm2)
534 in Thm.transitive th1 th2
536 handle CTERM _ => monomial_mul_conv ctxt tm)
541 (* Addition of two monomials identical except for constant multiples. *)
543 fun monomial_add_conv tm =
544 let val (l,r) = dest_add tm
545 in if is_semiring_constant l andalso is_semiring_constant r
546 then semiring_add_conv tm
549 if is_mul l andalso is_semiring_constant(Thm.dest_arg1 l)
550 then if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r) then
551 inst_thm [(ca,Thm.dest_arg1 l),(cm,Thm.dest_arg r), (cb,Thm.dest_arg1 r)] pthm_02
552 else inst_thm [(ca,Thm.dest_arg1 l),(cm,r)] pthm_03
553 else if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r)
554 then inst_thm [(cm,l),(ca,Thm.dest_arg1 r)] pthm_04
555 else inst_thm [(cm,r)] pthm_05
556 val (tm1,tm2) = Thm.dest_comb(concl th1)
557 val (tm3,tm4) = Thm.dest_comb tm1
558 val th2 = Drule.arg_cong_rule tm3 (semiring_add_conv tm4)
559 val th3 = Thm.transitive th1 (Drule.fun_cong_rule th2 tm2)
562 if (Thm.dest_arg1 tm5) aconvc zero_tm
563 then Thm.transitive th3 (inst_thm [(ca,Thm.dest_arg tm5)] pthm_11)
564 else monomial_deone th3
568 (* Ordering on monomials. *)
571 let fun strip x acc =
572 ((let val (l,r) = dest x in
573 strip l (strip r acc) end)
574 handle CTERM _ => x::acc) (* FIXME !? *)
575 in fn x => strip x []
580 let val ptms = striplist dest_mul tm
581 in if is_semiring_constant (hd ptms) then tl ptms else ptms
586 ((let val (x,n) = dest_pow tm in (x,dest_number n) end)
588 (tm,(if is_semiring_constant tm then num_0 else num_1)));
591 let fun lexorder l1 l2 =
596 | (((x1,n1)::vs1),((x2,n2)::vs2)) =>
597 if variable_order x1 x2 then 1
598 else if variable_order x2 x1 then ~1
599 else if n1 < n2 then ~1
600 else if n2 < n1 then 1
601 else lexorder vs1 vs2
602 in fn tm1 => fn tm2 =>
603 let val vdegs1 = map dest_varpow (powervars tm1)
604 val vdegs2 = map dest_varpow (powervars tm2)
605 val deg1 = fold (Integer.add o snd) vdegs1 num_0
606 val deg2 = fold (Integer.add o snd) vdegs2 num_0
607 in if deg1 < deg2 then ~1 else if deg1 > deg2 then 1
608 else lexorder vdegs1 vdegs2
612 (* Addition of two polynomials. *)
614 fun polynomial_add_conv ctxt =
620 if not(is_add tm) then th else
621 let val (lopr,r) = Thm.dest_comb tm
622 val l = Thm.dest_arg lopr
625 then Thm.transitive th (inst_thm [(ca,r)] pthm_07) else
627 then Thm.transitive th (inst_thm [(ca,l)] pthm_08) else th
632 val (l,r) = dest_add tm
634 if l aconvc zero_tm then inst_thm [(ca,r)] pthm_07
635 else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_08
639 let val (a,b) = dest_add l
642 let val (c,d) = dest_add r
646 let val th1 = inst_thm [(ca,a),(cb,b),(cc,c),(cd,d)] pthm_23
647 val (tm1,tm2) = Thm.dest_comb(concl th1)
648 val (tm3,tm4) = Thm.dest_comb tm1
649 val th2 = Drule.arg_cong_rule tm3 (monomial_add_conv tm4)
650 in dezero_rule (Thm.transitive th1 (Thm.combination th2 (padd tm2)))
654 if ord > 0 then inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
655 else inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
656 val (tm1,tm2) = Thm.dest_comb(concl th1)
657 in dezero_rule (Thm.transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
660 else (* not (is_add r)*)
661 let val ord = morder a r
664 let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_26
665 val (tm1,tm2) = Thm.dest_comb(concl th1)
666 val (tm3,tm4) = Thm.dest_comb tm1
667 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
668 in dezero_rule (Thm.transitive th1 th2)
672 let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
673 val (tm1,tm2) = Thm.dest_comb(concl th1)
674 in dezero_rule (Thm.transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
676 else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
679 else (* not (is_add l)*)
681 let val (c,d) = dest_add r
685 let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_28
686 val (tm1,tm2) = Thm.dest_comb(concl th1)
687 val (tm3,tm4) = Thm.dest_comb tm1
688 val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
689 in dezero_rule (Thm.transitive th1 th2)
692 if ord > 0 then Thm.reflexive tm
694 let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
695 val (tm1,tm2) = Thm.dest_comb(concl th1)
696 in dezero_rule (Thm.transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
700 let val ord = morder l r
702 if ord = 0 then monomial_add_conv tm
703 else if ord > 0 then dezero_rule(Thm.reflexive tm)
704 else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
710 (* Multiplication of two polynomials. *)
712 fun polynomial_mul_conv ctxt =
715 let val (l,r) = dest_mul tm
717 if not(is_add l) then polynomial_monomial_mul_conv ctxt tm
719 if not(is_add r) then
720 let val th1 = inst_thm [(ca,l),(cb,r)] pthm_09
721 in Thm.transitive th1 (polynomial_monomial_mul_conv ctxt (concl th1))
724 let val (a,b) = dest_add l
725 val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_10
726 val (tm1,tm2) = Thm.dest_comb(concl th1)
727 val (tm3,tm4) = Thm.dest_comb tm1
728 val th2 = Drule.arg_cong_rule tm3 (polynomial_monomial_mul_conv ctxt tm4)
729 val th3 = Thm.transitive th1 (Thm.combination th2 (pmul tm2))
730 in Thm.transitive th3 (polynomial_add_conv ctxt (concl th3))
734 let val (l,r) = dest_mul tm
736 if l aconvc zero_tm then inst_thm [(ca,r)] pthm_11
737 else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_12
738 else if l aconvc one_tm then inst_thm [(ca,r)] pthm_13
739 else if r aconvc one_tm then inst_thm [(ca,l)] pthm_14
744 (* Power of polynomial (optimized for the monomial and trivial cases). *)
746 fun num_conv ctxt n =
747 nat_add_conv ctxt (Thm.apply @{cterm Suc} (Numeral.mk_cnumber @{ctyp nat} (dest_number n - 1)))
751 fun polynomial_pow_conv ctxt =
754 let val (l,n) = dest_pow tm
756 if n aconvc zeron_tm then inst_thm [(cx,l)] pthm_35
757 else if n aconvc onen_tm then inst_thm [(cx,l)] pthm_36
759 let val th1 = num_conv ctxt n
760 val th2 = inst_thm [(cx,l),(cq,Thm.dest_arg (concl th1))] pthm_38
761 val (tm1,tm2) = Thm.dest_comb(concl th2)
762 val th3 = Thm.transitive th2 (Drule.arg_cong_rule tm1 (ppow tm2))
763 val th4 = Thm.transitive (Drule.arg_cong_rule (Thm.dest_fun tm) th1) th3
764 in Thm.transitive th4 (polynomial_mul_conv ctxt (concl th4))
768 if is_add(Thm.dest_arg1 tm) then ppow tm else monomial_pow_conv ctxt tm
773 fun polynomial_neg_conv ctxt tm =
774 let val (l,r) = Thm.dest_comb tm in
775 if not (l aconvc neg_tm) then raise CTERM ("polynomial_neg_conv",[tm]) else
776 let val th1 = inst_thm [(cx', r)] neg_mul
777 val th2 = Thm.transitive th1 (Conv.arg1_conv semiring_mul_conv (concl th1))
778 in Thm.transitive th2 (polynomial_monomial_mul_conv ctxt (concl th2))
784 fun polynomial_sub_conv ctxt tm =
785 let val (l,r) = dest_sub tm
786 val th1 = inst_thm [(cx', l), (cy', r)] sub_add
787 val (tm1,tm2) = Thm.dest_comb(concl th1)
788 val th2 = Drule.arg_cong_rule tm1 (polynomial_neg_conv ctxt tm2)
789 in Thm.transitive th1 (Thm.transitive th2 (polynomial_add_conv ctxt (concl th2)))
792 (* Conversion from HOL term. *)
794 fun polynomial_conv ctxt tm =
795 if is_semiring_constant tm then semiring_add_conv tm
796 else if not(is_comb tm) then Thm.reflexive tm
798 let val (lopr,r) = Thm.dest_comb tm
799 in if lopr aconvc neg_tm then
800 let val th1 = Drule.arg_cong_rule lopr (polynomial_conv ctxt r)
801 in Thm.transitive th1 (polynomial_neg_conv ctxt (concl th1))
803 else if lopr aconvc inverse_tm then
804 let val th1 = Drule.arg_cong_rule lopr (polynomial_conv ctxt r)
805 in Thm.transitive th1 (semiring_mul_conv (concl th1))
808 if not(is_comb lopr) then Thm.reflexive tm
810 let val (opr,l) = Thm.dest_comb lopr
811 in if opr aconvc pow_tm andalso is_number r
813 let val th1 = Drule.fun_cong_rule (Drule.arg_cong_rule opr (polynomial_conv ctxt l)) r
814 in Thm.transitive th1 (polynomial_pow_conv ctxt (concl th1))
816 else if opr aconvc divide_tm
818 let val th1 = Thm.combination (Drule.arg_cong_rule opr (polynomial_conv ctxt l))
819 (polynomial_conv ctxt r)
820 val th2 = (Conv.rewr_conv divide_inverse then_conv polynomial_mul_conv ctxt)
822 in Thm.transitive th1 th2
825 if opr aconvc add_tm orelse opr aconvc mul_tm orelse opr aconvc sub_tm
829 (Drule.arg_cong_rule opr (polynomial_conv ctxt l)) (polynomial_conv ctxt r)
830 val f = if opr aconvc add_tm then polynomial_add_conv ctxt
831 else if opr aconvc mul_tm then polynomial_mul_conv ctxt
832 else polynomial_sub_conv ctxt
833 in Thm.transitive th1 (f (concl th1))
835 else Thm.reflexive tm
839 {main = polynomial_conv,
840 add = polynomial_add_conv,
841 mul = polynomial_mul_conv,
842 pow = polynomial_pow_conv,
843 neg = polynomial_neg_conv,
844 sub = polynomial_sub_conv}
850 (put_simpset HOL_basic_ss @{context}
851 addsimps (@{thms eval_nat_numeral} @ @{thms diff_nat_numeral} @ @{thms arith_simps} @ @{thms rel_simps})
852 addsimps [@{thm Let_def}, @{thm if_False}, @{thm if_True}, @{thm Nat.add_0}, @{thm add_Suc}]);
854 fun simple_cterm_ord t u = Term_Ord.term_ord (Thm.term_of t, Thm.term_of u) = LESS;
857 (* various normalizing conversions *)
859 fun semiring_normalizers_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal},
860 {conv, dest_const, mk_const, is_const}) ord =
863 Conv.arg_conv (Simplifier.rewrite (put_simpset nat_exp_ss ctxt))
864 then_conv Simplifier.rewrite
865 (put_simpset HOL_basic_ss ctxt addsimps [nth (snd semiring) 31, nth (snd semiring) 34])
867 val dat = (is_const, conv ctxt, conv ctxt, pow_conv)
868 in semiring_normalizers_conv vars semiring ring field dat ord end;
870 fun semiring_normalize_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, {conv, dest_const, mk_const, is_const}) ord =
871 #main (semiring_normalizers_ord_wrapper ctxt
872 ({vars = vars, semiring = semiring, ring = ring, field = field, idom = idom, ideal = ideal},
873 {conv = conv, dest_const = dest_const, mk_const = mk_const, is_const = is_const}) ord) ctxt;
875 fun semiring_normalize_wrapper ctxt data =
876 semiring_normalize_ord_wrapper ctxt data simple_cterm_ord;
878 fun semiring_normalize_ord_conv ctxt ord tm =
879 (case match ctxt tm of
880 NONE => Thm.reflexive tm
881 | SOME res => semiring_normalize_ord_wrapper ctxt res ord tm);
883 fun semiring_normalize_conv ctxt = semiring_normalize_ord_conv ctxt simple_cterm_ord;