1 (* Author: Florian Haftmann, TU Muenchen *)
3 header {* Finite types as explicit enumerations *}
6 imports Map Groups_List
9 subsection {* Class @{text enum} *}
12 fixes enum :: "'a list"
13 fixes enum_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
14 fixes enum_ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
15 assumes UNIV_enum: "UNIV = set enum"
16 and enum_distinct: "distinct enum"
17 assumes enum_all_UNIV: "enum_all P \<longleftrightarrow> Ball UNIV P"
18 assumes enum_ex_UNIV: "enum_ex P \<longleftrightarrow> Bex UNIV P"
19 -- {* tailored towards simple instantiation *}
23 qed (simp add: UNIV_enum)
27 by (simp only: UNIV_enum)
29 lemma in_enum: "x \<in> set enum"
30 by (simp add: enum_UNIV)
33 assumes "\<And>x. x \<in> set xs"
34 shows "set enum = set xs"
36 from assms UNIV_eq_I have "UNIV = set xs" by auto
37 with enum_UNIV show ?thesis by simp
40 lemma card_UNIV_length_enum:
41 "card (UNIV :: 'a set) = length enum"
42 by (simp add: UNIV_enum distinct_card enum_distinct)
44 lemma enum_all [simp]:
46 by (simp add: fun_eq_iff enum_all_UNIV)
50 by (simp add: fun_eq_iff enum_ex_UNIV)
55 subsection {* Implementations using @{class enum} *}
57 subsubsection {* Unbounded operations and quantifiers *}
59 lemma Collect_code [code]:
60 "Collect P = set (filter P enum)"
61 by (simp add: enum_UNIV)
63 lemma vimage_code [code]:
64 "f -` B = set (filter (%x. f x : B) enum_class.enum)"
65 unfolding vimage_def Collect_code ..
67 definition card_UNIV :: "'a itself \<Rightarrow> nat"
69 [code del]: "card_UNIV TYPE('a) = card (UNIV :: 'a set)"
72 "card_UNIV TYPE('a :: enum) = card (set (Enum.enum :: 'a list))"
73 by (simp only: card_UNIV_def enum_UNIV)
75 lemma all_code [code]: "(\<forall>x. P x) \<longleftrightarrow> enum_all P"
78 lemma exists_code [code]: "(\<exists>x. P x) \<longleftrightarrow> enum_ex P"
81 lemma exists1_code [code]: "(\<exists>!x. P x) \<longleftrightarrow> list_ex1 P enum"
82 by (auto simp add: list_ex1_iff enum_UNIV)
85 subsubsection {* An executable choice operator *}
88 [code del]: "enum_the = The"
91 "The P = (case filter P enum of [x] => x | _ => enum_the P)"
95 assume filter_enum: "filter P enum = [a]"
97 proof (rule the_equality)
102 assume "x \<noteq> a"
103 from filter_enum obtain us vs
104 where enum_eq: "enum = us @ [a] @ vs"
105 and "\<forall> x \<in> set us. \<not> P x"
106 and "\<forall> x \<in> set vs. \<not> P x"
108 by (auto simp add: filter_eq_Cons_iff) (simp only: filter_empty_conv[symmetric])
109 with `P x` in_enum[of x, unfolded enum_eq] `x \<noteq> a` show "False" by auto
112 from filter_enum show "P a" by (auto simp add: filter_eq_Cons_iff)
115 from this show ?thesis
116 unfolding enum_the_def by (auto split: list.split)
119 declare [[code abort: enum_the]]
122 constant enum_the \<rightharpoonup> (Eval) "(fn '_ => raise Match)"
125 subsubsection {* Equality and order on functions *}
127 instantiation "fun" :: (enum, equal) equal
131 "HOL.equal f g \<longleftrightarrow> (\<forall>x \<in> set enum. f x = g x)"
134 qed (simp_all add: equal_fun_def fun_eq_iff enum_UNIV)
139 "HOL.equal f g \<longleftrightarrow> enum_all (%x. f x = g x)"
140 by (auto simp add: equal fun_eq_iff)
143 "HOL.equal (f :: _ \<Rightarrow> _) f \<longleftrightarrow> True"
146 lemma order_fun [code]:
147 fixes f g :: "'a\<Colon>enum \<Rightarrow> 'b\<Colon>order"
148 shows "f \<le> g \<longleftrightarrow> enum_all (\<lambda>x. f x \<le> g x)"
149 and "f < g \<longleftrightarrow> f \<le> g \<and> enum_ex (\<lambda>x. f x \<noteq> g x)"
150 by (simp_all add: fun_eq_iff le_fun_def order_less_le)
153 subsubsection {* Operations on relations *}
156 "Id = image (\<lambda>x. (x, x)) (set Enum.enum)"
157 by (auto intro: imageI in_enum)
159 lemma tranclp_unfold [code]:
160 "tranclp r a b \<longleftrightarrow> (a, b) \<in> trancl {(x, y). r x y}"
161 by (simp add: trancl_def)
163 lemma rtranclp_rtrancl_eq [code]:
164 "rtranclp r x y \<longleftrightarrow> (x, y) \<in> rtrancl {(x, y). r x y}"
165 by (simp add: rtrancl_def)
167 lemma max_ext_eq [code]:
168 "max_ext R = {(X, Y). finite X \<and> finite Y \<and> Y \<noteq> {} \<and> (\<forall>x. x \<in> X \<longrightarrow> (\<exists>xa \<in> Y. (x, xa) \<in> R))}"
169 by (auto simp add: max_ext.simps)
171 lemma max_extp_eq [code]:
172 "max_extp r x y \<longleftrightarrow> (x, y) \<in> max_ext {(x, y). r x y}"
173 by (simp add: max_ext_def)
175 lemma mlex_eq [code]:
176 "f <*mlex*> R = {(x, y). f x < f y \<or> (f x \<le> f y \<and> (x, y) \<in> R)}"
177 by (auto simp add: mlex_prod_def)
180 subsubsection {* Bounded accessible part *}
182 primrec bacc :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> 'a set"
184 "bacc r 0 = {x. \<forall> y. (y, x) \<notin> r}"
185 | "bacc r (Suc n) = (bacc r n \<union> {x. \<forall>y. (y, x) \<in> r \<longrightarrow> y \<in> bacc r n})"
187 lemma bacc_subseteq_acc:
188 "bacc r n \<subseteq> Wellfounded.acc r"
189 by (induct n) (auto intro: acc.intros)
192 "n \<le> m \<Longrightarrow> bacc r n \<subseteq> bacc r m"
193 by (induct rule: dec_induct) auto
195 lemma bacc_upper_bound:
196 "bacc (r :: ('a \<times> 'a) set) (card (UNIV :: 'a::finite set)) = (\<Union>n. bacc r n)"
198 have "mono (bacc r)" unfolding mono_def by (simp add: bacc_mono)
199 moreover have "\<forall>n. bacc r n = bacc r (Suc n) \<longrightarrow> bacc r (Suc n) = bacc r (Suc (Suc n))" by auto
200 moreover have "finite (range (bacc r))" by auto
201 ultimately show ?thesis
202 by (intro finite_mono_strict_prefix_implies_finite_fixpoint)
203 (auto intro: finite_mono_remains_stable_implies_strict_prefix)
206 lemma acc_subseteq_bacc:
208 shows "Wellfounded.acc r \<subseteq> (\<Union>n. bacc r n)"
211 assume "x : Wellfounded.acc r"
212 then have "\<exists> n. x : bacc r n"
213 proof (induct x arbitrary: rule: acc.induct)
215 then have "\<forall>y. \<exists> n. (y, x) \<in> r --> y : bacc r n" by simp
216 from choice[OF this] obtain n where n: "\<forall>y. (y, x) \<in> r \<longrightarrow> y \<in> bacc r (n y)" ..
217 obtain n where "\<And>y. (y, x) : r \<Longrightarrow> y : bacc r n"
219 fix y assume y: "(y, x) : r"
220 with n have "y : bacc r (n y)" by auto
221 moreover have "n y <= Max ((%(y, x). n y) ` r)"
222 using y `finite r` by (auto intro!: Max_ge)
223 note bacc_mono[OF this, of r]
224 ultimately show "y : bacc r (Max ((%(y, x). n y) ` r))" by auto
227 by (auto simp add: Let_def intro!: exI[of _ "Suc n"])
229 then show "x : (UN n. bacc r n)" by auto
233 fixes A :: "('a :: finite \<times> 'a) set"
235 shows "Wellfounded.acc A = bacc A (card (UNIV :: 'a set))"
236 using assms by (metis acc_subseteq_bacc bacc_subseteq_acc bacc_upper_bound order_eq_iff)
239 fixes xs :: "('a::finite \<times> 'a) list"
240 shows "Wellfounded.acc (set xs) = bacc (set xs) (card_UNIV TYPE('a))"
241 by (simp add: card_UNIV_def acc_bacc_eq)
244 subsection {* Default instances for @{class enum} *}
246 lemma map_of_zip_enum_is_Some:
247 assumes "length ys = length (enum \<Colon> 'a\<Colon>enum list)"
248 shows "\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y"
250 from assms have "x \<in> set (enum \<Colon> 'a\<Colon>enum list) \<longleftrightarrow>
251 (\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y)"
252 by (auto intro!: map_of_zip_is_Some)
253 then show ?thesis using enum_UNIV by auto
256 lemma map_of_zip_enum_inject:
257 fixes xs ys :: "'b\<Colon>enum list"
258 assumes length: "length xs = length (enum \<Colon> 'a\<Colon>enum list)"
259 "length ys = length (enum \<Colon> 'a\<Colon>enum list)"
260 and map_of: "the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys)"
263 have "map_of (zip (enum \<Colon> 'a list) xs) = map_of (zip (enum \<Colon> 'a list) ys)"
266 from length map_of_zip_enum_is_Some obtain y1 y2
267 where "map_of (zip (enum \<Colon> 'a list) xs) x = Some y1"
268 and "map_of (zip (enum \<Colon> 'a list) ys) x = Some y2" by blast
270 have "the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x) = the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x)"
271 by (auto dest: fun_cong)
272 ultimately show "map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x = map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x"
275 with length enum_distinct show "xs = ys" by (rule map_of_zip_inject)
278 definition all_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
280 "all_n_lists P n \<longleftrightarrow> (\<forall>xs \<in> set (List.n_lists n enum). P xs)"
283 "all_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_all (%x. all_n_lists (%xs. P (x # xs)) (n - 1)))"
284 unfolding all_n_lists_def enum_all
285 by (cases n) (auto simp add: enum_UNIV)
287 definition ex_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
289 "ex_n_lists P n \<longleftrightarrow> (\<exists>xs \<in> set (List.n_lists n enum). P xs)"
292 "ex_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_ex (%x. ex_n_lists (%xs. P (x # xs)) (n - 1)))"
293 unfolding ex_n_lists_def enum_ex
294 by (cases n) (auto simp add: enum_UNIV)
296 instantiation "fun" :: (enum, enum) enum
300 "enum = map (\<lambda>ys. the o map_of (zip (enum\<Colon>'a list) ys)) (List.n_lists (length (enum\<Colon>'a\<Colon>enum list)) enum)"
303 "enum_all P = all_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
306 "enum_ex P = ex_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
309 show "UNIV = set (enum \<Colon> ('a \<Rightarrow> 'b) list)"
310 proof (rule UNIV_eq_I)
311 fix f :: "'a \<Rightarrow> 'b"
312 have "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
313 by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
314 then show "f \<in> set enum"
315 by (auto simp add: enum_fun_def set_n_lists intro: in_enum)
318 from map_of_zip_enum_inject
319 show "distinct (enum \<Colon> ('a \<Rightarrow> 'b) list)"
320 by (auto intro!: inj_onI simp add: enum_fun_def
321 distinct_map distinct_n_lists enum_distinct set_n_lists)
324 show "enum_all (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Ball UNIV P"
329 fix f :: "'a \<Rightarrow> 'b"
330 have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
331 by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
332 from `enum_all P` have "P (the \<circ> map_of (zip enum (map f enum)))"
333 unfolding enum_all_fun_def all_n_lists_def
334 apply (simp add: set_n_lists)
335 apply (erule_tac x="map f enum" in allE)
336 apply (auto intro!: in_enum)
338 from this f show "P f" by auto
342 from this show "enum_all P"
343 unfolding enum_all_fun_def all_n_lists_def by auto
347 show "enum_ex (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Bex UNIV P"
350 from this show "Bex UNIV P"
351 unfolding enum_ex_fun_def ex_n_lists_def by auto
354 from this obtain f where "P f" ..
355 have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
356 by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
357 from `P f` this have "P (the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum)))"
359 from this show "enum_ex P"
360 unfolding enum_ex_fun_def ex_n_lists_def
361 apply (auto simp add: set_n_lists)
362 apply (rule_tac x="map f enum" in exI)
363 apply (auto intro!: in_enum)
370 lemma enum_fun_code [code]: "enum = (let enum_a = (enum \<Colon> 'a\<Colon>{enum, equal} list)
371 in map (\<lambda>ys. the o map_of (zip enum_a ys)) (List.n_lists (length enum_a) enum))"
372 by (simp add: enum_fun_def Let_def)
374 lemma enum_all_fun_code [code]:
375 "enum_all P = (let enum_a = (enum :: 'a::{enum, equal} list)
376 in all_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
377 by (simp only: enum_all_fun_def Let_def)
379 lemma enum_ex_fun_code [code]:
380 "enum_ex P = (let enum_a = (enum :: 'a::{enum, equal} list)
381 in ex_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
382 by (simp only: enum_ex_fun_def Let_def)
384 instantiation set :: (enum) enum
388 "enum = map set (sublists enum)"
391 "enum_all P \<longleftrightarrow> (\<forall>A\<in>set enum. P (A::'a set))"
394 "enum_ex P \<longleftrightarrow> (\<exists>A\<in>set enum. P (A::'a set))"
397 qed (simp_all add: enum_set_def enum_all_set_def enum_ex_set_def sublists_powset distinct_set_sublists
398 enum_distinct enum_UNIV)
402 instantiation unit :: enum
415 qed (auto simp add: enum_unit_def enum_all_unit_def enum_ex_unit_def)
419 instantiation bool :: enum
423 "enum = [False, True]"
426 "enum_all P \<longleftrightarrow> P False \<and> P True"
429 "enum_ex P \<longleftrightarrow> P False \<or> P True"
432 qed (simp_all only: enum_bool_def enum_all_bool_def enum_ex_bool_def UNIV_bool, simp_all)
436 instantiation prod :: (enum, enum) enum
440 "enum = List.product enum enum"
443 "enum_all P = enum_all (%x. enum_all (%y. P (x, y)))"
446 "enum_ex P = enum_ex (%x. enum_ex (%y. P (x, y)))"
450 (simp_all add: enum_prod_def distinct_product
451 enum_UNIV enum_distinct enum_all_prod_def enum_ex_prod_def)
455 instantiation sum :: (enum, enum) enum
459 "enum = map Inl enum @ map Inr enum"
462 "enum_all P \<longleftrightarrow> enum_all (\<lambda>x. P (Inl x)) \<and> enum_all (\<lambda>x. P (Inr x))"
465 "enum_ex P \<longleftrightarrow> enum_ex (\<lambda>x. P (Inl x)) \<or> enum_ex (\<lambda>x. P (Inr x))"
468 qed (simp_all only: enum_sum_def enum_all_sum_def enum_ex_sum_def UNIV_sum,
469 auto simp add: enum_UNIV distinct_map enum_distinct)
473 instantiation option :: (enum) enum
477 "enum = None # map Some enum"
480 "enum_all P \<longleftrightarrow> P None \<and> enum_all (\<lambda>x. P (Some x))"
483 "enum_ex P \<longleftrightarrow> P None \<or> enum_ex (\<lambda>x. P (Some x))"
486 qed (simp_all only: enum_option_def enum_all_option_def enum_ex_option_def UNIV_option_conv,
487 auto simp add: distinct_map enum_UNIV enum_distinct)
492 subsection {* Small finite types *}
494 text {* We define small finite types for the use in Quickcheck *}
496 datatype_new finite_1 = a\<^sub>1
498 notation (output) a\<^sub>1 ("a\<^sub>1")
502 by (auto intro: finite_1.exhaust)
504 instantiation finite_1 :: enum
511 "enum_all P = P a\<^sub>1"
514 "enum_ex P = P a\<^sub>1"
517 qed (simp_all only: enum_finite_1_def enum_all_finite_1_def enum_ex_finite_1_def UNIV_finite_1, simp_all)
521 instantiation finite_1 :: linorder
524 definition less_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
526 "x < (y :: finite_1) \<longleftrightarrow> False"
528 definition less_eq_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
530 "x \<le> (y :: finite_1) \<longleftrightarrow> True"
533 apply (intro_classes)
534 apply (auto simp add: less_finite_1_def less_eq_finite_1_def)
535 apply (metis finite_1.exhaust)
540 instance finite_1 :: "{dense_linorder, wellorder}"
541 by intro_classes (simp_all add: less_finite_1_def)
543 instantiation finite_1 :: complete_lattice
546 definition [simp]: "Inf = (\<lambda>_. a\<^sub>1)"
547 definition [simp]: "Sup = (\<lambda>_. a\<^sub>1)"
548 definition [simp]: "bot = a\<^sub>1"
549 definition [simp]: "top = a\<^sub>1"
550 definition [simp]: "inf = (\<lambda>_ _. a\<^sub>1)"
551 definition [simp]: "sup = (\<lambda>_ _. a\<^sub>1)"
553 instance by intro_classes(simp_all add: less_eq_finite_1_def)
556 instance finite_1 :: complete_distrib_lattice
557 by intro_classes(simp_all add: INF_def SUP_def)
559 instance finite_1 :: complete_linorder ..
561 lemma finite_1_eq: "x = a\<^sub>1"
564 simproc_setup finite_1_eq ("x::finite_1") = {*
565 fn _ => fn _ => fn ct => case term_of ct of
566 Const (@{const_name a\<^sub>1}, _) => NONE
567 | _ => SOME (mk_meta_eq @{thm finite_1_eq})
570 instantiation finite_1 :: complete_boolean_algebra begin
571 definition [simp]: "op - = (\<lambda>_ _. a\<^sub>1)"
572 definition [simp]: "uminus = (\<lambda>_. a\<^sub>1)"
573 instance by intro_classes simp_all
576 instantiation finite_1 ::
577 "{linordered_ring_strict, linordered_comm_semiring_strict, ordered_comm_ring,
578 ordered_cancel_comm_monoid_diff, comm_monoid_mult, ordered_ring_abs,
579 one, Divides.div, sgn_if, inverse}"
581 definition [simp]: "Groups.zero = a\<^sub>1"
582 definition [simp]: "Groups.one = a\<^sub>1"
583 definition [simp]: "op + = (\<lambda>_ _. a\<^sub>1)"
584 definition [simp]: "op * = (\<lambda>_ _. a\<^sub>1)"
585 definition [simp]: "op div = (\<lambda>_ _. a\<^sub>1)"
586 definition [simp]: "op mod = (\<lambda>_ _. a\<^sub>1)"
587 definition [simp]: "abs = (\<lambda>_. a\<^sub>1)"
588 definition [simp]: "sgn = (\<lambda>_. a\<^sub>1)"
589 definition [simp]: "inverse = (\<lambda>_. a\<^sub>1)"
590 definition [simp]: "op / = (\<lambda>_ _. a\<^sub>1)"
592 instance by intro_classes(simp_all add: less_finite_1_def)
595 declare [[simproc del: finite_1_eq]]
596 hide_const (open) a\<^sub>1
598 datatype_new finite_2 = a\<^sub>1 | a\<^sub>2
600 notation (output) a\<^sub>1 ("a\<^sub>1")
601 notation (output) a\<^sub>2 ("a\<^sub>2")
604 "UNIV = {a\<^sub>1, a\<^sub>2}"
605 by (auto intro: finite_2.exhaust)
607 instantiation finite_2 :: enum
611 "enum = [a\<^sub>1, a\<^sub>2]"
614 "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2"
617 "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2"
620 qed (simp_all only: enum_finite_2_def enum_all_finite_2_def enum_ex_finite_2_def UNIV_finite_2, simp_all)
624 instantiation finite_2 :: linorder
627 definition less_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
629 "x < y \<longleftrightarrow> x = a\<^sub>1 \<and> y = a\<^sub>2"
631 definition less_eq_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
633 "x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_2)"
636 apply (intro_classes)
637 apply (auto simp add: less_finite_2_def less_eq_finite_2_def)
638 apply (metis finite_2.nchotomy)+
643 instance finite_2 :: wellorder
644 by(rule wf_wellorderI)(simp add: less_finite_2_def, intro_classes)
646 instantiation finite_2 :: complete_lattice
649 definition "\<Sqinter>A = (if a\<^sub>1 \<in> A then a\<^sub>1 else a\<^sub>2)"
650 definition "\<Squnion>A = (if a\<^sub>2 \<in> A then a\<^sub>2 else a\<^sub>1)"
651 definition [simp]: "bot = a\<^sub>1"
652 definition [simp]: "top = a\<^sub>2"
653 definition "x \<sqinter> y = (if x = a\<^sub>1 \<or> y = a\<^sub>1 then a\<^sub>1 else a\<^sub>2)"
654 definition "x \<squnion> y = (if x = a\<^sub>2 \<or> y = a\<^sub>2 then a\<^sub>2 else a\<^sub>1)"
656 lemma neq_finite_2_a\<^sub>1_iff [simp]: "x \<noteq> a\<^sub>1 \<longleftrightarrow> x = a\<^sub>2"
659 lemma neq_finite_2_a\<^sub>1_iff' [simp]: "a\<^sub>1 \<noteq> x \<longleftrightarrow> x = a\<^sub>2"
662 lemma neq_finite_2_a\<^sub>2_iff [simp]: "x \<noteq> a\<^sub>2 \<longleftrightarrow> x = a\<^sub>1"
665 lemma neq_finite_2_a\<^sub>2_iff' [simp]: "a\<^sub>2 \<noteq> x \<longleftrightarrow> x = a\<^sub>1"
670 fix x :: finite_2 and A
672 then show "\<Sqinter>A \<le> x" "x \<le> \<Squnion>A"
673 by(case_tac [!] x)(auto simp add: less_eq_finite_2_def less_finite_2_def Inf_finite_2_def Sup_finite_2_def)
674 qed(auto simp add: less_eq_finite_2_def less_finite_2_def inf_finite_2_def sup_finite_2_def Inf_finite_2_def Sup_finite_2_def)
677 instance finite_2 :: complete_distrib_lattice
678 by(intro_classes)(auto simp add: INF_def SUP_def sup_finite_2_def inf_finite_2_def Inf_finite_2_def Sup_finite_2_def)
680 instance finite_2 :: complete_linorder ..
682 instantiation finite_2 :: "{field_inverse_zero, abs_if, ring_div, semiring_div_parity, sgn_if}" begin
683 definition [simp]: "0 = a\<^sub>1"
684 definition [simp]: "1 = a\<^sub>2"
685 definition "x + y = (case (x, y) of (a\<^sub>1, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>2) \<Rightarrow> a\<^sub>1 | _ \<Rightarrow> a\<^sub>2)"
686 definition "uminus = (\<lambda>x :: finite_2. x)"
687 definition "op - = (op + :: finite_2 \<Rightarrow> _)"
688 definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \<Rightarrow> a\<^sub>2 | _ \<Rightarrow> a\<^sub>1)"
689 definition "inverse = (\<lambda>x :: finite_2. x)"
690 definition "op / = (op * :: finite_2 \<Rightarrow> _)"
691 definition "abs = (\<lambda>x :: finite_2. x)"
692 definition "op div = (op / :: finite_2 \<Rightarrow> _)"
693 definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \<Rightarrow> a\<^sub>2 | _ \<Rightarrow> a\<^sub>1)"
694 definition "sgn = (\<lambda>x :: finite_2. x)"
697 (simp_all add: plus_finite_2_def uminus_finite_2_def minus_finite_2_def times_finite_2_def
698 inverse_finite_2_def divide_finite_2_def abs_finite_2_def div_finite_2_def mod_finite_2_def sgn_finite_2_def
699 split: finite_2.splits)
702 hide_const (open) a\<^sub>1 a\<^sub>2
704 datatype_new finite_3 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3
706 notation (output) a\<^sub>1 ("a\<^sub>1")
707 notation (output) a\<^sub>2 ("a\<^sub>2")
708 notation (output) a\<^sub>3 ("a\<^sub>3")
711 "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3}"
712 by (auto intro: finite_3.exhaust)
714 instantiation finite_3 :: enum
718 "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3]"
721 "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3"
724 "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3"
727 qed (simp_all only: enum_finite_3_def enum_all_finite_3_def enum_ex_finite_3_def UNIV_finite_3, simp_all)
731 instantiation finite_3 :: linorder
734 definition less_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
736 "x < y = (case x of a\<^sub>1 \<Rightarrow> y \<noteq> a\<^sub>1 | a\<^sub>2 \<Rightarrow> y = a\<^sub>3 | a\<^sub>3 \<Rightarrow> False)"
738 definition less_eq_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
740 "x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_3)"
742 instance proof (intro_classes)
743 qed (auto simp add: less_finite_3_def less_eq_finite_3_def split: finite_3.split_asm)
747 instance finite_3 :: wellorder
748 proof(rule wf_wellorderI)
749 have "inv_image less_than (case_finite_3 0 1 2) = {(x, y). x < y}"
750 by(auto simp add: less_finite_3_def split: finite_3.splits)
751 from this[symmetric] show "wf \<dots>" by simp
754 instantiation finite_3 :: complete_lattice
757 definition "\<Sqinter>A = (if a\<^sub>1 \<in> A then a\<^sub>1 else if a\<^sub>2 \<in> A then a\<^sub>2 else a\<^sub>3)"
758 definition "\<Squnion>A = (if a\<^sub>3 \<in> A then a\<^sub>3 else if a\<^sub>2 \<in> A then a\<^sub>2 else a\<^sub>1)"
759 definition [simp]: "bot = a\<^sub>1"
760 definition [simp]: "top = a\<^sub>3"
761 definition [simp]: "inf = (min :: finite_3 \<Rightarrow> _)"
762 definition [simp]: "sup = (max :: finite_3 \<Rightarrow> _)"
766 fix x :: finite_3 and A
768 then show "\<Sqinter>A \<le> x" "x \<le> \<Squnion>A"
769 by(case_tac [!] x)(auto simp add: Inf_finite_3_def Sup_finite_3_def less_eq_finite_3_def less_finite_3_def)
771 fix A and z :: finite_3
772 assume "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"
773 then show "z \<le> \<Sqinter>A"
774 by(cases z)(auto simp add: Inf_finite_3_def less_eq_finite_3_def less_finite_3_def)
776 fix A and z :: finite_3
777 assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"
778 show "\<Squnion>A \<le> z"
779 by(auto simp add: Sup_finite_3_def less_eq_finite_3_def less_finite_3_def dest: *)
780 qed(auto simp add: Inf_finite_3_def Sup_finite_3_def)
783 instance finite_3 :: complete_distrib_lattice
785 fix a :: finite_3 and B
786 show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
787 proof(cases a "\<Sqinter>B" rule: finite_3.exhaust[case_product finite_3.exhaust])
788 case a\<^sub>2_a\<^sub>3
789 then have "\<And>x. x \<in> B \<Longrightarrow> x = a\<^sub>3"
790 by(case_tac x)(auto simp add: Inf_finite_3_def split: split_if_asm)
791 then show ?thesis using a\<^sub>2_a\<^sub>3
792 by(auto simp add: INF_def Inf_finite_3_def max_def less_eq_finite_3_def less_finite_3_def split: split_if_asm)
793 qed(auto simp add: INF_def Inf_finite_3_def max_def less_finite_3_def less_eq_finite_3_def split: split_if_asm)
794 show "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
795 by(cases a "\<Squnion>B" rule: finite_3.exhaust[case_product finite_3.exhaust])
796 (auto simp add: SUP_def Sup_finite_3_def min_def less_finite_3_def less_eq_finite_3_def split: split_if_asm)
799 instance finite_3 :: complete_linorder ..
801 instantiation finite_3 :: "{field_inverse_zero, abs_if, ring_div, semiring_div, sgn_if}" begin
802 definition [simp]: "0 = a\<^sub>1"
803 definition [simp]: "1 = a\<^sub>2"
805 "x + y = (case (x, y) of
806 (a\<^sub>1, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>1 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>1
807 | (a\<^sub>1, a\<^sub>2) \<Rightarrow> a\<^sub>2 | (a\<^sub>2, a\<^sub>1) \<Rightarrow> a\<^sub>2 | (a\<^sub>3, a\<^sub>3) \<Rightarrow> a\<^sub>2
808 | _ \<Rightarrow> a\<^sub>3)"
809 definition "- x = (case x of a\<^sub>1 \<Rightarrow> a\<^sub>1 | a\<^sub>2 \<Rightarrow> a\<^sub>3 | a\<^sub>3 \<Rightarrow> a\<^sub>2)"
810 definition "x - y = x + (- y :: finite_3)"
811 definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \<Rightarrow> a\<^sub>2 | (a\<^sub>3, a\<^sub>3) \<Rightarrow> a\<^sub>2 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>3 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>3 | _ \<Rightarrow> a\<^sub>1)"
812 definition "inverse = (\<lambda>x :: finite_3. x)"
813 definition "x / y = x * inverse (y :: finite_3)"
814 definition "abs = (\<lambda>x :: finite_3. x)"
815 definition "op div = (op / :: finite_3 \<Rightarrow> _)"
816 definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \<Rightarrow> a\<^sub>2 | (a\<^sub>3, a\<^sub>1) \<Rightarrow> a\<^sub>3 | _ \<Rightarrow> a\<^sub>1)"
817 definition "sgn = (\<lambda>x. case x of a\<^sub>1 \<Rightarrow> a\<^sub>1 | _ \<Rightarrow> a\<^sub>2)"
820 (simp_all add: plus_finite_3_def uminus_finite_3_def minus_finite_3_def times_finite_3_def
821 inverse_finite_3_def divide_finite_3_def abs_finite_3_def div_finite_3_def mod_finite_3_def sgn_finite_3_def
823 split: finite_3.splits)
826 hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3
828 datatype_new finite_4 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4
830 notation (output) a\<^sub>1 ("a\<^sub>1")
831 notation (output) a\<^sub>2 ("a\<^sub>2")
832 notation (output) a\<^sub>3 ("a\<^sub>3")
833 notation (output) a\<^sub>4 ("a\<^sub>4")
836 "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4}"
837 by (auto intro: finite_4.exhaust)
839 instantiation finite_4 :: enum
843 "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4]"
846 "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3 \<and> P a\<^sub>4"
849 "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3 \<or> P a\<^sub>4"
852 qed (simp_all only: enum_finite_4_def enum_all_finite_4_def enum_ex_finite_4_def UNIV_finite_4, simp_all)
856 instantiation finite_4 :: complete_lattice begin
858 text {* @{term a\<^sub>1} $<$ @{term a\<^sub>2},@{term a\<^sub>3} $<$ @{term a\<^sub>4},
859 but @{term a\<^sub>2} and @{term a\<^sub>3} are incomparable. *}
862 "x < y \<longleftrightarrow> (case (x, y) of
863 (a\<^sub>1, a\<^sub>1) \<Rightarrow> False | (a\<^sub>1, _) \<Rightarrow> True
864 | (a\<^sub>2, a\<^sub>4) \<Rightarrow> True
865 | (a\<^sub>3, a\<^sub>4) \<Rightarrow> True | _ \<Rightarrow> False)"
868 "x \<le> y \<longleftrightarrow> (case (x, y) of
869 (a\<^sub>1, _) \<Rightarrow> True
870 | (a\<^sub>2, a\<^sub>2) \<Rightarrow> True | (a\<^sub>2, a\<^sub>4) \<Rightarrow> True
871 | (a\<^sub>3, a\<^sub>3) \<Rightarrow> True | (a\<^sub>3, a\<^sub>4) \<Rightarrow> True
872 | (a\<^sub>4, a\<^sub>4) \<Rightarrow> True | _ \<Rightarrow> False)"
875 "\<Sqinter>A = (if a\<^sub>1 \<in> A \<or> a\<^sub>2 \<in> A \<and> a\<^sub>3 \<in> A then a\<^sub>1 else if a\<^sub>2 \<in> A then a\<^sub>2 else if a\<^sub>3 \<in> A then a\<^sub>3 else a\<^sub>4)"
877 "\<Squnion>A = (if a\<^sub>4 \<in> A \<or> a\<^sub>2 \<in> A \<and> a\<^sub>3 \<in> A then a\<^sub>4 else if a\<^sub>2 \<in> A then a\<^sub>2 else if a\<^sub>3 \<in> A then a\<^sub>3 else a\<^sub>1)"
878 definition [simp]: "bot = a\<^sub>1"
879 definition [simp]: "top = a\<^sub>4"
881 "x \<sqinter> y = (case (x, y) of
882 (a\<^sub>1, _) \<Rightarrow> a\<^sub>1 | (_, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>1 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>1
883 | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
884 | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
885 | _ \<Rightarrow> a\<^sub>4)"
887 "x \<squnion> y = (case (x, y) of
888 (a\<^sub>4, _) \<Rightarrow> a\<^sub>4 | (_, a\<^sub>4) \<Rightarrow> a\<^sub>4 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>4 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>4
889 | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
890 | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
891 | _ \<Rightarrow> a\<^sub>1)"
895 fix A and z :: finite_4
896 assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"
897 show "\<Squnion>A \<le> z"
898 by(auto simp add: Sup_finite_4_def less_eq_finite_4_def dest!: * split: finite_4.splits)
900 fix A and z :: finite_4
901 assume *: "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"
902 show "z \<le> \<Sqinter>A"
903 by(auto simp add: Inf_finite_4_def less_eq_finite_4_def dest!: * split: finite_4.splits)
904 qed(auto simp add: less_finite_4_def less_eq_finite_4_def Inf_finite_4_def Sup_finite_4_def inf_finite_4_def sup_finite_4_def split: finite_4.splits)
908 instance finite_4 :: complete_distrib_lattice
910 fix a :: finite_4 and B
911 show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
912 by(cases a "\<Sqinter>B" rule: finite_4.exhaust[case_product finite_4.exhaust])
913 (auto simp add: sup_finite_4_def Inf_finite_4_def INF_def split: finite_4.splits split_if_asm)
914 show "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
915 by(cases a "\<Squnion>B" rule: finite_4.exhaust[case_product finite_4.exhaust])
916 (auto simp add: inf_finite_4_def Sup_finite_4_def SUP_def split: finite_4.splits split_if_asm)
919 instantiation finite_4 :: complete_boolean_algebra begin
920 definition "- x = (case x of a\<^sub>1 \<Rightarrow> a\<^sub>4 | a\<^sub>2 \<Rightarrow> a\<^sub>3 | a\<^sub>3 \<Rightarrow> a\<^sub>2 | a\<^sub>4 \<Rightarrow> a\<^sub>1)"
921 definition "x - y = x \<sqinter> - (y :: finite_4)"
924 (simp_all add: inf_finite_4_def sup_finite_4_def uminus_finite_4_def minus_finite_4_def split: finite_4.splits)
927 hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4
930 datatype_new finite_5 = a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4 | a\<^sub>5
932 notation (output) a\<^sub>1 ("a\<^sub>1")
933 notation (output) a\<^sub>2 ("a\<^sub>2")
934 notation (output) a\<^sub>3 ("a\<^sub>3")
935 notation (output) a\<^sub>4 ("a\<^sub>4")
936 notation (output) a\<^sub>5 ("a\<^sub>5")
939 "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5}"
940 by (auto intro: finite_5.exhaust)
942 instantiation finite_5 :: enum
946 "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5]"
949 "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3 \<and> P a\<^sub>4 \<and> P a\<^sub>5"
952 "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3 \<or> P a\<^sub>4 \<or> P a\<^sub>5"
955 qed (simp_all only: enum_finite_5_def enum_all_finite_5_def enum_ex_finite_5_def UNIV_finite_5, simp_all)
959 instantiation finite_5 :: complete_lattice
962 text {* The non-distributive pentagon lattice $N_5$ *}
965 "x < y \<longleftrightarrow> (case (x, y) of
966 (a\<^sub>1, a\<^sub>1) \<Rightarrow> False | (a\<^sub>1, _) \<Rightarrow> True
967 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> True | (a\<^sub>2, a\<^sub>5) \<Rightarrow> True
968 | (a\<^sub>3, a\<^sub>5) \<Rightarrow> True
969 | (a\<^sub>4, a\<^sub>5) \<Rightarrow> True | _ \<Rightarrow> False)"
972 "x \<le> y \<longleftrightarrow> (case (x, y) of
973 (a\<^sub>1, _) \<Rightarrow> True
974 | (a\<^sub>2, a\<^sub>2) \<Rightarrow> True | (a\<^sub>2, a\<^sub>3) \<Rightarrow> True | (a\<^sub>2, a\<^sub>5) \<Rightarrow> True
975 | (a\<^sub>3, a\<^sub>3) \<Rightarrow> True | (a\<^sub>3, a\<^sub>5) \<Rightarrow> True
976 | (a\<^sub>4, a\<^sub>4) \<Rightarrow> True | (a\<^sub>4, a\<^sub>5) \<Rightarrow> True
977 | (a\<^sub>5, a\<^sub>5) \<Rightarrow> True | _ \<Rightarrow> False)"
981 (if a\<^sub>1 \<in> A \<or> a\<^sub>4 \<in> A \<and> (a\<^sub>2 \<in> A \<or> a\<^sub>3 \<in> A) then a\<^sub>1
982 else if a\<^sub>2 \<in> A then a\<^sub>2
983 else if a\<^sub>3 \<in> A then a\<^sub>3
984 else if a\<^sub>4 \<in> A then a\<^sub>4
988 (if a\<^sub>5 \<in> A \<or> a\<^sub>4 \<in> A \<and> (a\<^sub>2 \<in> A \<or> a\<^sub>3 \<in> A) then a\<^sub>5
989 else if a\<^sub>3 \<in> A then a\<^sub>3
990 else if a\<^sub>2 \<in> A then a\<^sub>2
991 else if a\<^sub>4 \<in> A then a\<^sub>4
993 definition [simp]: "bot = a\<^sub>1"
994 definition [simp]: "top = a\<^sub>5"
996 "x \<sqinter> y = (case (x, y) of
997 (a\<^sub>1, _) \<Rightarrow> a\<^sub>1 | (_, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>4) \<Rightarrow> a\<^sub>1 | (a\<^sub>4, a\<^sub>2) \<Rightarrow> a\<^sub>1 | (a\<^sub>3, a\<^sub>4) \<Rightarrow> a\<^sub>1 | (a\<^sub>4, a\<^sub>3) \<Rightarrow> a\<^sub>1
998 | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
999 | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
1000 | (a\<^sub>4, _) \<Rightarrow> a\<^sub>4 | (_, a\<^sub>4) \<Rightarrow> a\<^sub>4
1001 | _ \<Rightarrow> a\<^sub>5)"
1003 "x \<squnion> y = (case (x, y) of
1004 (a\<^sub>5, _) \<Rightarrow> a\<^sub>5 | (_, a\<^sub>5) \<Rightarrow> a\<^sub>5 | (a\<^sub>2, a\<^sub>4) \<Rightarrow> a\<^sub>5 | (a\<^sub>4, a\<^sub>2) \<Rightarrow> a\<^sub>5 | (a\<^sub>3, a\<^sub>4) \<Rightarrow> a\<^sub>5 | (a\<^sub>4, a\<^sub>3) \<Rightarrow> a\<^sub>5
1005 | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
1006 | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
1007 | (a\<^sub>4, _) \<Rightarrow> a\<^sub>4 | (_, a\<^sub>4) \<Rightarrow> a\<^sub>4
1008 | _ \<Rightarrow> a\<^sub>1)"
1012 fix A and z :: finite_5
1013 assume *: "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"
1014 show "z \<le> \<Sqinter>A"
1015 by(auto simp add: less_eq_finite_5_def Inf_finite_5_def split: finite_5.splits split_if_asm dest!: *)
1017 fix A and z :: finite_5
1018 assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"
1019 show "\<Squnion>A \<le> z"
1020 by(auto simp add: less_eq_finite_5_def Sup_finite_5_def split: finite_5.splits split_if_asm dest!: *)
1021 qed(auto simp add: less_eq_finite_5_def less_finite_5_def inf_finite_5_def sup_finite_5_def Inf_finite_5_def Sup_finite_5_def split: finite_5.splits split_if_asm)
1025 hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4 a\<^sub>5
1028 subsection {* Closing up *}
1030 hide_type (open) finite_1 finite_2 finite_3 finite_4 finite_5
1031 hide_const (open) enum enum_all enum_ex all_n_lists ex_n_lists ntrancl