src/HOL/OrderedGroup.thy
author chaieb
Fri, 30 Jan 2009 12:48:56 +0000
changeset 29693 708dcf7dec9f
parent 29670 cbe35f4f04f8
child 29833 409138c4de12
permissions -rw-r--r--
moved upwards in thy graph, real related theorems moved to Transcendental.thy

(*  Title:   HOL/OrderedGroup.thy
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad
*)

header {* Ordered Groups *}

theory OrderedGroup
imports Lattices
uses "~~/src/Provers/Arith/abel_cancel.ML"
begin

text {*
  The theory of partially ordered groups is taken from the books:
  \begin{itemize}
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
  \end{itemize}
  Most of the used notions can also be looked up in 
  \begin{itemize}
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
  \item \emph{Algebra I} by van der Waerden, Springer.
  \end{itemize}
*}

ML{*
structure AlgebraSimps =
  NamedThmsFun(val name = "algebra_simps"
               val description = "algebra simplification rules");
*}

setup AlgebraSimps.setup

text{* The rewrites accumulated in @{text algebra_simps} deal with the
classical algebraic structures of groups, rings and family. They simplify
terms by multiplying everything out (in case of a ring) and bringing sums and
products into a canonical form (by ordered rewriting). As a result it decides
group and ring equalities but also helps with inequalities.

Of course it also works for fields, but it knows nothing about multiplicative
inverses or division. This is catered for by @{text field_simps}. *}

subsection {* Semigroups and Monoids *}

class semigroup_add = plus +
  assumes add_assoc[algebra_simps]: "(a + b) + c = a + (b + c)"

class ab_semigroup_add = semigroup_add +
  assumes add_commute[algebra_simps]: "a + b = b + a"
begin

lemma add_left_commute[algebra_simps]: "a + (b + c) = b + (a + c)"
by (rule mk_left_commute [of "plus", OF add_assoc add_commute])

theorems add_ac = add_assoc add_commute add_left_commute

end

theorems add_ac = add_assoc add_commute add_left_commute

class semigroup_mult = times +
  assumes mult_assoc[algebra_simps]: "(a * b) * c = a * (b * c)"

class ab_semigroup_mult = semigroup_mult +
  assumes mult_commute[algebra_simps]: "a * b = b * a"
begin

lemma mult_left_commute[algebra_simps]: "a * (b * c) = b * (a * c)"
by (rule mk_left_commute [of "times", OF mult_assoc mult_commute])

theorems mult_ac = mult_assoc mult_commute mult_left_commute

end

theorems mult_ac = mult_assoc mult_commute mult_left_commute

class ab_semigroup_idem_mult = ab_semigroup_mult +
  assumes mult_idem[simp]: "x * x = x"
begin

lemma mult_left_idem[simp]: "x * (x * y) = x * y"
  unfolding mult_assoc [symmetric, of x] mult_idem ..

end

class monoid_add = zero + semigroup_add +
  assumes add_0_left [simp]: "0 + a = a"
    and add_0_right [simp]: "a + 0 = a"

lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
by (rule eq_commute)

class comm_monoid_add = zero + ab_semigroup_add +
  assumes add_0: "0 + a = a"
begin

subclass monoid_add
  proof qed (insert add_0, simp_all add: add_commute)

end

class monoid_mult = one + semigroup_mult +
  assumes mult_1_left [simp]: "1 * a  = a"
  assumes mult_1_right [simp]: "a * 1 = a"

lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
by (rule eq_commute)

class comm_monoid_mult = one + ab_semigroup_mult +
  assumes mult_1: "1 * a = a"
begin

subclass monoid_mult
  proof qed (insert mult_1, simp_all add: mult_commute)

end

class cancel_semigroup_add = semigroup_add +
  assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
  assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
begin

lemma add_left_cancel [simp]:
  "a + b = a + c \<longleftrightarrow> b = c"
by (blast dest: add_left_imp_eq)

lemma add_right_cancel [simp]:
  "b + a = c + a \<longleftrightarrow> b = c"
by (blast dest: add_right_imp_eq)

end

class cancel_ab_semigroup_add = ab_semigroup_add +
  assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
begin

subclass cancel_semigroup_add
proof
  fix a b c :: 'a
  assume "a + b = a + c" 
  then show "b = c" by (rule add_imp_eq)
next
  fix a b c :: 'a
  assume "b + a = c + a"
  then have "a + b = a + c" by (simp only: add_commute)
  then show "b = c" by (rule add_imp_eq)
qed

end

subsection {* Groups *}

class group_add = minus + uminus + monoid_add +
  assumes left_minus [simp]: "- a + a = 0"
  assumes diff_minus: "a - b = a + (- b)"
begin

lemma minus_add_cancel: "- a + (a + b) = b"
by (simp add: add_assoc[symmetric])

lemma minus_zero [simp]: "- 0 = 0"
proof -
  have "- 0 = - 0 + (0 + 0)" by (simp only: add_0_right)
  also have "\<dots> = 0" by (rule minus_add_cancel)
  finally show ?thesis .
qed

lemma minus_minus [simp]: "- (- a) = a"
proof -
  have "- (- a) = - (- a) + (- a + a)" by simp
  also have "\<dots> = a" by (rule minus_add_cancel)
  finally show ?thesis .
qed

lemma right_minus [simp]: "a + - a = 0"
proof -
  have "a + - a = - (- a) + - a" by simp
  also have "\<dots> = 0" by (rule left_minus)
  finally show ?thesis .
qed

lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
proof
  assume "a - b = 0"
  have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
  also have "\<dots> = b" using `a - b = 0` by simp
  finally show "a = b" .
next
  assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
qed

lemma equals_zero_I:
  assumes "a + b = 0" shows "- a = b"
proof -
  have "- a = - a + (a + b)" using assms by simp
  also have "\<dots> = b" by (simp add: add_assoc[symmetric])
  finally show ?thesis .
qed

lemma diff_self [simp]: "a - a = 0"
by (simp add: diff_minus)

lemma diff_0 [simp]: "0 - a = - a"
by (simp add: diff_minus)

lemma diff_0_right [simp]: "a - 0 = a" 
by (simp add: diff_minus)

lemma diff_minus_eq_add [simp]: "a - - b = a + b"
by (simp add: diff_minus)

lemma neg_equal_iff_equal [simp]:
  "- a = - b \<longleftrightarrow> a = b" 
proof 
  assume "- a = - b"
  hence "- (- a) = - (- b)" by simp
  thus "a = b" by simp
next
  assume "a = b"
  thus "- a = - b" by simp
qed

lemma neg_equal_0_iff_equal [simp]:
  "- a = 0 \<longleftrightarrow> a = 0"
by (subst neg_equal_iff_equal [symmetric], simp)

lemma neg_0_equal_iff_equal [simp]:
  "0 = - a \<longleftrightarrow> 0 = a"
by (subst neg_equal_iff_equal [symmetric], simp)

text{*The next two equations can make the simplifier loop!*}

lemma equation_minus_iff:
  "a = - b \<longleftrightarrow> b = - a"
proof -
  have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
  thus ?thesis by (simp add: eq_commute)
qed

lemma minus_equation_iff:
  "- a = b \<longleftrightarrow> - b = a"
proof -
  have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
  thus ?thesis by (simp add: eq_commute)
qed

lemma diff_add_cancel: "a - b + b = a"
by (simp add: diff_minus add_assoc)

lemma add_diff_cancel: "a + b - b = a"
by (simp add: diff_minus add_assoc)

declare diff_minus[symmetric, algebra_simps]

end

class ab_group_add = minus + uminus + comm_monoid_add +
  assumes ab_left_minus: "- a + a = 0"
  assumes ab_diff_minus: "a - b = a + (- b)"
begin

subclass group_add
  proof qed (simp_all add: ab_left_minus ab_diff_minus)

subclass cancel_ab_semigroup_add
proof
  fix a b c :: 'a
  assume "a + b = a + c"
  then have "- a + a + b = - a + a + c"
    unfolding add_assoc by simp
  then show "b = c" by simp
qed

lemma uminus_add_conv_diff[algebra_simps]:
  "- a + b = b - a"
by (simp add:diff_minus add_commute)

lemma minus_add_distrib [simp]:
  "- (a + b) = - a + - b"
by (rule equals_zero_I) (simp add: add_ac)

lemma minus_diff_eq [simp]:
  "- (a - b) = b - a"
by (simp add: diff_minus add_commute)

lemma add_diff_eq[algebra_simps]: "a + (b - c) = (a + b) - c"
by (simp add: diff_minus add_ac)

lemma diff_add_eq[algebra_simps]: "(a - b) + c = (a + c) - b"
by (simp add: diff_minus add_ac)

lemma diff_eq_eq[algebra_simps]: "a - b = c \<longleftrightarrow> a = c + b"
by (auto simp add: diff_minus add_assoc)

lemma eq_diff_eq[algebra_simps]: "a = c - b \<longleftrightarrow> a + b = c"
by (auto simp add: diff_minus add_assoc)

lemma diff_diff_eq[algebra_simps]: "(a - b) - c = a - (b + c)"
by (simp add: diff_minus add_ac)

lemma diff_diff_eq2[algebra_simps]: "a - (b - c) = (a + c) - b"
by (simp add: diff_minus add_ac)

lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
by (simp add: algebra_simps)

end

subsection {* (Partially) Ordered Groups *} 

class pordered_ab_semigroup_add = order + ab_semigroup_add +
  assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
begin

lemma add_right_mono:
  "a \<le> b \<Longrightarrow> a + c \<le> b + c"
by (simp add: add_commute [of _ c] add_left_mono)

text {* non-strict, in both arguments *}
lemma add_mono:
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
  apply (erule add_right_mono [THEN order_trans])
  apply (simp add: add_commute add_left_mono)
  done

end

class pordered_cancel_ab_semigroup_add =
  pordered_ab_semigroup_add + cancel_ab_semigroup_add
begin

lemma add_strict_left_mono:
  "a < b \<Longrightarrow> c + a < c + b"
by (auto simp add: less_le add_left_mono)

lemma add_strict_right_mono:
  "a < b \<Longrightarrow> a + c < b + c"
by (simp add: add_commute [of _ c] add_strict_left_mono)

text{*Strict monotonicity in both arguments*}
lemma add_strict_mono:
  "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
apply (erule add_strict_right_mono [THEN less_trans])
apply (erule add_strict_left_mono)
done

lemma add_less_le_mono:
  "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
apply (erule add_strict_right_mono [THEN less_le_trans])
apply (erule add_left_mono)
done

lemma add_le_less_mono:
  "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
apply (erule add_right_mono [THEN le_less_trans])
apply (erule add_strict_left_mono) 
done

end

class pordered_ab_semigroup_add_imp_le =
  pordered_cancel_ab_semigroup_add +
  assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
begin

lemma add_less_imp_less_left:
  assumes less: "c + a < c + b" shows "a < b"
proof -
  from less have le: "c + a <= c + b" by (simp add: order_le_less)
  have "a <= b" 
    apply (insert le)
    apply (drule add_le_imp_le_left)
    by (insert le, drule add_le_imp_le_left, assumption)
  moreover have "a \<noteq> b"
  proof (rule ccontr)
    assume "~(a \<noteq> b)"
    then have "a = b" by simp
    then have "c + a = c + b" by simp
    with less show "False"by simp
  qed
  ultimately show "a < b" by (simp add: order_le_less)
qed

lemma add_less_imp_less_right:
  "a + c < b + c \<Longrightarrow> a < b"
apply (rule add_less_imp_less_left [of c])
apply (simp add: add_commute)  
done

lemma add_less_cancel_left [simp]:
  "c + a < c + b \<longleftrightarrow> a < b"
by (blast intro: add_less_imp_less_left add_strict_left_mono) 

lemma add_less_cancel_right [simp]:
  "a + c < b + c \<longleftrightarrow> a < b"
by (blast intro: add_less_imp_less_right add_strict_right_mono)

lemma add_le_cancel_left [simp]:
  "c + a \<le> c + b \<longleftrightarrow> a \<le> b"
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 

lemma add_le_cancel_right [simp]:
  "a + c \<le> b + c \<longleftrightarrow> a \<le> b"
by (simp add: add_commute [of a c] add_commute [of b c])

lemma add_le_imp_le_right:
  "a + c \<le> b + c \<Longrightarrow> a \<le> b"
by simp

lemma max_add_distrib_left:
  "max x y + z = max (x + z) (y + z)"
  unfolding max_def by auto

lemma min_add_distrib_left:
  "min x y + z = min (x + z) (y + z)"
  unfolding min_def by auto

end

subsection {* Support for reasoning about signs *}

class pordered_comm_monoid_add =
  pordered_cancel_ab_semigroup_add + comm_monoid_add
begin

lemma add_pos_nonneg:
  assumes "0 < a" and "0 \<le> b" shows "0 < a + b"
proof -
  have "0 + 0 < a + b" 
    using assms by (rule add_less_le_mono)
  then show ?thesis by simp
qed

lemma add_pos_pos:
  assumes "0 < a" and "0 < b" shows "0 < a + b"
by (rule add_pos_nonneg) (insert assms, auto)

lemma add_nonneg_pos:
  assumes "0 \<le> a" and "0 < b" shows "0 < a + b"
proof -
  have "0 + 0 < a + b" 
    using assms by (rule add_le_less_mono)
  then show ?thesis by simp
qed

lemma add_nonneg_nonneg:
  assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b"
proof -
  have "0 + 0 \<le> a + b" 
    using assms by (rule add_mono)
  then show ?thesis by simp
qed

lemma add_neg_nonpos: 
  assumes "a < 0" and "b \<le> 0" shows "a + b < 0"
proof -
  have "a + b < 0 + 0"
    using assms by (rule add_less_le_mono)
  then show ?thesis by simp
qed

lemma add_neg_neg: 
  assumes "a < 0" and "b < 0" shows "a + b < 0"
by (rule add_neg_nonpos) (insert assms, auto)

lemma add_nonpos_neg:
  assumes "a \<le> 0" and "b < 0" shows "a + b < 0"
proof -
  have "a + b < 0 + 0"
    using assms by (rule add_le_less_mono)
  then show ?thesis by simp
qed

lemma add_nonpos_nonpos:
  assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0"
proof -
  have "a + b \<le> 0 + 0"
    using assms by (rule add_mono)
  then show ?thesis by simp
qed

end

class pordered_ab_group_add =
  ab_group_add + pordered_ab_semigroup_add
begin

subclass pordered_cancel_ab_semigroup_add ..

subclass pordered_ab_semigroup_add_imp_le
proof
  fix a b c :: 'a
  assume "c + a \<le> c + b"
  hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
  hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
  thus "a \<le> b" by simp
qed

subclass pordered_comm_monoid_add ..

lemma max_diff_distrib_left:
  shows "max x y - z = max (x - z) (y - z)"
by (simp add: diff_minus, rule max_add_distrib_left) 

lemma min_diff_distrib_left:
  shows "min x y - z = min (x - z) (y - z)"
by (simp add: diff_minus, rule min_add_distrib_left) 

lemma le_imp_neg_le:
  assumes "a \<le> b" shows "-b \<le> -a"
proof -
  have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono) 
  hence "0 \<le> -a+b" by simp
  hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) 
  thus ?thesis by (simp add: add_assoc)
qed

lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
proof 
  assume "- b \<le> - a"
  hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le)
  thus "a\<le>b" by simp
next
  assume "a\<le>b"
  thus "-b \<le> -a" by (rule le_imp_neg_le)
qed

lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
by (subst neg_le_iff_le [symmetric], simp)

lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
by (subst neg_le_iff_le [symmetric], simp)

lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
by (force simp add: less_le) 

lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
by (subst neg_less_iff_less [symmetric], simp)

lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
by (subst neg_less_iff_less [symmetric], simp)

text{*The next several equations can make the simplifier loop!*}

lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
proof -
  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
  thus ?thesis by simp
qed

lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
proof -
  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
  thus ?thesis by simp
qed

lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
proof -
  have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
  have "(- (- a) <= -b) = (b <= - a)" 
    apply (auto simp only: le_less)
    apply (drule mm)
    apply (simp_all)
    apply (drule mm[simplified], assumption)
    done
  then show ?thesis by simp
qed

lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
by (auto simp add: le_less minus_less_iff)

lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0"
proof -
  have  "(a < b) = (a + (- b) < b + (-b))"  
    by (simp only: add_less_cancel_right)
  also have "... =  (a - b < 0)" by (simp add: diff_minus)
  finally show ?thesis .
qed

lemma diff_less_eq[algebra_simps]: "a - b < c \<longleftrightarrow> a < c + b"
apply (subst less_iff_diff_less_0 [of a])
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
apply (simp add: diff_minus add_ac)
done

lemma less_diff_eq[algebra_simps]: "a < c - b \<longleftrightarrow> a + b < c"
apply (subst less_iff_diff_less_0 [of "plus a b"])
apply (subst less_iff_diff_less_0 [of a])
apply (simp add: diff_minus add_ac)
done

lemma diff_le_eq[algebra_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)

lemma le_diff_eq[algebra_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)

lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0"
by (simp add: algebra_simps)

text{*Legacy - use @{text algebra_simps} *}
lemmas group_simps = algebra_simps

end

text{*Legacy - use @{text algebra_simps} *}
lemmas group_simps = algebra_simps

class ordered_ab_semigroup_add =
  linorder + pordered_ab_semigroup_add

class ordered_cancel_ab_semigroup_add =
  linorder + pordered_cancel_ab_semigroup_add
begin

subclass ordered_ab_semigroup_add ..

subclass pordered_ab_semigroup_add_imp_le
proof
  fix a b c :: 'a
  assume le: "c + a <= c + b"  
  show "a <= b"
  proof (rule ccontr)
    assume w: "~ a \<le> b"
    hence "b <= a" by (simp add: linorder_not_le)
    hence le2: "c + b <= c + a" by (rule add_left_mono)
    have "a = b" 
      apply (insert le)
      apply (insert le2)
      apply (drule antisym, simp_all)
      done
    with w show False 
      by (simp add: linorder_not_le [symmetric])
  qed
qed

end

class ordered_ab_group_add =
  linorder + pordered_ab_group_add
begin

subclass ordered_cancel_ab_semigroup_add ..

lemma neg_less_eq_nonneg:
  "- a \<le> a \<longleftrightarrow> 0 \<le> a"
proof
  assume A: "- a \<le> a" show "0 \<le> a"
  proof (rule classical)
    assume "\<not> 0 \<le> a"
    then have "a < 0" by auto
    with A have "- a < 0" by (rule le_less_trans)
    then show ?thesis by auto
  qed
next
  assume A: "0 \<le> a" show "- a \<le> a"
  proof (rule order_trans)
    show "- a \<le> 0" using A by (simp add: minus_le_iff)
  next
    show "0 \<le> a" using A .
  qed
qed
  
lemma less_eq_neg_nonpos:
  "a \<le> - a \<longleftrightarrow> a \<le> 0"
proof
  assume A: "a \<le> - a" show "a \<le> 0"
  proof (rule classical)
    assume "\<not> a \<le> 0"
    then have "0 < a" by auto
    then have "0 < - a" using A by (rule less_le_trans)
    then show ?thesis by auto
  qed
next
  assume A: "a \<le> 0" show "a \<le> - a"
  proof (rule order_trans)
    show "0 \<le> - a" using A by (simp add: minus_le_iff)
  next
    show "a \<le> 0" using A .
  qed
qed

lemma equal_neg_zero:
  "a = - a \<longleftrightarrow> a = 0"
proof
  assume "a = 0" then show "a = - a" by simp
next
  assume A: "a = - a" show "a = 0"
  proof (cases "0 \<le> a")
    case True with A have "0 \<le> - a" by auto
    with le_minus_iff have "a \<le> 0" by simp
    with True show ?thesis by (auto intro: order_trans)
  next
    case False then have B: "a \<le> 0" by auto
    with A have "- a \<le> 0" by auto
    with B show ?thesis by (auto intro: order_trans)
  qed
qed

lemma neg_equal_zero:
  "- a = a \<longleftrightarrow> a = 0"
  unfolding equal_neg_zero [symmetric] by auto

end

-- {* FIXME localize the following *}

lemma add_increasing:
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
  shows  "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"
by (insert add_mono [of 0 a b c], simp)

lemma add_increasing2:
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
  shows  "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"
by (simp add:add_increasing add_commute[of a])

lemma add_strict_increasing:
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
  shows "[|0<a; b\<le>c|] ==> b < a + c"
by (insert add_less_le_mono [of 0 a b c], simp)

lemma add_strict_increasing2:
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
  shows "[|0\<le>a; b<c|] ==> b < a + c"
by (insert add_le_less_mono [of 0 a b c], simp)


class pordered_ab_group_add_abs = pordered_ab_group_add + abs +
  assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"
    and abs_ge_self: "a \<le> \<bar>a\<bar>"
    and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
    and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
    and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
begin

lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"
  unfolding neg_le_0_iff_le by simp

lemma abs_of_nonneg [simp]:
  assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a"
proof (rule antisym)
  from nonneg le_imp_neg_le have "- a \<le> 0" by simp
  from this nonneg have "- a \<le> a" by (rule order_trans)
  then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)
qed (rule abs_ge_self)

lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
by (rule antisym)
   (auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"])

lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
proof -
  have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"
  proof (rule antisym)
    assume zero: "\<bar>a\<bar> = 0"
    with abs_ge_self show "a \<le> 0" by auto
    from zero have "\<bar>-a\<bar> = 0" by simp
    with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto
    with neg_le_0_iff_le show "0 \<le> a" by auto
  qed
  then show ?thesis by auto
qed

lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
by simp

lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
proof -
  have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)
  thus ?thesis by simp
qed

lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" 
proof
  assume "\<bar>a\<bar> \<le> 0"
  then have "\<bar>a\<bar> = 0" by (rule antisym) simp
  thus "a = 0" by simp
next
  assume "a = 0"
  thus "\<bar>a\<bar> \<le> 0" by simp
qed

lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
by (simp add: less_le)

lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
proof -
  have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
  show ?thesis by (simp add: a)
qed

lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
proof -
  have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)
  then show ?thesis by simp
qed

lemma abs_minus_commute: 
  "\<bar>a - b\<bar> = \<bar>b - a\<bar>"
proof -
  have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
  also have "... = \<bar>b - a\<bar>" by simp
  finally show ?thesis .
qed

lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"
by (rule abs_of_nonneg, rule less_imp_le)

lemma abs_of_nonpos [simp]:
  assumes "a \<le> 0" shows "\<bar>a\<bar> = - a"
proof -
  let ?b = "- a"
  have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"
  unfolding abs_minus_cancel [of "?b"]
  unfolding neg_le_0_iff_le [of "?b"]
  unfolding minus_minus by (erule abs_of_nonneg)
  then show ?thesis using assms by auto
qed
  
lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"
by (rule abs_of_nonpos, rule less_imp_le)

lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
by (insert abs_ge_self, blast intro: order_trans)

lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
by (insert abs_le_D1 [of "uminus a"], simp)

lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)

lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
  apply (simp add: algebra_simps)
  apply (subgoal_tac "abs a = abs (plus b (minus a b))")
  apply (erule ssubst)
  apply (rule abs_triangle_ineq)
  apply (rule arg_cong[of _ _ abs])
  apply (simp add: algebra_simps)
done

lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
  apply (subst abs_le_iff)
  apply auto
  apply (rule abs_triangle_ineq2)
  apply (subst abs_minus_commute)
  apply (rule abs_triangle_ineq2)
done

lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
proof -
  have "abs(a - b) = abs(a + - b)" by (subst diff_minus, rule refl)
  also have "... <= abs a + abs (- b)" by (rule abs_triangle_ineq)
  finally show ?thesis by simp
qed

lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
proof -
  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
  finally show ?thesis .
qed

lemma abs_add_abs [simp]:
  "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
proof (rule antisym)
  show "?L \<ge> ?R" by(rule abs_ge_self)
next
  have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
  also have "\<dots> = ?R" by simp
  finally show "?L \<le> ?R" .
qed

end


subsection {* Lattice Ordered (Abelian) Groups *}

class lordered_ab_group_add_meet = pordered_ab_group_add + lower_semilattice
begin

lemma add_inf_distrib_left:
  "a + inf b c = inf (a + b) (a + c)"
apply (rule antisym)
apply (simp_all add: le_infI)
apply (rule add_le_imp_le_left [of "uminus a"])
apply (simp only: add_assoc [symmetric], simp)
apply rule
apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
done

lemma add_inf_distrib_right:
  "inf a b + c = inf (a + c) (b + c)"
proof -
  have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
  thus ?thesis by (simp add: add_commute)
qed

end

class lordered_ab_group_add_join = pordered_ab_group_add + upper_semilattice
begin

lemma add_sup_distrib_left:
  "a + sup b c = sup (a + b) (a + c)" 
apply (rule antisym)
apply (rule add_le_imp_le_left [of "uminus a"])
apply (simp only: add_assoc[symmetric], simp)
apply rule
apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
apply (rule le_supI)
apply (simp_all)
done

lemma add_sup_distrib_right:
  "sup a b + c = sup (a+c) (b+c)"
proof -
  have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
  thus ?thesis by (simp add: add_commute)
qed

end

class lordered_ab_group_add = pordered_ab_group_add + lattice
begin

subclass lordered_ab_group_add_meet ..
subclass lordered_ab_group_add_join ..

lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left

lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"
proof (rule inf_unique)
  fix a b :: 'a
  show "- sup (-a) (-b) \<le> a"
    by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
      (simp, simp add: add_sup_distrib_left)
next
  fix a b :: 'a
  show "- sup (-a) (-b) \<le> b"
    by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
      (simp, simp add: add_sup_distrib_left)
next
  fix a b c :: 'a
  assume "a \<le> b" "a \<le> c"
  then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
    (simp add: le_supI)
qed
  
lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"
proof (rule sup_unique)
  fix a b :: 'a
  show "a \<le> - inf (-a) (-b)"
    by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
      (simp, simp add: add_inf_distrib_left)
next
  fix a b :: 'a
  show "b \<le> - inf (-a) (-b)"
    by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
      (simp, simp add: add_inf_distrib_left)
next
  fix a b c :: 'a
  assume "a \<le> c" "b \<le> c"
  then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
    (simp add: le_infI)
qed

lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)"
by (simp add: inf_eq_neg_sup)

lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)"
by (simp add: sup_eq_neg_inf)

lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
proof -
  have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
  hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
  hence "0 = (-a + sup a b) + (inf a b + (-b))"
    by (simp add: add_sup_distrib_left add_inf_distrib_right)
       (simp add: algebra_simps)
  thus ?thesis by (simp add: algebra_simps)
qed

subsection {* Positive Part, Negative Part, Absolute Value *}

definition
  nprt :: "'a \<Rightarrow> 'a" where
  "nprt x = inf x 0"

definition
  pprt :: "'a \<Rightarrow> 'a" where
  "pprt x = sup x 0"

lemma pprt_neg: "pprt (- x) = - nprt x"
proof -
  have "sup (- x) 0 = sup (- x) (- 0)" unfolding minus_zero ..
  also have "\<dots> = - inf x 0" unfolding neg_inf_eq_sup ..
  finally have "sup (- x) 0 = - inf x 0" .
  then show ?thesis unfolding pprt_def nprt_def .
qed

lemma nprt_neg: "nprt (- x) = - pprt x"
proof -
  from pprt_neg have "pprt (- (- x)) = - nprt (- x)" .
  then have "pprt x = - nprt (- x)" by simp
  then show ?thesis by simp
qed

lemma prts: "a = pprt a + nprt a"
by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])

lemma zero_le_pprt[simp]: "0 \<le> pprt a"
by (simp add: pprt_def)

lemma nprt_le_zero[simp]: "nprt a \<le> 0"
by (simp add: nprt_def)

lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")
proof -
  have a: "?l \<longrightarrow> ?r"
    apply (auto)
    apply (rule add_le_imp_le_right[of _ "uminus b" _])
    apply (simp add: add_assoc)
    done
  have b: "?r \<longrightarrow> ?l"
    apply (auto)
    apply (rule add_le_imp_le_right[of _ "b" _])
    apply (simp)
    done
  from a b show ?thesis by blast
qed

lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)

lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"
by (simp add: pprt_def le_iff_sup sup_ACI)

lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
by (simp add: nprt_def le_iff_inf inf_ACI)

lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
by (simp add: pprt_def le_iff_sup sup_ACI)

lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
by (simp add: nprt_def le_iff_inf inf_ACI)

lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
proof -
  {
    fix a::'a
    assume hyp: "sup a (-a) = 0"
    hence "sup a (-a) + a = a" by (simp)
    hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right) 
    hence "sup (a+a) 0 <= a" by (simp)
    hence "0 <= a" by (blast intro: order_trans inf_sup_ord)
  }
  note p = this
  assume hyp:"sup a (-a) = 0"
  hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
  from p[OF hyp] p[OF hyp2] show "a = 0" by simp
qed

lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"
apply (simp add: inf_eq_neg_sup)
apply (simp add: sup_commute)
apply (erule sup_0_imp_0)
done

lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"
by (rule, erule inf_0_imp_0) simp

lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"
by (rule, erule sup_0_imp_0) simp

lemma zero_le_double_add_iff_zero_le_single_add [simp]:
  "0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
proof
  assume "0 <= a + a"
  hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)
  have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")
    by (simp add: add_sup_inf_distribs inf_ACI)
  hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
  hence "inf a 0 = 0" by (simp only: add_right_cancel)
  then show "0 <= a" by (simp add: le_iff_inf inf_commute)    
next  
  assume a: "0 <= a"
  show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
qed

lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0"
proof
  assume assm: "a + a = 0"
  then have "a + a + - a = - a" by simp
  then have "a + (a + - a) = - a" by (simp only: add_assoc)
  then have a: "- a = a" by simp (*FIXME tune proof*)
  show "a = 0" apply (rule antisym)
  apply (unfold neg_le_iff_le [symmetric, of a])
  unfolding a apply simp
  unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
  unfolding assm unfolding le_less apply simp_all done
next
  assume "a = 0" then show "a + a = 0" by simp
qed

lemma zero_less_double_add_iff_zero_less_single_add:
  "0 < a + a \<longleftrightarrow> 0 < a"
proof (cases "a = 0")
  case True then show ?thesis by auto
next
  case False then show ?thesis (*FIXME tune proof*)
  unfolding less_le apply simp apply rule
  apply clarify
  apply rule
  apply assumption
  apply (rule notI)
  unfolding double_zero [symmetric, of a] apply simp
  done
qed

lemma double_add_le_zero_iff_single_add_le_zero [simp]:
  "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" 
proof -
  have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
  moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)
  ultimately show ?thesis by blast
qed

lemma double_add_less_zero_iff_single_less_zero [simp]:
  "a + a < 0 \<longleftrightarrow> a < 0"
proof -
  have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
  moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)
  ultimately show ?thesis by blast
qed

declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp]

lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
proof -
  from add_le_cancel_left [of "uminus a" "plus a a" zero]
  have "(a <= -a) = (a+a <= 0)" 
    by (simp add: add_assoc[symmetric])
  thus ?thesis by simp
qed

lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"
proof -
  from add_le_cancel_left [of "uminus a" zero "plus a a"]
  have "(-a <= a) = (0 <= a+a)" 
    by (simp add: add_assoc[symmetric])
  thus ?thesis by simp
qed

lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"
by (simp add: le_iff_inf nprt_def inf_commute)

lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"
by (simp add: le_iff_sup pprt_def sup_commute)

lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"
by (simp add: le_iff_sup pprt_def sup_commute)

lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"
by (simp add: le_iff_inf nprt_def inf_commute)

lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"
by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a])

lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"
by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a])

end

lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left


class lordered_ab_group_add_abs = lordered_ab_group_add + abs +
  assumes abs_lattice: "\<bar>a\<bar> = sup a (- a)"
begin

lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a"
proof -
  have "0 \<le> \<bar>a\<bar>"
  proof -
    have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
    show ?thesis by (rule add_mono [OF a b, simplified])
  qed
  then have "0 \<le> sup a (- a)" unfolding abs_lattice .
  then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
  then show ?thesis
    by (simp add: add_sup_inf_distribs sup_ACI
      pprt_def nprt_def diff_minus abs_lattice)
qed

subclass pordered_ab_group_add_abs
proof
  have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>"
  proof -
    fix a b
    have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
    show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified])
  qed
  have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
    by (simp add: abs_lattice le_supI)
  fix a b
  show "0 \<le> \<bar>a\<bar>" by simp
  show "a \<le> \<bar>a\<bar>"
    by (auto simp add: abs_lattice)
  show "\<bar>-a\<bar> = \<bar>a\<bar>"
    by (simp add: abs_lattice sup_commute)
  show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (fact abs_leI)
  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
  proof -
    have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
      by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus)
    have a:"a+b <= sup ?m ?n" by (simp)
    have b:"-a-b <= ?n" by (simp) 
    have c:"?n <= sup ?m ?n" by (simp)
    from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
    have e:"-a-b = -(a+b)" by (simp add: diff_minus)
    from a d e have "abs(a+b) <= sup ?m ?n" 
      by (drule_tac abs_leI, auto)
    with g[symmetric] show ?thesis by simp
  qed
qed

end

lemma sup_eq_if:
  fixes a :: "'a\<Colon>{lordered_ab_group_add, linorder}"
  shows "sup a (- a) = (if a < 0 then - a else a)"
proof -
  note add_le_cancel_right [of a a "- a", symmetric, simplified]
  moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]
  then show ?thesis by (auto simp: sup_max max_def)
qed

lemma abs_if_lattice:
  fixes a :: "'a\<Colon>{lordered_ab_group_add_abs, linorder}"
  shows "\<bar>a\<bar> = (if a < 0 then - a else a)"
by auto


text {* Needed for abelian cancellation simprocs: *}

lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
apply (subst add_left_commute)
apply (subst add_left_cancel)
apply simp
done

lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"
apply (subst add_cancel_21[of _ _ _ 0, simplified])
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])
done

lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])

lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of  y' x'])
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])
done

lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"
by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])

lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"
by (simp add: diff_minus)

lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"
by (simp add: add_assoc[symmetric])

lemma le_add_right_mono: 
  assumes 
  "a <= b + (c::'a::pordered_ab_group_add)"
  "c <= d"    
  shows "a <= b + d"
  apply (rule_tac order_trans[where y = "b+c"])
  apply (simp_all add: prems)
  done

lemma estimate_by_abs:
  "a + b <= (c::'a::lordered_ab_group_add_abs) \<Longrightarrow> a <= c + abs b" 
proof -
  assume "a+b <= c"
  hence 2: "a <= c+(-b)" by (simp add: algebra_simps)
  have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
  show ?thesis by (rule le_add_right_mono[OF 2 3])
qed

subsection {* Tools setup *}

lemma add_mono_thms_ordered_semiring [noatp]:
  fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
by (rule add_mono, clarify+)+

lemma add_mono_thms_ordered_field [noatp]:
  fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
by (auto intro: add_strict_right_mono add_strict_left_mono
  add_less_le_mono add_le_less_mono add_strict_mono)

text{*Simplification of @{term "x-y < 0"}, etc.*}
lemmas diff_less_0_iff_less [simp] = less_iff_diff_less_0 [symmetric]
lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric]
lemmas diff_le_0_iff_le [simp] = le_iff_diff_le_0 [symmetric]

ML {*
structure ab_group_add_cancel = Abel_Cancel
(

(* term order for abelian groups *)

fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
      [@{const_name HOL.zero}, @{const_name HOL.plus},
        @{const_name HOL.uminus}, @{const_name HOL.minus}]
  | agrp_ord _ = ~1;

fun termless_agrp (a, b) = (TermOrd.term_lpo agrp_ord (a, b) = LESS);

local
  val ac1 = mk_meta_eq @{thm add_assoc};
  val ac2 = mk_meta_eq @{thm add_commute};
  val ac3 = mk_meta_eq @{thm add_left_commute};
  fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
        SOME ac1
    | solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
        if termless_agrp (y, x) then SOME ac3 else NONE
    | solve_add_ac thy _ (_ $ x $ y) =
        if termless_agrp (y, x) then SOME ac2 else NONE
    | solve_add_ac thy _ _ = NONE
in
  val add_ac_proc = Simplifier.simproc (the_context ())
    "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;
end;

val eq_reflection = @{thm eq_reflection};
  
val T = @{typ "'a::ab_group_add"};

val cancel_ss = HOL_basic_ss settermless termless_agrp
  addsimprocs [add_ac_proc] addsimps
  [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
   @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
   @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
   @{thm minus_add_cancel}];

val sum_pats = [@{cterm "x + y::'a::ab_group_add"}, @{cterm "x - y::'a::ab_group_add"}];
  
val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];

val dest_eqI = 
  fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;

);
*}

ML {*
  Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];
*}

end