src/HOL/Library/reflection.ML
author haftmann
Sun, 21 Apr 2013 10:41:18 +0200
changeset 51725 7c1bc0263376
parent 51724 80f9906ede19
permissions -rw-r--r--
follow Isabelle spacing praxis more thoroughly

(*  Title:      HOL/Library/reflection.ML
    Author:     Amine Chaieb, TU Muenchen

A trial for automatical reification.
*)

signature REFLECTION =
sig
  val gen_reify: Proof.context -> thm list -> term -> thm
  val gen_reify_tac: Proof.context -> thm list -> term option -> int -> tactic
  val gen_reflection_tac: Proof.context -> (cterm -> thm)
    -> thm list -> thm list -> term option -> int -> tactic
  val get_default: Proof.context -> { reification_eqs: thm list, correctness_thms: thm list }
  val add_reification_eq: attribute
  val del_reification_eq: attribute
  val add_correctness_thm: attribute
  val del_correctness_thm: attribute
  val default_reify_tac: Proof.context -> thm list -> term option -> int -> tactic
  val default_reflection_tac: Proof.context -> thm list -> thm list -> term option -> int -> tactic
end;

structure Reflection : REFLECTION =
struct

val FWD = curry (op OF);

fun dest_listT (Type (@{type_name "list"}, [T])) = T;


(* Make a congruence rule out of a defining equation for the interpretation

   th is one defining equation of f,
     i.e. th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)" 
   Cp is a constructor pattern and P is a pattern 

   The result is:
     [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn)
       + the a list of names of the A1 .. An, Those are fresh in the ctxt *)

fun mk_congeq ctxt fs th =
  let
    val Const (fN, _) = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq
      |> fst |> strip_comb |> fst;
    val thy = Proof_Context.theory_of ctxt;
    val cert = Thm.cterm_of thy;
    val ((_, [th']), ctxt') = Variable.import true [th] ctxt;
    val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th'));
    fun add_fterms (t as t1 $ t2) =
          if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs
          then insert (op aconv) t
          else add_fterms t1 #> add_fterms t2
      | add_fterms (t as Abs _) =
          if exists_Const (fn (c, _) => c = fN) t
          then K [t]
          else K []
      | add_fterms _ = I;
    val fterms = add_fterms rhs [];
    val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt';
    val tys = map fastype_of fterms;
    val vs = map Free (xs ~~ tys);
    val env = fterms ~~ vs; (*FIXME*)
    fun replace_fterms (t as t1 $ t2) =
        (case AList.lookup (op aconv) env t of
            SOME v => v
          | NONE => replace_fterms t1 $ replace_fterms t2)
      | replace_fterms t =
        (case AList.lookup (op aconv) env t of
            SOME v => v
          | NONE => t);
    fun mk_def (Abs (x, xT, t), v) =
          HOLogic.mk_Trueprop (HOLogic.all_const xT $ Abs (x, xT, HOLogic.mk_eq (v $ Bound 0, t)))
      | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t));
    fun tryext x =
      (x RS @{lemma "(\<forall>x. f x = g x) \<Longrightarrow> f = g" by blast} handle THM _ => x);
    val cong =
      (Goal.prove ctxt'' [] (map mk_def env)
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs)))
        (fn {context, prems, ...} =>
          Local_Defs.unfold_tac context (map tryext prems) THEN rtac th' 1)) RS sym;
    val (cong' :: vars') =
      Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o cert) vs);
    val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars';

  in (vs', cong') end;

(* congs is a list of pairs (P,th) where th is a theorem for
     [| f p1 = A1; ...; f pn = An|] ==> f (C p1 .. pn) = P *)

fun rearrange congs =
  let
    fun P (_, th) =
      let val @{term "Trueprop"} $ (Const (@{const_name HOL.eq}, _) $ l $ _) = concl_of th
      in can dest_Var l end;
    val (yes, no) = List.partition P congs;
  in no @ yes end;

fun gen_reify ctxt eqs t =
  let
    fun index_of t bds =
      let
        val tt = HOLogic.listT (fastype_of t);
      in
        (case AList.lookup Type.could_unify bds tt of
            NONE => error "index_of : type not found in environements!"
          | SOME (tbs, tats) =>
              let
                val i = find_index (fn t' => t' = t) tats;
                val j = find_index (fn t' => t' = t) tbs;
              in
                if j = ~1 then
                  if i = ~1
                  then (length tbs + length tats, AList.update Type.could_unify (tt, (tbs, tats @ [t])) bds)
                  else (i, bds)
                else (j, bds)
              end)
      end;

    (* Generic decomp for reification : matches the actual term with the
       rhs of one cong rule. The result of the matching guides the
       proof synthesis: The matches of the introduced Variables A1 .. An are
       processed recursively
       The rest is instantiated in the cong rule,i.e. no reification is needed *)

    (* da is the decomposition for atoms, ie. it returns ([],g) where g
       returns the right instance f (AtC n) = t , where AtC is the Atoms
       constructor and n is the number of the atom corresponding to t *)
    fun decomp_genreif da cgns (t, ctxt) bds =
      let
        val thy = Proof_Context.theory_of ctxt;
        val cert = cterm_of thy;
        fun tryabsdecomp (s, ctxt) bds =
          (case s of
            Abs (_, xT, ta) =>
              let
                val ([raw_xn], ctxt') = Variable.variant_fixes ["x"] ctxt;
                val (xn, ta) = Syntax_Trans.variant_abs (raw_xn, xT, ta);  (* FIXME !? *)
                val x = Free(xn, xT);
                val bds = (case AList.lookup Type.could_unify bds (HOLogic.listT xT) of
                    NONE => error "tryabsdecomp: Type not found in the Environement"
                  | SOME (bsT, atsT) => AList.update Type.could_unify (HOLogic.listT xT, (x :: bsT, atsT)) bds);
               in (([(ta, ctxt')],
                    fn ([th], bds) =>
                      (hd (Variable.export ctxt' ctxt [(Thm.forall_intr (cert x) th) COMP allI]),
                       let
                         val (bsT, asT) = the (AList.lookup Type.could_unify bds (HOLogic.listT xT));
                       in
                         AList.update Type.could_unify (HOLogic.listT xT,(tl bsT, asT)) bds
                       end)),
                   bds)
               end
           | _ => da (s, ctxt) bds)
      in
        (case cgns of
          [] => tryabsdecomp (t, ctxt) bds
        | ((vns, cong) :: congs) =>
            (let
              val cert = cterm_of thy;
              val certy = ctyp_of thy;
              val (tyenv, tmenv) =
                Pattern.match thy
                  ((fst o HOLogic.dest_eq o HOLogic.dest_Trueprop) (concl_of cong), t)
                  (Vartab.empty, Vartab.empty);
              val (fnvs, invs) = List.partition (fn ((vn, _),_) => member (op =) vns vn) (Vartab.dest tmenv);
              val (fts, its) =
                (map (snd o snd) fnvs,
                 map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t)) invs);
              val ctyenv = map (fn ((vn, vi), (s, ty)) => (certy (TVar((vn, vi), s)), certy ty)) (Vartab.dest tyenv);
            in
              ((fts ~~ replicate (length fts) ctxt,
                 apfst (FWD (Drule.instantiate_normalize (ctyenv, its) cong))), bds)
            end handle Pattern.MATCH => decomp_genreif da congs (t,ctxt) bds))
      end;

 (* looks for the atoms equation and instantiates it with the right number *)
    fun mk_decompatom eqs (t, ctxt) bds = (([], fn (_, bds) =>
      let
        val tT = fastype_of t;
        fun isat eq =
          let
            val rhs = eq |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd;
          in exists_Const
            (fn (n, ty) => n = @{const_name "List.nth"}
              andalso AList.defined Type.could_unify bds (domain_type ty)) rhs
              andalso Type.could_unify (fastype_of rhs, tT)
          end;

        fun get_nths t acc =
          case t of
            Const(@{const_name "List.nth"}, _) $ vs $ n => insert (fn ((a, _), (b, _)) => a aconv b) (t, (vs, n)) acc
          | t1 $ t2 => get_nths t1 (get_nths t2 acc)
          | Abs (_ ,_ ,t') => get_nths t' acc
          | _ => acc;

        fun tryeqs [] bds = error "Can not find the atoms equation"
          | tryeqs (eq :: eqs) bds = ((
              let
                val rhs = eq |> prop_of |> HOLogic.dest_Trueprop  |> HOLogic.dest_eq |> snd;
                val nths = get_nths rhs [];
                val (vss, _) = fold_rev (fn (_, (vs, n)) => fn (vss, ns) =>
                  (insert (op aconv) vs vss, insert (op aconv) n ns)) nths ([], []);
                val (vsns, ctxt') = Variable.variant_fixes (replicate (length vss) "vs") ctxt;
                val (xns, ctxt'') = Variable.variant_fixes (replicate (length nths) "x") ctxt';
                val thy = Proof_Context.theory_of ctxt'';
                val cert = cterm_of thy;
                val certT = ctyp_of thy;
                val vsns_map = vss ~~ vsns;
                val xns_map = fst (split_list nths) ~~ xns;
                val subst = map (fn (nt, xn) => (nt, Var ((xn, 0), fastype_of nt))) xns_map;
                val rhs_P = subst_free subst rhs;
                val (tyenv, tmenv) = Pattern.match thy (rhs_P, t) (Vartab.empty, Vartab.empty);
                val sbst = Envir.subst_term (tyenv, tmenv);
                val sbsT = Envir.subst_type tyenv;
                val subst_ty = map (fn (n, (s, t)) =>
                  (certT (TVar (n, s)), certT t)) (Vartab.dest tyenv)
                val tml = Vartab.dest tmenv;
                val (subst_ns, bds) = fold_map
                  (fn (Const _ $ _ $ n, Var (xn0, _)) => fn bds =>
                    let
                      val name = snd (the (AList.lookup (op =) tml xn0));
                      val (idx, bds) = index_of name bds;
                    in ((cert n, idx |> (HOLogic.mk_nat #> cert)), bds) end) subst bds;
                val subst_vs =
                  let
                    fun h (Const _ $ (vs as Var (_, lT)) $ _, Var (_, T)) =
                      let
                        val cns = sbst (Const (@{const_name "List.Cons"}, T --> lT --> lT));
                        val lT' = sbsT lT;
                        val (bsT, _) = the (AList.lookup Type.could_unify bds lT);
                        val vsn = the (AList.lookup (op =) vsns_map vs);
                        val cvs = cert (fold_rev (fn x => fn xs => cns $ x $xs) bsT (Free (vsn, lT')));
                      in (cert vs, cvs) end;
                  in map h subst end;
                val cts = map (fn ((vn, vi), (tT, t)) => (cert (Var ((vn, vi), tT)), cert t))
                  (fold (AList.delete (fn (((a : string), _), (b, _)) => a = b))
                    (map (fn n => (n, 0)) xns) tml);
                val substt =
                  let
                    val ih = Drule.cterm_rule (Thm.instantiate (subst_ty, []));
                  in map (fn (v, t) => (ih v, ih t)) (subst_ns @ subst_vs @ cts) end;
                val th = (Drule.instantiate_normalize (subst_ty, substt) eq) RS sym;
              in (hd (Variable.export ctxt'' ctxt [th]), bds) end)
              handle Pattern.MATCH => tryeqs eqs bds)
          in tryeqs (filter isat eqs) bds end), bds);

  (* Generic reification procedure: *)
  (* creates all needed cong rules and then just uses the theorem synthesis *)

    fun mk_congs ctxt eqs =
      let
        val fs = fold_rev (fn eq => insert (op =) (eq |> prop_of |> HOLogic.dest_Trueprop
          |> HOLogic.dest_eq |> fst |> strip_comb
          |> fst)) eqs [];
        val tys = fold_rev (fn f => fold (insert (op =)) (f |> fastype_of |> binder_types |> tl)) fs [];
        val (vs, ctxt') = Variable.variant_fixes (replicate (length tys) "vs") ctxt;
        val thy = Proof_Context.theory_of ctxt';
        val cert = cterm_of thy;
        val vstys = map (fn (t, v) => (t, SOME (cert (Free (v, t))))) (tys ~~ vs);
        fun prep_eq eq =
          let
            val (_, _ :: vs) = eq |> prop_of |> HOLogic.dest_Trueprop
              |> HOLogic.dest_eq |> fst |> strip_comb;
            val subst = map (fn (v as Var (_, t)) =>
              (cert v, (the o the) (AList.lookup (op =) vstys t))) (filter is_Var vs);
          in Thm.instantiate ([], subst) eq end;
        val (ps, congs) = map_split (mk_congeq ctxt' fs o prep_eq) eqs;
        val bds = AList.make (K ([], [])) tys;
      in (ps ~~ Variable.export ctxt' ctxt congs, bds) end

    val (congs, bds) = mk_congs ctxt eqs;
    val congs = rearrange congs;
    val (th, bds) = divide_and_conquer' (decomp_genreif (mk_decompatom eqs) congs) (t,ctxt) bds;
    fun is_listVar (Var (_, t)) = can dest_listT t
      | is_listVar _ = false;
    val vars = th |> prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> snd
      |> strip_comb |> snd |> filter is_listVar;
    val cert = cterm_of (Proof_Context.theory_of ctxt);
    val cvs = map (fn (v as Var(_, t)) => (cert v,
      the (AList.lookup Type.could_unify bds t) |> snd |> HOLogic.mk_list (dest_listT t) |> cert)) vars;
    val th' = Drule.instantiate_normalize ([], cvs) th;
    val t' = (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) th';
    val th'' = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (t, t')))
      (fn _ => simp_tac ctxt 1)
  in FWD trans [th'',th'] end;

fun gen_reflect ctxt conv corr_thms eqs t =
  let
    val reify_thm = gen_reify ctxt eqs t;
    fun try_corr thm =
      SOME (FWD trans [reify_thm, thm RS sym]) handle THM _ => NONE;
    val thm = case get_first try_corr corr_thms
     of NONE => error "No suitable correctness theorem found"
      | SOME thm => thm;
    val ft = (Thm.dest_arg1 o Thm.dest_arg o Thm.dest_arg o cprop_of) thm;
    val rth = conv ft;
  in
    thm
    |> simplify (put_simpset HOL_basic_ss ctxt addsimps [rth])
    |> simplify (put_simpset HOL_basic_ss ctxt addsimps eqs addsimps @{thms nth_Cons_0 nth_Cons_Suc})
  end;

fun tac_of_thm mk_thm to = SUBGOAL (fn (goal, i) =>
  let
    val t = (case to of NONE => HOLogic.dest_Trueprop goal | SOME t => t)
    val thm = mk_thm t RS ssubst;
  in rtac thm i end);
 
fun gen_reify_tac ctxt eqs = tac_of_thm (gen_reify ctxt eqs);

(*Reflection calls reification and uses the correctness theorem assumed to be the head of the list*)
fun gen_reflection_tac ctxt conv corr_thms eqs =
  tac_of_thm (gen_reflect ctxt conv corr_thms eqs);

structure Data = Generic_Data
(
  type T = thm list * thm list;
  val empty = ([], []);
  val extend = I;
  fun merge ((ths1, rths1), (ths2, rths2)) =
    (Thm.merge_thms (ths1, ths2), Thm.merge_thms (rths1, rths2));
);

fun get_default ctxt =
  let
    val (reification_eqs, correctness_thms) = Data.get (Context.Proof ctxt);
  in { reification_eqs = reification_eqs, correctness_thms = correctness_thms } end;

val add_reification_eq = Thm.declaration_attribute (Data.map o apfst o Thm.add_thm);
val del_reification_eq = Thm.declaration_attribute (Data.map o apfst o Thm.del_thm);
val add_correctness_thm = Thm.declaration_attribute (Data.map o apsnd o Thm.add_thm);
val del_correctness_thm = Thm.declaration_attribute (Data.map o apsnd o Thm.del_thm);

val _ = Context.>> (Context.map_theory
  (Attrib.setup @{binding reify}
    (Attrib.add_del add_reification_eq del_reification_eq) "declare reification equations" #>
  Attrib.setup @{binding reflection}
    (Attrib.add_del add_correctness_thm del_correctness_thm) "declare reflection correctness theorems"));

fun default_reify_tac ctxt user_eqs =
  let
    val { reification_eqs = default_eqs, correctness_thms = _ } =
      get_default ctxt;
    val eqs = fold Thm.add_thm user_eqs default_eqs;
  in gen_reify_tac ctxt eqs end;

fun default_reflection_tac ctxt user_thms user_eqs =
  let
    val { reification_eqs = default_eqs, correctness_thms = default_thms } =
      get_default ctxt;
    val corr_thms = fold Thm.add_thm user_thms default_thms;
    val eqs = fold Thm.add_thm user_eqs default_eqs; 
    val conv = Code_Evaluation.dynamic_conv (Proof_Context.theory_of ctxt);
      (*FIXME why Code_Evaluation.dynamic_conv? very specific*)
  in gen_reflection_tac ctxt conv corr_thms eqs end;


end