author lcp
Fri, 12 Nov 1993 10:41:13 +0100
changeset 114 96c627d2815e
parent 104 d8205bb279a7
child 359 b5a2e9503a7a
permissions -rw-r--r--
Misc updates


Peter~B. Andrews.
\newblock {\em An Introduction to Mathematical Logic and Type Theory: To Truth
  Through Proof}.
\newblock Academic Press, 1986.

David Basin and Matt Kaufmann.
\newblock The {Boyer-Moore} prover and {Nuprl}: An experimental comparison.
\newblock In {G\'erard} Huet and Gordon Plotkin, editors, {\em Logical
  Frameworks}, pages 89--119. Cambridge University Press, 1991.

Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel, and
  Lawrence Wos.
\newblock Set theory in first-order logic: Clauses for {G\"odel's} axioms.
\newblock {\em Journal of Automated Reasoning}, 2(3):287--327, 1986.

J.~Camilleri and T.~F. Melham.
\newblock Reasoning with inductively defined relations in the {HOL} theorem
\newblock Technical Report 265, University of Cambridge Computer Laboratory,
  August 1992.

Alonzo Church.
\newblock A formulation of the simple theory of types.
\newblock {\em Journal of Symbolic Logic}, 5:56--68, 1940.

Michael Dummett.
\newblock {\em Elements of Intuitionism}.
\newblock Oxford University Press, 1977.

Roy Dyckhoff.
\newblock Contraction-free sequent calculi for intuitionistic logic.
\newblock {\em Journal of Symbolic Logic}, 57(3):795--807, 1992.

Amy Felty.
\newblock A logic program for transforming sequent proofs to natural deduction
\newblock In Peter Schroeder-Heister, editor, {\em Extensions of Logic
  Programming}, pages 157--178. Springer, 1991.
\newblock LNAI 475.

Jacob Frost.
\newblock A case study of co-induction in {Isabelle HOL}.
\newblock Technical Report 308, University of Cambridge Computer Laboratory,
  August 1993.

K.~Futatsugi, J.A. Goguen, Jean-Pierre Jouannaud, and J.~Meseguer.
\newblock Principles of {OBJ2}.
\newblock In {\em Symposium on Principles of Programming Languages}, pages
  52--66, 1985.

J.~H. Gallier.
\newblock {\em Logic for Computer Science: Foundations of Automatic Theorem
\newblock Harper \& Row, 1986.

Michael J.~C. Gordon.
\newblock {HOL}: A proof generating system for higher-order logic.
\newblock In Graham Birtwistle and P.~A. Subrahmanyam, editors, {\em {VLSI}
  Specification, Verification and Synthesis}, pages 73--128. Kluwer Academic
  Publishers, 1988.

Paul~R. Halmos.
\newblock {\em Naive Set Theory}.
\newblock Van Nostrand, 1960.

G.~P. Huet and B.~Lang.
\newblock Proving and applying program transformations expressed with
  second-order patterns.
\newblock {\em Acta Informatica}, 11:31--55, 1978.

Zohar Manna and Richard Waldinger.
\newblock Deductive synthesis of the unification algorithm.
\newblock {\em Science of Computer Programming}, 1(1):5--48, 1981.

Per Martin-L\"of.
\newblock {\em Intuitionistic type theory}.
\newblock Bibliopolis, 1984.

Robin Milner and Mads Tofte.
\newblock Co-induction in relational semantics.
\newblock {\em Theoretical Computer Science}, 87:209--220, 1991.

Philippe {No\"el}.
\newblock Experimenting with {Isabelle} in {ZF} set theory.
\newblock {\em Journal of Automated Reasoning}, 10(1):15--58, 1993.

Bengt {Nordstr\"om}, Kent Petersson, and Jan Smith.
\newblock {\em Programming in {Martin-L\"of}'s Type Theory. An Introduction}.
\newblock Oxford University Press, 1990.

Christine Paulin-Mohring.
\newblock Inductive definitions in the system {Coq}: Rules and properties.
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon,
  December 1992.

Lawrence~C. Paulson.
\newblock Set theory for verification: {I}. {From} foundations to functions.
\newblock {\em Journal of Automated Reasoning}.
\newblock In press; draft available as Report 271, University of Cambridge
  Computer Laboratory.

Lawrence~C. Paulson.
\newblock Verifying the unification algorithm in {LCF}.
\newblock {\em Science of Computer Programming}, 5:143--170, 1985.

Lawrence~C. Paulson.
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF}.
\newblock Cambridge University Press, 1987.

Lawrence~C. Paulson.
\newblock A formulation of the simple theory of types (for {Isabelle}).
\newblock In P.~Martin-L\"of and G.~Mints, editors, {\em COLOG-88:
  International Conference on Computer Logic}, Tallinn, 1990. Estonian Academy
  of Sciences, Springer.
\newblock LNCS 417.

Lawrence~C. Paulson.
\newblock {\em {ML} for the Working Programmer}.
\newblock Cambridge University Press, 1991.

Lawrence~C. Paulson.
\newblock Co-induction and co-recursion in higher-order logic.
\newblock Technical Report 304, University of Cambridge Computer Laboratory,
  July 1993.

Lawrence~C. Paulson.
\newblock A fixedpoint approach to implementing (co-)inductive definitions.
\newblock Technical report, University of Cambridge Computer Laboratory, 1993.
\newblock Draft.

Lawrence~C. Paulson.
\newblock Set theory for verification: {II}. {Induction} and recursion.
\newblock Technical Report 312, University of Cambridge Computer Laboratory,

F.~J. Pelletier.
\newblock Seventy-five problems for testing automatic theorem provers.
\newblock {\em Journal of Automated Reasoning}, 2:191--216, 1986.
\newblock Errata, JAR 4 (1988), 235--236.

David~A. Plaisted.
\newblock A sequent-style model elimination strategy and a positive refinement.
\newblock {\em Journal of Automated Reasoning}, 6(4):389--402, 1990.

Art Quaife.
\newblock Automated deduction in {von Neumann-Bernays-G\"odel} set theory.
\newblock {\em Journal of Automated Reasoning}, 8(1):91--147, 1992.

Patrick Suppes.
\newblock {\em Axiomatic Set Theory}.
\newblock Dover, 1972.

\newblock {\em Proof Theory}.
\newblock North Holland, 2nd edition, 1987.

Simon Thompson.
\newblock {\em Type Theory and Functional Programming}.
\newblock Addison-Wesley, 1991.

A.~N. Whitehead and B.~Russell.
\newblock {\em Principia Mathematica}.
\newblock Cambridge University Press, 1962.
\newblock Paperback edition to *56, abridged from the 2nd edition (1927).