src/HOL/Real/HahnBanach/Aux.thy
author fleuriot
Thu, 01 Jun 2000 11:22:27 +0200
changeset 9013 9dd0274f76af
parent 8838 4eaa99f0d223
child 9035 371f023d3dbd
permissions -rw-r--r--
Updated files to remove 0r and 1r from theorems in descendant theories of RealBin. Some new theorems added.

(*  Title:      HOL/Real/HahnBanach/Aux.thy
    ID:         $Id$
    Author:     Gertrud Bauer, TU Munich
*)

header {* Auxiliary theorems *};

theory Aux = Real + Zorn:;

text {* Some existing theorems are declared as extra introduction
or elimination rules, respectively. *};

lemmas [intro??] = isLub_isUb;
lemmas [intro??] = chainD; 
lemmas chainE2 = chainD2 [elimify];

text_raw {* \medskip *};
text{* Lemmas about sets. *};

lemma Int_singletonD: "[| A Int B = {v}; x:A; x:B |] ==> x = v";
  by (fast elim: equalityE);

lemma set_less_imp_diff_not_empty: "H < E ==> EX x0:E. x0 ~: H";
 by (force simp add: psubset_eq);

text_raw {* \medskip *};
text{* Some lemmas about orders. *};

lemma lt_imp_not_eq: "x < (y::'a::order) ==> x ~= y"; 
  by (rule order_less_le[RS iffD1, RS conjunct2]);

lemma le_noteq_imp_less: 
  "[| x <= (r::'a::order); x ~= r |] ==> x < r";
proof -;
  assume "x <= (r::'a::order)" and ne:"x ~= r";
  hence "x < r | x = r"; by (simp add: order_le_less);
  with ne; show ?thesis; by simp;
qed;

text_raw {* \medskip *};
text {* Some lemmas about linear orders. *};

theorem linorder_linear_split: 
"[| x < a ==> Q; x = a ==> Q; a < (x::'a::linorder) ==> Q |] ==> Q";
  by (rule linorder_less_linear [of x a, elimify]) force+;

lemma le_max1: "x <= max x (y::'a::linorder)";
  by (simp add: le_max_iff_disj[of x x y]);

lemma le_max2: "y <= max x (y::'a::linorder)"; 
  by (simp add: le_max_iff_disj[of y x y]);

text_raw {* \medskip *};
text{* Some lemmas for the reals. *};

lemma real_add_minus_eq: "x - y = (#0::real) ==> x = y";
  by simp;

lemma abs_minus_one: "abs (- (#1::real)) = #1"; 
  by simp;


lemma real_mult_le_le_mono1a: 
  "[| (#0::real) <= z; x <= y |] ==> z * x  <= z * y";
proof -;
  assume "(#0::real) <= z" "x <= y";
  hence "x < y | x = y"; by (force simp add: order_le_less);
  thus ?thesis;
  proof (elim disjE); 
   assume "x < y"; show ?thesis; by (rule real_mult_le_less_mono2) simp;
  next; 
   assume "x = y"; thus ?thesis;; by simp;
  qed;
qed;

lemma real_mult_le_le_mono2: 
  "[| (#0::real) <= z; x <= y |] ==> x * z <= y * z";
proof -;
  assume "(#0::real) <= z" "x <= y";
  hence "x < y | x = y"; by (force simp add: order_le_less);
  thus ?thesis;
  proof (elim disjE); 
   assume "x < y"; show ?thesis; by (rule real_mult_le_less_mono1) simp;
  next; 
   assume "x = y"; thus ?thesis;; by simp;
  qed;
qed;

lemma real_mult_less_le_anti: 
  "[| z < (#0::real); x <= y |] ==> z * y <= z * x";
proof -;
  assume "z < (#0::real)" "x <= y";
  hence "(#0::real) < - z"; by simp;
  hence "(#0::real) <= - z"; by (rule real_less_imp_le);
  hence "x * (- z) <= y * (- z)"; 
    by (rule real_mult_le_le_mono2);
  hence  "- (x * z) <= - (y * z)"; 
    by (simp only: real_minus_mult_eq2);
  thus ?thesis; by (simp only: real_mult_commute);
qed;

lemma real_mult_less_le_mono: 
  "[| (#0::real) < z; x <= y |] ==> z * x <= z * y";
proof -; 
  assume "(#0::real) < z" "x <= y";
  have "(#0::real) <= z"; by (rule real_less_imp_le);
  hence "x * z <= y * z"; 
    by (rule real_mult_le_le_mono2);
  thus ?thesis; by (simp only: real_mult_commute);
qed;

lemma real_rinv_gt_zero1: "#0 < x ==> #0 < rinv x";
proof -; 
  assume "#0 < x";
  have "0r < x"; by simp;
  hence "0r < rinv x"; by (rule real_rinv_gt_zero);
  thus ?thesis; by simp;
qed;

lemma real_mult_inv_right1: "x ~= #0 ==> x*rinv(x) = #1";
   by simp;

lemma real_mult_inv_left1: "x ~= #0 ==> rinv(x)*x = #1";
   by simp;

lemma real_le_mult_order1a: 
      "[| (#0::real) <= x; #0 <= y |] ==> #0 <= x * y";
proof -;
  assume "#0 <= x" "#0 <= y";
    have "[|0r <= x; 0r <= y|] ==> 0r <= x * y";  
      by (rule real_le_mult_order);
    thus ?thesis; by (simp!);
qed;

lemma real_mult_diff_distrib: 
  "a * (- x - (y::real)) = - a * x - a * y";
proof -;
  have "- x - y = - x + - y"; by simp;
  also; have "a * ... = a * - x + a * - y"; 
    by (simp only: real_add_mult_distrib2);
  also; have "... = - a * x - a * y"; 
    by (simp add: real_minus_mult_eq2 [RS sym] real_minus_mult_eq1);
  finally; show ?thesis; .;
qed;

lemma real_mult_diff_distrib2: "a * (x - (y::real)) = a * x - a * y";
proof -; 
  have "x - y = x + - y"; by simp;
  also; have "a * ... = a * x + a * - y"; 
    by (simp only: real_add_mult_distrib2);
  also; have "... = a * x - a * y";   
    by (simp add: real_minus_mult_eq2 [RS sym] real_minus_mult_eq1);
  finally; show ?thesis; .;
qed;

lemma real_minus_le: "- (x::real) <= y ==> - y <= x";
  by simp;

lemma real_diff_ineq_swap: 
  "(d::real) - b <= c + a ==> - a - b <= c - d";
  by simp;

end;