src/HOLCF/Pcpo.thy
author huffman
Wed, 02 Mar 2005 22:57:08 +0100
changeset 15563 9e125b675253
parent 14981 e73f8140af78
child 15576 efb95d0d01f7
permissions -rw-r--r--
converted to new-style theory

(*  Title:      HOLCF/Pcpo.thy
    ID:         $Id$
    Author:     Franz Regensburger
    License:    GPL (GNU GENERAL PUBLIC LICENSE)

introduction of the classes cpo and pcpo 
*)
theory Pcpo = Porder:

(* The class cpo of chain complete partial orders *)
(* ********************************************** *)
axclass cpo < po
        (* class axiom: *)
  cpo:   "chain S ==> ? x. range S <<| x" 

(* The class pcpo of pointed cpos *)
(* ****************************** *)
axclass pcpo < cpo

  least:         "? x.!y. x<<y"

consts
  UU            :: "'a::pcpo"        

syntax (xsymbols)
  UU            :: "'a::pcpo"                           ("\<bottom>")

defs
  UU_def:        "UU == @x.!y. x<<y"       

(* further useful classes for HOLCF domains *)

axclass chfin<cpo

chfin: 	"!Y. chain Y-->(? n. max_in_chain n Y)"

axclass flat<pcpo

ax_flat:	 	"! x y. x << y --> (x = UU) | (x=y)"

(*  Title:      HOLCF/Pcpo.ML
    ID:         $Id$
    Author:     Franz Regensburger
    License:    GPL (GNU GENERAL PUBLIC LICENSE)

introduction of the classes cpo and pcpo 
*)
 

(* ------------------------------------------------------------------------ *)
(* derive the old rule minimal                                              *)
(* ------------------------------------------------------------------------ *)
 
lemma UU_least: "ALL z. UU << z"
apply (unfold UU_def)
apply (rule some_eq_ex [THEN iffD2])
apply (rule least)
done

lemmas minimal = UU_least [THEN spec, standard]

declare minimal [iff]

(* ------------------------------------------------------------------------ *)
(* in cpo's everthing equal to THE lub has lub properties for every chain  *)
(* ------------------------------------------------------------------------ *)

lemma thelubE: "[| chain(S); lub(range(S)) = (l::'a::cpo) |] ==> range(S) <<| l "
apply (blast dest: cpo intro: lubI)
done

(* ------------------------------------------------------------------------ *)
(* Properties of the lub                                                    *)
(* ------------------------------------------------------------------------ *)


lemma is_ub_thelub: "chain (S::nat => 'a::cpo) ==> S(x) << lub(range(S))"
apply (blast dest: cpo intro: lubI [THEN is_ub_lub])
done

lemma is_lub_thelub: "[| chain (S::nat => 'a::cpo); range(S) <| x |] ==> lub(range S) << x"
apply (blast dest: cpo intro: lubI [THEN is_lub_lub])
done

lemma lub_range_mono: "[| range X <= range Y;  chain Y; chain (X::nat=>'a::cpo) |] ==> lub(range X) << lub(range Y)"
apply (erule is_lub_thelub)
apply (rule ub_rangeI)
apply (subgoal_tac "? j. X i = Y j")
apply  clarsimp
apply  (erule is_ub_thelub)
apply auto
done

lemma lub_range_shift: "chain (Y::nat=>'a::cpo) ==> lub(range (%i. Y(i + j))) = lub(range Y)"
apply (rule antisym_less)
apply (rule lub_range_mono)
apply    fast
apply   assumption
apply (erule chain_shift)
apply (rule is_lub_thelub)
apply assumption
apply (rule ub_rangeI)
apply (rule trans_less)
apply (rule_tac [2] is_ub_thelub)
apply (erule_tac [2] chain_shift)
apply (erule chain_mono3)
apply (rule le_add1)
done

lemma maxinch_is_thelub: "chain Y ==> max_in_chain i Y = (lub(range(Y)) = ((Y i)::'a::cpo))"
apply (rule iffI)
apply (fast intro!: thelubI lub_finch1)
apply (unfold max_in_chain_def)
apply (safe intro!: antisym_less)
apply (fast elim!: chain_mono3)
apply (drule sym)
apply (force elim!: is_ub_thelub)
done


(* ------------------------------------------------------------------------ *)
(* the << relation between two chains is preserved by their lubs            *)
(* ------------------------------------------------------------------------ *)

lemma lub_mono: "[|chain(C1::(nat=>'a::cpo));chain(C2); ALL k. C1(k) << C2(k)|] 
      ==> lub(range(C1)) << lub(range(C2))"
apply (erule is_lub_thelub)
apply (rule ub_rangeI)
apply (rule trans_less)
apply (erule spec)
apply (erule is_ub_thelub)
done

(* ------------------------------------------------------------------------ *)
(* the = relation between two chains is preserved by their lubs            *)
(* ------------------------------------------------------------------------ *)

lemma lub_equal: "[| chain(C1::(nat=>'a::cpo));chain(C2);ALL k. C1(k)=C2(k)|] 
      ==> lub(range(C1))=lub(range(C2))"
apply (rule antisym_less)
apply (rule lub_mono)
apply assumption
apply assumption
apply (intro strip)
apply (rule antisym_less_inverse [THEN conjunct1])
apply (erule spec)
apply (rule lub_mono)
apply assumption
apply assumption
apply (intro strip)
apply (rule antisym_less_inverse [THEN conjunct2])
apply (erule spec)
done

(* ------------------------------------------------------------------------ *)
(* more results about mono and = of lubs of chains                          *)
(* ------------------------------------------------------------------------ *)

lemma lub_mono2: "[|EX j. ALL i. j<i --> X(i::nat)=Y(i);chain(X::nat=>'a::cpo);chain(Y)|] 
  ==> lub(range(X))<<lub(range(Y))"
apply (erule exE)
apply (rule is_lub_thelub)
apply assumption
apply (rule ub_rangeI)
(* apply (intro strip) *)
apply (case_tac "j<i")
apply (rule_tac s = "Y (i) " and t = "X (i) " in subst)
apply (rule sym)
apply fast
apply (rule is_ub_thelub)
apply assumption
apply (rule_tac y = "X (Suc (j))" in trans_less)
apply (rule chain_mono)
apply assumption
apply (rule not_less_eq [THEN subst])
apply assumption
apply (rule_tac s = "Y (Suc (j))" and t = "X (Suc (j))" in subst)
apply (simp (no_asm_simp))
apply (erule is_ub_thelub)
done

lemma lub_equal2: "[|EX j. ALL i. j<i --> X(i)=Y(i); chain(X::nat=>'a::cpo); chain(Y)|] 
      ==> lub(range(X))=lub(range(Y))"
apply (blast intro: antisym_less lub_mono2 sym)
done

lemma lub_mono3: "[|chain(Y::nat=>'a::cpo);chain(X); 
 ALL i. EX j. Y(i)<< X(j)|]==> lub(range(Y))<<lub(range(X))"
apply (rule is_lub_thelub)
apply assumption
apply (rule ub_rangeI)
(* apply (intro strip) *)
apply (erule allE)
apply (erule exE)
apply (rule trans_less)
apply (rule_tac [2] is_ub_thelub)
prefer 2 apply (assumption)
apply assumption
done

(* ------------------------------------------------------------------------ *)
(* usefull lemmas about UU                                                  *)
(* ------------------------------------------------------------------------ *)

lemma eq_UU_iff: "(x=UU)=(x<<UU)"
apply (rule iffI)
apply (erule ssubst)
apply (rule refl_less)
apply (rule antisym_less)
apply assumption
apply (rule minimal)
done

lemma UU_I: "x << UU ==> x = UU"
apply (subst eq_UU_iff)
apply assumption
done

lemma not_less2not_eq: "~(x::'a::po)<<y ==> ~x=y"
apply auto
done

lemma chain_UU_I: "[|chain(Y);lub(range(Y))=UU|] ==> ALL i. Y(i)=UU"
apply (rule allI)
apply (rule antisym_less)
apply (rule_tac [2] minimal)
apply (erule subst)
apply (erule is_ub_thelub)
done


lemma chain_UU_I_inverse: "ALL i. Y(i::nat)=UU ==> lub(range(Y::(nat=>'a::pcpo)))=UU"
apply (rule lub_chain_maxelem)
apply (erule spec)
apply (rule allI)
apply (rule antisym_less_inverse [THEN conjunct1])
apply (erule spec)
done

lemma chain_UU_I_inverse2: "~lub(range(Y::(nat=>'a::pcpo)))=UU ==> EX i.~ Y(i)=UU"
apply (blast intro: chain_UU_I_inverse)
done

lemma notUU_I: "[| x<<y; ~x=UU |] ==> ~y=UU"
apply (blast intro: UU_I)
done

lemma chain_mono2: 
 "[|EX j. ~Y(j)=UU;chain(Y::nat=>'a::pcpo)|] ==> EX j. ALL i. j<i-->~Y(i)=UU"
apply (blast dest: notUU_I chain_mono)
done

(**************************************)
(* some properties for chfin and flat *)
(**************************************)

(* ------------------------------------------------------------------------ *)
(* flat types are chfin                                              *)
(* ------------------------------------------------------------------------ *)

(*Used only in an "instance" declaration (Fun1.thy)*)
lemma flat_imp_chfin: 
     "ALL Y::nat=>'a::flat. chain Y --> (EX n. max_in_chain n Y)"
apply (unfold max_in_chain_def)
apply clarify
apply (case_tac "ALL i. Y (i) =UU")
apply (rule_tac x = "0" in exI)
apply (simp (no_asm_simp))
apply simp
apply (erule exE)
apply (rule_tac x = "i" in exI)
apply (intro strip)
apply (erule le_imp_less_or_eq [THEN disjE])
apply safe
apply (blast dest: chain_mono ax_flat [THEN spec, THEN spec, THEN mp])
done

(* flat subclass of chfin --> adm_flat not needed *)

lemma flat_eq: "(a::'a::flat) ~= UU ==> a << b = (a = b)"
apply (safe intro!: refl_less)
apply (drule ax_flat [THEN spec, THEN spec, THEN mp])
apply (fast intro!: refl_less ax_flat [THEN spec, THEN spec, THEN mp])
done

lemma chfin2finch: "chain (Y::nat=>'a::chfin) ==> finite_chain Y"
apply (force simp add: chfin finite_chain_def)
done

(* ------------------------------------------------------------------------ *)
(* lemmata for improved admissibility introdution rule                      *)
(* ------------------------------------------------------------------------ *)

lemma infinite_chain_adm_lemma:
"[|chain Y; ALL i. P (Y i);  
   (!!Y. [| chain Y; ALL i. P (Y i); ~ finite_chain Y |] ==> P (lub(range Y))) 
  |] ==> P (lub (range Y))"
(* apply (cut_tac prems) *)
apply (case_tac "finite_chain Y")
prefer 2 apply fast
apply (unfold finite_chain_def)
apply safe
apply (erule lub_finch1 [THEN thelubI, THEN ssubst])
apply assumption
apply (erule spec)
done

lemma increasing_chain_adm_lemma:
"[|chain Y;  ALL i. P (Y i);  
   (!!Y. [| chain Y; ALL i. P (Y i);   
            ALL i. EX j. i < j & Y i ~= Y j & Y i << Y j|] 
  ==> P (lub (range Y))) |] ==> P (lub (range Y))"
(* apply (cut_tac prems) *)
apply (erule infinite_chain_adm_lemma)
apply assumption
apply (erule thin_rl)
apply (unfold finite_chain_def)
apply (unfold max_in_chain_def)
apply (fast dest: le_imp_less_or_eq elim: chain_mono)
done
end