src/ZF/indrule.ML
 author lcp Wed, 12 Oct 1994 12:09:54 +0100 changeset 633 9e4d4f3eb812 parent 590 800603278425 child 724 36c0ac2f4935 permissions -rw-r--r--
{HOL,ZF}/indrule/ind_tac: now calls DEPTH_SOLVE_1 instead of REPEAT, to solve the goal fully before proceeding {HOL,ZF}/indrule/mutual_ind_tac: ensures that calls to "prem" cannot loop; calls DEPTH_SOLVE_1 instead of REPEAT to solve the goal fully
```
(*  Title: 	ZF/indrule.ML
ID:         \$Id\$
Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory

Induction rule module -- for Inductive/Coinductive Definitions

Proves a strong induction rule and a mutual induction rule
*)

signature INDRULE =
sig
val induct        : thm			(*main induction rule*)
val mutual_induct : thm			(*mutual induction rule*)
end;

functor Indrule_Fun
(structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end
and Pr: PR and Intr_elim: INTR_ELIM) : INDRULE  =
struct
open Logic Ind_Syntax Inductive Intr_elim;

val sign = sign_of thy;

val (Const(_,recT),rec_params) = strip_comb (hd rec_tms);

val big_rec_name = space_implode "_" rec_names;
val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);

val _ = writeln "  Proving the induction rules...";

(*** Prove the main induction rule ***)

val pred_name = "P";		(*name for predicate variables*)

val big_rec_def::part_rec_defs = Intr_elim.defs;

(*Used to make induction rules;
ind_alist = [(rec_tm1,pred1),...]  -- associates predicates with rec ops
prem is a premise of an intr rule*)
fun add_induct_prem ind_alist (prem as Const("Trueprop",_) \$
(Const("op :",_)\$t\$X), iprems) =
(case gen_assoc (op aconv) (ind_alist, X) of
Some pred => prem :: mk_tprop (pred \$ t) :: iprems
| None => (*possibly membership in M(rec_tm), for M monotone*)
let fun mk_sb (rec_tm,pred) = (rec_tm, Collect_const\$rec_tm\$pred)
in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
| add_induct_prem ind_alist (prem,iprems) = prem :: iprems;

(*Make a premise of the induction rule.*)
fun induct_prem ind_alist intr =
let val quantfrees = map dest_Free (term_frees intr \\ rec_params)
val iprems = foldr (add_induct_prem ind_alist)
(strip_imp_prems intr,[])
val (t,X) = rule_concl intr
val (Some pred) = gen_assoc (op aconv) (ind_alist, X)
val concl = mk_tprop (pred \$ t)
in list_all_free (quantfrees, list_implies (iprems,concl)) end

(*Reduces backtracking by delivering the correct premise to each goal.
Intro rules with extra Vars in premises still cause some backtracking *)
fun ind_tac [] 0 = all_tac
| ind_tac(prem::prems) i =
DEPTH_SOLVE_1 (ares_tac [Part_eqI, prem, refl] i) THEN
ind_tac prems (i-1);

val pred = Free(pred_name, iT-->oT);

val ind_prems = map (induct_prem (map (rpair pred) rec_tms)) intr_tms;

val quant_induct =
prove_goalw_cterm part_rec_defs
(cterm_of sign (list_implies (ind_prems,
mk_tprop (mk_all_imp(big_rec_tm,pred)))))
(fn prems =>
[rtac (impI RS allI) 1,
etac raw_induct 1,
REPEAT (FIRSTGOAL (eresolve_tac [CollectE, exE, conjE, disjE] ORELSE'
hyp_subst_tac)),
REPEAT (FIRSTGOAL (eresolve_tac [PartE,CollectE])),
ind_tac (rev prems) (length prems) ]);

(*** Prove the simultaneous induction rule ***)

(*Make distinct predicates for each inductive set*)

(*Sigmas and Cartesian products may nest ONLY to the right!*)
fun mk_pred_typ (t \$ A \$ Abs(_,_,B)) =
if t = Pr.sigma  then  iT --> mk_pred_typ B
else  iT --> oT
| mk_pred_typ _           =  iT --> oT

(*Given a recursive set and its domain, return the "fsplit" predicate
and a conclusion for the simultaneous induction rule*)
fun mk_predpair (rec_tm,domt) =
let val rec_name = (#1 o dest_Const o head_of) rec_tm
val T = mk_pred_typ domt
val pfree = Free(pred_name ^ "_" ^ rec_name, T)
val frees = mk_frees "za" (binder_types T)
val qconcl =
foldr mk_all (frees,
imp \$ (mem_const \$ foldr1 (app Pr.pair) frees \$ rec_tm)
\$ (list_comb (pfree,frees)))
in  (ap_split Pr.fsplit_const pfree (binder_types T),
qconcl)
end;

val (preds,qconcls) = split_list (map mk_predpair (rec_tms~~domts));

(*Used to form simultaneous induction lemma*)
fun mk_rec_imp (rec_tm,pred) =
imp \$ (mem_const \$ Bound 0 \$ rec_tm) \$  (pred \$ Bound 0);

(*To instantiate the main induction rule*)
val induct_concl =
mk_tprop(mk_all_imp(big_rec_tm,
Abs("z", iT,
fold_bal (app conj)
(map mk_rec_imp (rec_tms~~preds)))))
and mutual_induct_concl = mk_tprop(fold_bal (app conj) qconcls);

val lemma = (*makes the link between the two induction rules*)
prove_goalw_cterm part_rec_defs
(cterm_of sign (mk_implies (induct_concl,mutual_induct_concl)))
(fn prems =>
[cut_facts_tac prems 1,
REPEAT (eresolve_tac [asm_rl,conjE,PartE,mp] 1
ORELSE resolve_tac [allI,impI,conjI,Part_eqI] 1
ORELSE dresolve_tac [spec, mp, Pr.fsplitD] 1)]);

(*Mutual induction follows by freeness of Inl/Inr.*)

(*Removes Collects caused by M-operators in the intro rules*)
val cmonos = [subset_refl RS Collect_mono] RL monos RLN (2,[rev_subsetD]);

(*Avoids backtracking by delivering the correct premise to each goal*)
fun mutual_ind_tac [] 0 = all_tac
| mutual_ind_tac(prem::prems) i =
DETERM
(SELECT_GOAL
((*unpackage and use "prem" in the corresponding place*)
REPEAT (FIRSTGOAL
(etac conjE ORELSE' eq_mp_tac ORELSE'
ares_tac [impI, conjI]))
(*prem is not allowed in the REPEAT, lest it loop!*)
THEN TRYALL (rtac prem)
THEN REPEAT
(FIRSTGOAL (ares_tac [impI] ORELSE'
eresolve_tac (mp::cmonos)))
THEN rewrite_goals_tac (con_defs@part_rec_defs)
THEN DEPTH_SOLVE (eresolve_tac (PartE :: sumprod_free_SEs) 1))
i)
THEN mutual_ind_tac prems (i-1);

val mutual_induct_fsplit =
prove_goalw_cterm []
(cterm_of sign
(list_implies (map (induct_prem (rec_tms~~preds)) intr_tms,
mutual_induct_concl)))
(fn prems =>
[rtac (quant_induct RS lemma) 1,
mutual_ind_tac (rev prems) (length prems)]);

(*Attempts to remove all occurrences of fsplit*)
val fsplit_tac =
REPEAT (SOMEGOAL (FIRST' [rtac Pr.fsplitI,
dtac Pr.fsplitD,
etac Pr.fsplitE,
bound_hyp_subst_tac]))
THEN prune_params_tac;

(*strip quantifier*)
val induct = standard (quant_induct RS spec RSN (2,rev_mp));

val mutual_induct = rule_by_tactic fsplit_tac mutual_induct_fsplit;

end;
```