src/HOLCF/IOA/NTP/Lemmas.thy
author wenzelm
Thu, 22 Nov 2007 14:51:34 +0100
changeset 25456 6f79698f294d
parent 19739 c58ef2aa5430
child 35174 e15040ae75d7
permissions -rw-r--r--
tuned;

(*  Title:      HOL/IOA/NTP/Lemmas.thy
    ID:         $Id$
    Author:     Tobias Nipkow & Konrad Slind
*)

theory Lemmas
imports Main
begin

subsubsection {* Logic *}

lemma neg_flip: "(X = (~ Y)) = ((~X) = Y)"
  by blast


subsection {* Sets *}

lemma set_lemmas:
  "f(x) : (UN x. {f(x)})"
  "f x y : (UN x y. {f x y})"
  "!!a. (!x. a ~= f(x)) ==> a ~: (UN x. {f(x)})"
  "!!a. (!x y. a ~= f x y) ==> a ~: (UN x y. {f x y})"
  by auto


subsection {* Arithmetic *}

lemma pred_suc: "0<x ==> (x - 1 = y) = (x = Suc(y))"
  by (simp add: diff_Suc split add: nat.split)

lemmas [simp] = hd_append set_lemmas

end