src/HOLCF/IOA/NTP/Sender.thy
author wenzelm
Thu, 22 Nov 2007 14:51:34 +0100
changeset 25456 6f79698f294d
parent 19739 c58ef2aa5430
child 27361 24ec32bee347
permissions -rw-r--r--
tuned;

(*  Title:      HOL/IOA/NTP/Sender.thy
    ID:         $Id$
    Author:     Tobias Nipkow & Konrad Slind
*)

header {* The implementation: sender *}

theory Sender
imports IOA Action
begin

types
'm sender_state = "'m list * bool multiset * bool multiset * bool * bool"
(*                messages   #sent           #received      header  mode *)

consts

sender_asig   :: "'m action signature"
sender_trans  :: "('m action, 'm sender_state)transition set"
sender_ioa    :: "('m action, 'm sender_state)ioa"
sq            :: "'m sender_state => 'm list"
ssent         :: "'m sender_state => bool multiset"
srcvd         :: "'m sender_state => bool multiset"
sbit          :: "'m sender_state => bool"
ssending      :: "'m sender_state => bool"

defs

sq_def:       "sq == fst"
ssent_def:    "ssent == fst o snd"
srcvd_def:    "srcvd == fst o snd o snd"
sbit_def:     "sbit == fst o snd o snd o snd"
ssending_def: "ssending == snd o snd o snd o snd"

sender_asig_def:
  "sender_asig == ((UN m. {S_msg(m)}) Un (UN b. {R_ack(b)}),
                  UN pkt. {S_pkt(pkt)},
                  {C_m_s,C_r_s})"

sender_trans_def: "sender_trans ==
 {tr. let s = fst(tr);
          t = snd(snd(tr))
      in case fst(snd(tr))
      of
      S_msg(m) => sq(t)=sq(s)@[m]   &
                  ssent(t)=ssent(s) &
                  srcvd(t)=srcvd(s) &
                  sbit(t)=sbit(s)   &
                  ssending(t)=ssending(s) |
      R_msg(m) => False |
      S_pkt(pkt) => hdr(pkt) = sbit(s)      &
                       (? Q. sq(s) = (msg(pkt)#Q))  &
                       sq(t) = sq(s)           &
                       ssent(t) = addm (ssent s) (sbit s) &
                       srcvd(t) = srcvd(s) &
                       sbit(t) = sbit(s)   &
                       ssending(s)         &
                       ssending(t) |
    R_pkt(pkt) => False |
    S_ack(b)   => False |
      R_ack(b) => sq(t)=sq(s)                  &
                     ssent(t)=ssent(s)            &
                     srcvd(t) = addm (srcvd s) b  &
                     sbit(t)=sbit(s)              &
                     ssending(t)=ssending(s) |
      C_m_s => count (ssent s) (~sbit s) < count (srcvd s) (~sbit s) &
               sq(t)=sq(s)       &
               ssent(t)=ssent(s) &
               srcvd(t)=srcvd(s) &
               sbit(t)=sbit(s)   &
               ssending(s)       &
               ~ssending(t) |
      C_m_r => False |
      C_r_s => count (ssent s) (sbit s) <= count (srcvd s) (~sbit s) &
               sq(t)=tl(sq(s))      &
               ssent(t)=ssent(s)    &
               srcvd(t)=srcvd(s)    &
               sbit(t) = (~sbit(s)) &
               ~ssending(s)         &
               ssending(t) |
      C_r_r(m) => False}"

sender_ioa_def: "sender_ioa ==
 (sender_asig, {([],{|},{|},False,True)}, sender_trans,{},{})"

lemma in_sender_asig: 
  "S_msg(m) : actions(sender_asig)"
  "R_msg(m) ~: actions(sender_asig)"
  "S_pkt(pkt) : actions(sender_asig)"
  "R_pkt(pkt) ~: actions(sender_asig)"
  "S_ack(b) ~: actions(sender_asig)"
  "R_ack(b) : actions(sender_asig)"
  "C_m_s : actions(sender_asig)"
  "C_m_r ~: actions(sender_asig)"
  "C_r_s : actions(sender_asig)"
  "C_r_r(m) ~: actions(sender_asig)"
  by (simp_all add: sender_asig_def actions_def asig_projections)

lemmas sender_projections = sq_def ssent_def srcvd_def sbit_def ssending_def

end