(* Title: HOL/IOA/NTP/Sender.thy
ID: $Id$
Author: Tobias Nipkow & Konrad Slind
*)
header {* The implementation: sender *}
theory Sender
imports IOA Action
begin
types
'm sender_state = "'m list * bool multiset * bool multiset * bool * bool"
(* messages #sent #received header mode *)
consts
sender_asig :: "'m action signature"
sender_trans :: "('m action, 'm sender_state)transition set"
sender_ioa :: "('m action, 'm sender_state)ioa"
sq :: "'m sender_state => 'm list"
ssent :: "'m sender_state => bool multiset"
srcvd :: "'m sender_state => bool multiset"
sbit :: "'m sender_state => bool"
ssending :: "'m sender_state => bool"
defs
sq_def: "sq == fst"
ssent_def: "ssent == fst o snd"
srcvd_def: "srcvd == fst o snd o snd"
sbit_def: "sbit == fst o snd o snd o snd"
ssending_def: "ssending == snd o snd o snd o snd"
sender_asig_def:
"sender_asig == ((UN m. {S_msg(m)}) Un (UN b. {R_ack(b)}),
UN pkt. {S_pkt(pkt)},
{C_m_s,C_r_s})"
sender_trans_def: "sender_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
S_msg(m) => sq(t)=sq(s)@[m] &
ssent(t)=ssent(s) &
srcvd(t)=srcvd(s) &
sbit(t)=sbit(s) &
ssending(t)=ssending(s) |
R_msg(m) => False |
S_pkt(pkt) => hdr(pkt) = sbit(s) &
(? Q. sq(s) = (msg(pkt)#Q)) &
sq(t) = sq(s) &
ssent(t) = addm (ssent s) (sbit s) &
srcvd(t) = srcvd(s) &
sbit(t) = sbit(s) &
ssending(s) &
ssending(t) |
R_pkt(pkt) => False |
S_ack(b) => False |
R_ack(b) => sq(t)=sq(s) &
ssent(t)=ssent(s) &
srcvd(t) = addm (srcvd s) b &
sbit(t)=sbit(s) &
ssending(t)=ssending(s) |
C_m_s => count (ssent s) (~sbit s) < count (srcvd s) (~sbit s) &
sq(t)=sq(s) &
ssent(t)=ssent(s) &
srcvd(t)=srcvd(s) &
sbit(t)=sbit(s) &
ssending(s) &
~ssending(t) |
C_m_r => False |
C_r_s => count (ssent s) (sbit s) <= count (srcvd s) (~sbit s) &
sq(t)=tl(sq(s)) &
ssent(t)=ssent(s) &
srcvd(t)=srcvd(s) &
sbit(t) = (~sbit(s)) &
~ssending(s) &
ssending(t) |
C_r_r(m) => False}"
sender_ioa_def: "sender_ioa ==
(sender_asig, {([],{|},{|},False,True)}, sender_trans,{},{})"
lemma in_sender_asig:
"S_msg(m) : actions(sender_asig)"
"R_msg(m) ~: actions(sender_asig)"
"S_pkt(pkt) : actions(sender_asig)"
"R_pkt(pkt) ~: actions(sender_asig)"
"S_ack(b) ~: actions(sender_asig)"
"R_ack(b) : actions(sender_asig)"
"C_m_s : actions(sender_asig)"
"C_m_r ~: actions(sender_asig)"
"C_r_s : actions(sender_asig)"
"C_r_r(m) ~: actions(sender_asig)"
by (simp_all add: sender_asig_def actions_def asig_projections)
lemmas sender_projections = sq_def ssent_def srcvd_def sbit_def ssending_def
end