src/Pure/Syntax/parser.ML
author wenzelm
Tue, 20 Jul 2010 14:44:33 +0200
changeset 37852 a902f158b4fc
parent 37684 d123b1e08856
child 38711 79d3cbfb4730
permissions -rw-r--r--
eliminated old-style sys_error/SYS_ERROR in favour of exception Fail -- after careful checking that there is no overlap with existing handling of that; tuned some error messages;

(*  Title:      Pure/Syntax/parser.ML
    Author:     Carsten Clasohm, Sonia Mahjoub, and Markus Wenzel, TU Muenchen

General context-free parser for the inner syntax of terms, types, etc.
*)

signature PARSER =
sig
  type gram
  val empty_gram: gram
  val extend_gram: Syn_Ext.xprod list -> gram -> gram
  val make_gram: Syn_Ext.xprod list -> gram
  val merge_gram: gram * gram -> gram
  val pretty_gram: gram -> Pretty.T list
  datatype parsetree =
    Node of string * parsetree list |
    Tip of Lexicon.token
  val parse: gram -> string -> Lexicon.token list -> parsetree list
  val guess_infix_lr: gram -> string -> (string * bool * bool * int) option
  val branching_level: int Unsynchronized.ref
end;

structure Parser: PARSER =
struct

(** datatype gram **)

type nt_tag = int;              (*production for the NTs are stored in an array
                                  so we can identify NTs by their index*)

datatype symb = Terminal of Lexicon.token
              | Nonterminal of nt_tag * int;              (*(tag, precedence)*)

type nt_gram = ((nt_tag list * Lexicon.token list) *
                (Lexicon.token option * (symb list * string * int) list) list);
                                     (*(([dependent_nts], [start_tokens]),
                                        [(start_token, [(rhs, name, prio)])])*)
                              (*depent_nts is a list of all NTs whose lookahead
                                depends on this NT's lookahead*)

datatype gram =
  Gram of {nt_count: int, prod_count: int,
           tags: nt_tag Symtab.table,
           chains: (nt_tag * nt_tag list) list,              (*[(to, [from])]*)
           lambdas: nt_tag list,
           prods: nt_gram Array.array};
                       (*"tags" is used to map NT names (i.e. strings) to tags;
                         chain productions are not stored as normal productions
                         but instead as an entry in "chains";
                         lambda productions are stored as normal productions
                         and also as an entry in "lambdas"*)

val UnknownStart = Lexicon.eof;       (*productions for which no starting token is
                                        known yet are associated with this token*)

(* get all NTs that are connected with a list of NTs
   (used for expanding chain list)*)
fun connected_with _ ([]: nt_tag list) relatives = relatives
  | connected_with chains (root :: roots) relatives =
    let val branches = subtract (op =) relatives (these (AList.lookup (op =) chains root));
    in connected_with chains (branches @ roots) (branches @ relatives) end;

(* convert productions to grammar;
   N.B. that the chains parameter has the form [(from, [to])];
   prod_count is of type "int option" and is only updated if it is <> NONE*)
fun add_prods _ chains lambdas prod_count [] = (chains, lambdas, prod_count)
  | add_prods prods chains lambdas prod_count
              ((lhs, new_prod as (rhs, name, pri)) :: ps) =
    let
      val chain_from = case (pri, rhs) of (~1, [Nonterminal (id, ~1)]) => SOME id | _ => NONE;

      (*store chain if it does not already exist*)
      val (new_chain, chains') = case chain_from of NONE => (NONE, chains) | SOME from =>
        let val old_tos = these (AList.lookup (op =) chains from) in
          if member (op =) old_tos lhs then (NONE, chains)
          else (SOME from, AList.update (op =) (from, insert (op =) lhs old_tos) chains)
        end;

      (*propagate new chain in lookahead and lambda lists;
        added_starts is used later to associate existing
        productions with new starting tokens*)
      val (added_starts, lambdas') =
        if is_none new_chain then ([], lambdas) else
        let (*lookahead of chain's source*)
            val ((from_nts, from_tks), _) = Array.sub (prods, the new_chain);

            (*copy from's lookahead to chain's destinations*)
            fun copy_lookahead [] added = added
              | copy_lookahead (to :: tos) added =
                let
                  val ((to_nts, to_tks), ps) = Array.sub (prods, to);

                  val new_tks = subtract (op =) to_tks from_tks;  (*added lookahead tokens*)
                in Array.update (prods, to, ((to_nts, to_tks @ new_tks), ps));
                   copy_lookahead tos (if null new_tks then added
                                       else (to, new_tks) :: added)
                end;

            val tos = connected_with chains' [lhs] [lhs];
        in (copy_lookahead tos [],
            union (op =) (if member (op =) lambdas lhs then tos else []) lambdas)
        end;

      (*test if new production can produce lambda
        (rhs must either be empty or only consist of lambda NTs)*)
      val (new_lambda, lambdas') =
        if forall (fn (Nonterminal (id, _)) => member (op =) lambdas' id
                    | (Terminal _) => false) rhs then
          (true, union (op =) lambdas' (connected_with chains' [lhs] [lhs]))
        else
          (false, lambdas');

      (*list optional terminal and all nonterminals on which the lookahead
        of a production depends*)
      fun lookahead_dependency _ [] nts = (NONE, nts)
        | lookahead_dependency _ ((Terminal tk) :: _) nts = (SOME tk, nts)
        | lookahead_dependency lambdas ((Nonterminal (nt, _)) :: symbs) nts =
            if member (op =) lambdas nt then
              lookahead_dependency lambdas symbs (nt :: nts)
            else (NONE, nt :: nts);

      (*get all known starting tokens for a nonterminal*)
      fun starts_for_nt nt = snd (fst (Array.sub (prods, nt)));

      val token_union = uncurry (union Lexicon.matching_tokens);

      (*update prods, lookaheads, and lambdas according to new lambda NTs*)
      val (added_starts', lambdas') =
        let
          (*propagate added lambda NT*)
          fun propagate_lambda [] added_starts lambdas= (added_starts, lambdas)
            | propagate_lambda (l :: ls) added_starts lambdas =
              let
                (*get lookahead for lambda NT*)
                val ((dependent, l_starts), _) = Array.sub (prods, l);

                (*check productions whose lookahead may depend on lambda NT*)
                fun examine_prods [] add_lambda nt_dependencies added_tks
                                  nt_prods =
                      (add_lambda, nt_dependencies, added_tks, nt_prods)
                  | examine_prods ((p as (rhs, _, _)) :: ps) add_lambda
                      nt_dependencies added_tks nt_prods =
                    let val (tk, nts) = lookahead_dependency lambdas rhs [];
                    in
                      if member (op =) nts l then       (*update production's lookahead*)
                      let
                        val new_lambda = is_none tk andalso subset (op =) (nts, lambdas);

                        val new_tks = subtract (op =) l_starts
                          ((if is_some tk then [the tk] else []) @
                            Library.foldl token_union ([], map starts_for_nt nts));

                        val added_tks' = token_union (new_tks, added_tks);

                        val nt_dependencies' = union (op =) nts nt_dependencies;

                        (*associate production with new starting tokens*)
                        fun copy ([]: Lexicon.token option list) nt_prods = nt_prods
                          | copy (tk :: tks) nt_prods =
                            let val old_prods = these (AList.lookup (op =) nt_prods tk);

                                val prods' = p :: old_prods;
                            in nt_prods
                               |> AList.update (op =) (tk, prods')
                               |> copy tks
                            end;

                        val nt_prods' =
                          let val new_opt_tks = map SOME new_tks;
                          in copy ((if new_lambda then [NONE] else []) @
                                   new_opt_tks) nt_prods
                          end;
                      in examine_prods ps (add_lambda orelse new_lambda)
                           nt_dependencies' added_tks' nt_prods'
                      end
                      else                                  (*skip production*)
                        examine_prods ps add_lambda nt_dependencies
                                      added_tks nt_prods
                    end;

                (*check each NT whose lookahead depends on new lambda NT*)
                fun process_nts [] added_lambdas added_starts =
                      (added_lambdas, added_starts)
                  | process_nts (nt :: nts) added_lambdas added_starts =
                    let
                      val (lookahead as (old_nts, old_tks), nt_prods) =
                        Array.sub (prods, nt);

                      (*existing productions whose lookahead may depend on l*)
                      val tk_prods =
                        (these o AList.lookup (op =) nt_prods)
                               (SOME (hd l_starts  handle Empty => UnknownStart));

                      (*add_lambda is true if an existing production of the nt
                        produces lambda due to the new lambda NT l*)
                      val (add_lambda, nt_dependencies, added_tks, nt_prods') =
                        examine_prods tk_prods false [] [] nt_prods;

                      val added_nts = subtract (op =) old_nts nt_dependencies;

                      val added_lambdas' =
                        if add_lambda then nt :: added_lambdas
                        else added_lambdas;
                    in Array.update (prods, nt,
                                   ((added_nts @ old_nts, old_tks @ added_tks),
                                    nt_prods'));
                                          (*N.B. that because the tks component
                                            is used to access existing
                                            productions we have to add new
                                            tokens at the _end_ of the list*)

                       if null added_tks then
                         process_nts nts added_lambdas' added_starts
                       else
                         process_nts nts added_lambdas'
                                      ((nt, added_tks) :: added_starts)
                    end;

                val (added_lambdas, added_starts') =
                  process_nts dependent [] added_starts;

                val added_lambdas' = subtract (op =) lambdas added_lambdas;
              in propagate_lambda (ls @ added_lambdas') added_starts'
                                  (added_lambdas' @ lambdas)
              end;
        in propagate_lambda (subtract (op =) lambdas lambdas') added_starts lambdas' end;

      (*insert production into grammar*)
      val (added_starts', prod_count') =
        if is_some chain_from then (added_starts', prod_count)  (*don't store chain production*)
        else let
          (*lookahead tokens of new production and on which
            NTs lookahead depends*)
          val (start_tk, start_nts) = lookahead_dependency lambdas' rhs [];

          val start_tks = Library.foldl token_union
                          (if is_some start_tk then [the start_tk] else [],
                           map starts_for_nt start_nts);

          val opt_starts = (if new_lambda then [NONE]
                            else if null start_tks then [SOME UnknownStart]
                            else []) @ (map SOME start_tks);

          (*add lhs NT to list of dependent NTs in lookahead*)
          fun add_nts [] = ()
            | add_nts (nt :: nts) =
              let val ((old_nts, old_tks), ps) = Array.sub (prods, nt);
              in if member (op =) old_nts lhs then ()
                 else Array.update (prods, nt, ((lhs :: old_nts, old_tks), ps))
              end;

          (*add new start tokens to chained NTs' lookahead list;
            also store new production for lhs NT*)
          fun add_tks [] added prod_count = (added, prod_count)
            | add_tks (nt :: nts) added prod_count =
              let
                val ((old_nts, old_tks), nt_prods) = Array.sub (prods, nt);

                val new_tks = subtract Lexicon.matching_tokens old_tks start_tks;

                (*store new production*)
                fun store [] prods is_new =
                      (prods, if is_some prod_count andalso is_new then
                                Option.map (fn x => x+1) prod_count
                              else prod_count, is_new)
                  | store (tk :: tks) prods is_new =
                    let val tk_prods = (these o AList.lookup (op =) prods) tk;

                        (*if prod_count = NONE then we can assume that
                          grammar does not contain new production already*)
                        val (tk_prods', is_new') =
                          if is_some prod_count then
                            if member (op =) tk_prods new_prod then (tk_prods, false)
                            else (new_prod :: tk_prods, true)
                          else (new_prod :: tk_prods, true);

                        val prods' = prods
                          |> is_new' ? AList.update (op =) (tk: Lexicon.token option, tk_prods');
                    in store tks prods' (is_new orelse is_new') end;

                val (nt_prods', prod_count', changed) =
                  if nt = lhs then store opt_starts nt_prods false
                              else (nt_prods, prod_count, false);
              in if not changed andalso null new_tks then ()
                 else Array.update (prods, nt, ((old_nts, old_tks @ new_tks),
                                                nt_prods'));
                 add_tks nts (if null new_tks then added
                              else (nt, new_tks) :: added) prod_count'
              end;
        in add_nts start_nts;
           add_tks (connected_with chains' [lhs] [lhs]) [] prod_count
        end;

      (*associate productions with new lookaheads*)
      val dummy =
        let
          (*propagate added start tokens*)
          fun add_starts [] = ()
            | add_starts ((changed_nt, new_tks) :: starts) =
              let
                (*token under which old productions which
                  depend on changed_nt could be stored*)
                val key =
                 case find_first (not o member (op =) new_tks)
                                 (starts_for_nt changed_nt) of
                      NONE => SOME UnknownStart
                    | t => t;

                (*copy productions whose lookahead depends on changed_nt;
                  if key = SOME UnknownToken then tk_prods is used to hold
                  the productions not copied*)
                fun update_prods [] result = result
                  | update_prods ((p as (rhs, _: string, _: nt_tag)) :: ps)
                      (tk_prods, nt_prods) =
                    let
                      (*lookahead dependency for production*)
                      val (tk, depends) = lookahead_dependency lambdas' rhs [];

                      (*test if this production has to be copied*)
                      val update = member (op =) depends changed_nt;

                      (*test if production could already be associated with
                        a member of new_tks*)
                      val lambda = length depends > 1 orelse
                                   not (null depends) andalso is_some tk
                                   andalso member (op =) new_tks (the tk);

                      (*associate production with new starting tokens*)
                      fun copy ([]: Lexicon.token list) nt_prods = nt_prods
                        | copy (tk :: tks) nt_prods =
                          let
                            val tk_prods = these (AList.lookup (op =) nt_prods (SOME tk));

                            val tk_prods' =
                              if not lambda then p :: tk_prods
                              else insert (op =) p tk_prods;
                                      (*if production depends on lambda NT we
                                        have to look for duplicates*)
                         in
                           nt_prods
                           |> AList.update (op =) (SOME tk, tk_prods')
                           |> copy tks
                         end;
                      val result =
                        if update then
                          (tk_prods, copy new_tks nt_prods)
                        else if key = SOME UnknownStart then
                          (p :: tk_prods, nt_prods)
                        else (tk_prods, nt_prods);
                    in update_prods ps result end;

                (*copy existing productions for new starting tokens*)
                fun process_nts [] added = added
                  | process_nts (nt :: nts) added =
                    let
                      val (lookahead as (old_nts, old_tks), nt_prods) =
                        Array.sub (prods, nt);

                      val tk_prods = these (AList.lookup (op =) nt_prods key);

                      (*associate productions with new lookahead tokens*)
                      val (tk_prods', nt_prods') =
                        update_prods tk_prods ([], nt_prods);

                      val nt_prods' =
                        nt_prods'
                        |> (key = SOME UnknownStart) ? AList.update (op =) (key, tk_prods')

                      val added_tks =
                        subtract Lexicon.matching_tokens old_tks new_tks;
                    in if null added_tks then
                         (Array.update (prods, nt, (lookahead, nt_prods'));
                          process_nts nts added)
                       else
                         (Array.update (prods, nt,
                            ((old_nts, added_tks @ old_tks), nt_prods'));
                          process_nts nts ((nt, added_tks) :: added))
                    end;

                val ((dependent, _), _) = Array.sub (prods, changed_nt);
              in add_starts (starts @ process_nts dependent []) end;
        in add_starts added_starts' end;
  in add_prods prods chains' lambdas' prod_count ps end;


(* pretty_gram *)

fun pretty_gram (Gram {tags, prods, chains, ...}) =
  let
    fun pretty_name name = [Pretty.str (name ^ " =")];

    val nt_name = the o Inttab.lookup (Inttab.make (map swap (Symtab.dest tags)));

    fun pretty_symb (Terminal (Lexicon.Token (Lexicon.Literal, s, _))) = Pretty.quote (Pretty.str s)
      | pretty_symb (Terminal tok) = Pretty.str (Lexicon.str_of_token tok)
      | pretty_symb (Nonterminal (tag, p)) =
          Pretty.str (nt_name tag ^ "[" ^ signed_string_of_int p ^ "]");

    fun pretty_const "" = []
      | pretty_const c = [Pretty.str ("=> " ^ quote c)];

    fun pretty_pri p = [Pretty.str ("(" ^ signed_string_of_int p ^ ")")];

    fun pretty_prod name (symbs, const, pri) =
      Pretty.block (Pretty.breaks (pretty_name name @
        map pretty_symb symbs @ pretty_const const @ pretty_pri pri));

    fun pretty_nt (name, tag) =
      let
        fun prod_of_chain from = ([Nonterminal (from, ~1)], "", ~1);

        val nt_prods =
          Library.foldl (uncurry (union (op =))) ([], map snd (snd (Array.sub (prods, tag)))) @
          map prod_of_chain ((these o AList.lookup (op =) chains) tag);
      in map (pretty_prod name) nt_prods end;

  in maps pretty_nt (sort_wrt fst (Symtab.dest tags)) end;


(** Operations on gramars **)

val empty_gram = Gram {nt_count = 0, prod_count = 0,
                       tags = Symtab.empty, chains = [], lambdas = [],
                       prods = Array.array (0, (([], []), []))};


(*Invert list of chain productions*)
fun inverse_chains [] result = result
  | inverse_chains ((root, branches: nt_tag list) :: cs) result =
    let fun add ([]: nt_tag list) result = result
          | add (id :: ids) result =
            let val old = (these o AList.lookup (op =) result) id;
            in add ids (AList.update (op =) (id, root :: old) result) end;
    in inverse_chains cs (add branches result) end;


(*Add productions to a grammar*)
fun extend_gram [] gram = gram
  | extend_gram xprods (Gram {nt_count, prod_count, tags, chains, lambdas, prods}) =
    let
      (*Get tag for existing nonterminal or create a new one*)
      fun get_tag nt_count tags nt =
        case Symtab.lookup tags nt of
          SOME tag => (nt_count, tags, tag)
        | NONE => (nt_count+1, Symtab.update_new (nt, nt_count) tags,
                   nt_count);

      (*Convert symbols to the form used by the parser;
        delimiters and predefined terms are stored as terminals,
        nonterminals are converted to integer tags*)
      fun symb_of [] nt_count tags result = (nt_count, tags, rev result)
        | symb_of ((Syn_Ext.Delim s) :: ss) nt_count tags result =
            symb_of ss nt_count tags
              (Terminal (Lexicon.Token (Lexicon.Literal, s, Position.no_range)) :: result)
        | symb_of ((Syn_Ext.Argument (s, p)) :: ss) nt_count tags result =
            let
              val (nt_count', tags', new_symb) =
                case Lexicon.predef_term s of
                  NONE =>
                    let val (nt_count', tags', s_tag) = get_tag nt_count tags s;
                    in (nt_count', tags', Nonterminal (s_tag, p)) end
                | SOME tk => (nt_count, tags, Terminal tk);
            in symb_of ss nt_count' tags' (new_symb :: result) end
        | symb_of (_ :: ss) nt_count tags result =
            symb_of ss nt_count tags result;

      (*Convert list of productions by invoking symb_of for each of them*)
      fun prod_of [] nt_count prod_count tags result =
            (nt_count, prod_count, tags, result)
        | prod_of ((Syn_Ext.XProd (lhs, xsymbs, const, pri)) :: ps)
                  nt_count prod_count tags result =
          let val (nt_count', tags', lhs_tag) = get_tag nt_count tags lhs;

              val (nt_count'', tags'', prods) =
                symb_of xsymbs nt_count' tags' [];
          in prod_of ps nt_count'' (prod_count+1) tags''
                     ((lhs_tag, (prods, const, pri)) :: result)
          end;

      val (nt_count', prod_count', tags', xprods') =
        prod_of xprods nt_count prod_count tags [];

      (*Copy array containing productions of old grammar;
        this has to be done to preserve the old grammar while being able
        to change the array's content*)
      val prods' =
        let fun get_prod i = if i < nt_count then Array.sub (prods, i)
                             else (([], []), []);
        in Array.tabulate (nt_count', get_prod) end;

      val fromto_chains = inverse_chains chains [];

      (*Add new productions to old ones*)
      val (fromto_chains', lambdas', _) =
        add_prods prods' fromto_chains lambdas NONE xprods';

      val chains' = inverse_chains fromto_chains' [];
    in Gram {nt_count = nt_count', prod_count = prod_count', tags = tags',
             chains = chains', lambdas = lambdas', prods = prods'}
    end;

fun make_gram xprods = extend_gram xprods empty_gram;


(*Merge two grammars*)
fun merge_gram (gram_a, gram_b) =
  let
    (*find out which grammar is bigger*)
    val (Gram {nt_count = nt_count1, prod_count = prod_count1, tags = tags1,
               chains = chains1, lambdas = lambdas1, prods = prods1},
         Gram {nt_count = nt_count2, prod_count = prod_count2, tags = tags2,
               chains = chains2, lambdas = lambdas2, prods = prods2}) =
      let val Gram {prod_count = count_a, ...} = gram_a;
          val Gram {prod_count = count_b, ...} = gram_b;
      in if count_a > count_b then (gram_a, gram_b)
                              else (gram_b, gram_a)
      end;

    (*get existing tag from grammar1 or create a new one*)
    fun get_tag nt_count tags nt =
      case Symtab.lookup tags nt of
        SOME tag => (nt_count, tags, tag)
      | NONE => (nt_count+1, Symtab.update_new (nt, nt_count) tags,
                nt_count)

    val ((nt_count1', tags1'), tag_table) =
      let val tag_list = Symtab.dest tags2;

          val table = Array.array (nt_count2, ~1);

          fun store_tag nt_count tags ~1 = (nt_count, tags)
            | store_tag nt_count tags tag =
              let val (nt_count', tags', tag') =
                   get_tag nt_count tags
                     (fst (the (find_first (fn (n, t) => t = tag) tag_list)));
              in Array.update (table, tag, tag');
                 store_tag nt_count' tags' (tag-1)
              end;
      in (store_tag nt_count1 tags1 (nt_count2-1), table) end;

    (*convert grammar2 tag to grammar1 tag*)
    fun convert_tag tag = Array.sub (tag_table, tag);

    (*convert chain list to raw productions*)
    fun mk_chain_prods [] result = result
      | mk_chain_prods ((to, froms) :: cs) result =
        let
          val to_tag = convert_tag to;

          fun make [] result = result
            | make (from :: froms) result = make froms ((to_tag,
                ([Nonterminal (convert_tag from, ~1)], "", ~1)) :: result);
        in mk_chain_prods cs (make froms [] @ result) end;

    val chain_prods = mk_chain_prods chains2 [];

    (*convert prods2 array to productions*)
    fun process_nt ~1 result = result
      | process_nt nt result =
        let
          val nt_prods = Library.foldl (uncurry (union (op =)))
            ([], map snd (snd (Array.sub (prods2, nt))));
          val lhs_tag = convert_tag nt;

          (*convert tags in rhs*)
          fun process_rhs [] result = result
            | process_rhs (Terminal tk :: rhs) result =
                process_rhs rhs (result @ [Terminal tk])
            | process_rhs (Nonterminal (nt, prec) :: rhs) result =
                process_rhs rhs
                            (result @ [Nonterminal (convert_tag nt, prec)]);

          (*convert tags in productions*)
          fun process_prods [] result = result
            | process_prods ((rhs, id, prec) :: ps) result =
                process_prods ps ((lhs_tag, (process_rhs rhs [], id, prec))
                                  :: result);
        in process_nt (nt-1) (process_prods nt_prods [] @ result) end;

    val raw_prods = chain_prods @ process_nt (nt_count2-1) [];

    val prods1' =
      let fun get_prod i = if i < nt_count1 then Array.sub (prods1, i)
                           else (([], []), []);
      in Array.tabulate (nt_count1', get_prod) end;

    val fromto_chains = inverse_chains chains1 [];

    val (fromto_chains', lambdas', SOME prod_count1') =
      add_prods prods1' fromto_chains lambdas1 (SOME prod_count1) raw_prods;

    val chains' = inverse_chains fromto_chains' [];
  in Gram {nt_count = nt_count1', prod_count = prod_count1',
           tags = tags1', chains = chains', lambdas = lambdas',
           prods = prods1'}
  end;


(** Parser **)

datatype parsetree =
  Node of string * parsetree list |
  Tip of Lexicon.token;

type state =
  nt_tag * int *                (*identification and production precedence*)
  parsetree list *              (*already parsed nonterminals on rhs*)
  symb list *                   (*rest of rhs*)
  string *                      (*name of production*)
  int;                          (*index for previous state list*)


(*Get all rhss with precedence >= minPrec*)
fun getRHS minPrec = filter (fn (_, _, prec:int) => prec >= minPrec);

(*Get all rhss with precedence >= minPrec and < maxPrec*)
fun getRHS' minPrec maxPrec =
  filter (fn (_, _, prec:int) => prec >= minPrec andalso prec < maxPrec);

(*Make states using a list of rhss*)
fun mkStates i minPrec lhsID rhss =
  let fun mkState (rhs, id, prodPrec) = (lhsID, prodPrec, [], rhs, id, i);
  in map mkState rhss end;

(*Add parse tree to list and eliminate duplicates
  saving the maximum precedence*)
fun conc (t: parsetree list, prec:int) [] = (NONE, [(t, prec)])
  | conc (t, prec) ((t', prec') :: ts) =
      if t = t' then
        (SOME prec', if prec' >= prec then (t', prec') :: ts
                     else (t, prec) :: ts)
      else
        let val (n, ts') = conc (t, prec) ts
        in (n, (t', prec') :: ts') end;

(*Update entry in used*)
fun update_trees ((B: nt_tag, (i, ts)) :: used) (A, t) =
  if A = B then
    let val (n, ts') = conc t ts
    in ((A, (i, ts')) :: used, n) end
  else
    let val (used', n) = update_trees used (A, t)
    in ((B, (i, ts)) :: used', n) end;

(*Replace entry in used*)
fun update_prec (A: nt_tag, prec) used =
  let fun update ((hd as (B, (_, ts))) :: used, used') =
        if A = B
        then used' @ ((A, (prec, ts)) :: used)
        else update (used, hd :: used')
  in update (used, []) end;

fun getS A maxPrec Si =
  filter
    (fn (_, _, _, Nonterminal (B, prec) :: _, _, _)
          => A = B andalso prec <= maxPrec
      | _ => false) Si;

fun getS' A maxPrec minPrec Si =
  filter
    (fn (_, _, _, Nonterminal (B, prec) :: _, _, _)
          => A = B andalso prec > minPrec andalso prec <= maxPrec
      | _ => false) Si;

fun getStates Estate i ii A maxPrec =
  filter
    (fn (_, _, _, Nonterminal (B, prec) :: _, _, _)
          => A = B andalso prec <= maxPrec
      | _ => false)
    (Array.sub (Estate, ii));


fun movedot_term (A, j, ts, Terminal a :: sa, id, i) c =
  if Lexicon.valued_token c then
    (A, j, ts @ [Tip c], sa, id, i)
  else (A, j, ts, sa, id, i);

fun movedot_nonterm ts (A, j, tss, Nonterminal _ :: sa, id, i) =
  (A, j, tss @ ts, sa, id, i);

fun movedot_lambda _ [] = []
  | movedot_lambda (B, j, tss, Nonterminal (A, k) :: sa, id, i) ((t, ki) :: ts) =
      if k <= ki then
        (B, j, tss @ t, sa, id, i) ::
          movedot_lambda (B, j, tss, Nonterminal (A, k) :: sa, id, i) ts
      else movedot_lambda (B, j, tss, Nonterminal (A, k) :: sa, id, i) ts;


val branching_level = Unsynchronized.ref 600;   (*trigger value for warnings*)

(*get all productions of a NT and NTs chained to it which can
  be started by specified token*)
fun prods_for prods chains include_none tk nts =
  let
      fun token_assoc (list, key) =
        let fun assoc [] result = result
              | assoc ((keyi, pi) :: pairs) result =
                  if is_some keyi andalso Lexicon.matching_tokens (the keyi, key)
                     orelse include_none andalso is_none keyi then
                    assoc pairs (pi @ result)
                  else assoc pairs result;
        in assoc list [] end;

      fun get_prods [] result = result
        | get_prods (nt :: nts) result =
          let val nt_prods = snd (Array.sub (prods, nt));
          in get_prods nts ((token_assoc (nt_prods, tk)) @ result) end;
  in get_prods (connected_with chains nts nts) [] end;


fun PROCESSS warned prods chains Estate i c states =
  let
    fun all_prods_for nt = prods_for prods chains true c [nt];

    fun processS used [] (Si, Sii) = (Si, Sii)
      | processS used (S :: States) (Si, Sii) =
          (case S of
            (_, _, _, Nonterminal (nt, minPrec) :: _, _, _) =>
              let                                       (*predictor operation*)
                val (used', new_states) =
                  (case AList.lookup (op =) used nt of
                    SOME (usedPrec, l) =>       (*nonterminal has been processed*)
                      if usedPrec <= minPrec then
                                          (*wanted precedence has been processed*)
                        (used, movedot_lambda S l)
                      else            (*wanted precedence hasn't been parsed yet*)
                        let
                          val tk_prods = all_prods_for nt;

                          val States' = mkStates i minPrec nt
                                          (getRHS' minPrec usedPrec tk_prods);
                        in (update_prec (nt, minPrec) used,
                            movedot_lambda S l @ States')
                        end

                  | NONE =>           (*nonterminal is parsed for the first time*)
                      let val tk_prods = all_prods_for nt;
                          val States' = mkStates i minPrec nt
                                          (getRHS minPrec tk_prods);
                      in ((nt, (minPrec, [])) :: used, States') end);

                val dummy =
                  if not (!warned) andalso
                     length (new_states @ States) > (!branching_level) then
                    (warning "Currently parsed expression could be extremely ambiguous.";
                     warned := true)
                  else ();
              in
                processS used' (new_states @ States) (S :: Si, Sii)
              end
          | (_, _, _, Terminal a :: _, _, _) =>               (*scanner operation*)
              processS used States
                (S :: Si,
                  if Lexicon.matching_tokens (a, c) then movedot_term S c :: Sii else Sii)
          | (A, prec, ts, [], id, j) =>                   (*completer operation*)
              let val tt = if id = "" then ts else [Node (id, ts)] in
                if j = i then                             (*lambda production?*)
                  let
                    val (used', O) = update_trees used (A, (tt, prec));
                  in
                    case O of
                      NONE =>
                        let val Slist = getS A prec Si;
                            val States' = map (movedot_nonterm tt) Slist;
                        in processS used' (States' @ States) (S :: Si, Sii) end
                    | SOME n =>
                        if n >= prec then processS used' States (S :: Si, Sii)
                        else
                          let val Slist = getS' A prec n Si;
                              val States' = map (movedot_nonterm tt) Slist;
                          in processS used' (States' @ States) (S :: Si, Sii) end
                  end
                else
                  let val Slist = getStates Estate i j A prec
                  in processS used (map (movedot_nonterm tt) Slist @ States)
                              (S :: Si, Sii)
                  end
              end)
  in processS [] states ([], []) end;


fun produce warned prods tags chains stateset i indata prev_token =
  (case Array.sub (stateset, i) of
    [] =>
      let
        val toks = if Lexicon.is_eof prev_token then indata else prev_token :: indata;
        val pos = Position.str_of (Lexicon.pos_of_token prev_token);
      in
        if null toks then error ("Inner syntax error: unexpected end of input" ^ pos)
        else error (Pretty.string_of (Pretty.block
          (Pretty.str ("Inner syntax error" ^ pos ^ " at \"") ::
            Pretty.breaks (map (Pretty.str o Lexicon.str_of_token) (#1 (split_last toks))) @
            [Pretty.str "\""])))
      end
  | s =>
    (case indata of
       [] => Array.sub (stateset, i)
     | c :: cs =>
       let val (si, sii) = PROCESSS warned prods chains stateset i c s;
       in Array.update (stateset, i, si);
          Array.update (stateset, i + 1, sii);
          produce warned prods tags chains stateset (i + 1) cs c
       end));


fun get_trees l = map_filter (fn (_, _, [pt], _, _, _) => SOME pt | _ => NONE) l;

fun earley prods tags chains startsymbol indata =
  let
    val start_tag =
      (case Symtab.lookup tags startsymbol of
        SOME tag => tag
      | NONE => error ("Inner syntax: unknown startsymbol " ^ quote startsymbol));
    val S0 = [(~1, 0, [], [Nonterminal (start_tag, 0), Terminal Lexicon.eof], "", 0)];
    val s = length indata + 1;
    val Estate = Array.array (s, []);
  in
    Array.update (Estate, 0, S0);
    get_trees (produce (Unsynchronized.ref false) prods tags chains Estate 0 indata Lexicon.eof)
  end;


fun parse (Gram {tags, prods, chains, ...}) start toks =
  let
    val end_pos =
      (case try List.last toks of
        NONE => Position.none
      | SOME (Lexicon.Token (_, _, (_, end_pos))) => end_pos);
    val r =
      (case earley prods tags chains start (toks @ [Lexicon.mk_eof end_pos]) of
        [] => raise Fail "Inner syntax: no parse trees"
      | pts => pts);
  in r end;


fun guess_infix_lr (Gram gram) c = (*based on educated guess*)
  let
    fun freeze a = map_range (curry Array.sub a) (Array.length a);
    val prods = maps snd (maps snd (freeze (#prods gram)));
    fun guess (SOME ([Nonterminal (_, k),
            Terminal (Lexicon.Token (Lexicon.Literal, s, _)), Nonterminal (_, l)], _, j)) =
          if k = j andalso l = j + 1 then SOME (s, true, false, j)
          else if k = j + 1 then if l = j then SOME (s, false, true, j)
            else if l = j + 1 then SOME (s, false, false, j)
            else NONE
          else NONE
      | guess _ = NONE;
  in guess (find_first (fn (_, s, _) => s = c) prods) end;

end;