src/HOLCF/domain/axioms.ML
author oheimb
Wed, 03 Apr 1996 19:27:14 +0200
changeset 1637 b8a8ae2e5de1
parent 1461 6bcb44e4d6e5
child 2453 2d416226b27d
permissions -rw-r--r--
Updated: 01-Mar-96 when functional strictified, copy_def based on when_def

(* axioms.ML
   Author : David von Oheimb
   Created: 31-May-95
   Updated: 12-Jun-95 axioms for discriminators, selectors and induction
   Updated: 19-Jun-95 axiom for bisimulation
   Updated: 28-Jul-95 gen_by-section
   Updated: 29-Aug-95 simultaneous domain equations
   Copyright 1995 TU Muenchen
*)


structure Domain_Axioms = struct

local

open Domain_Library;
infixr 0 ===>;infixr 0 ==>;infix 0 == ; 
infix 1 ===; infix 1 ~= ; infix 1 <<; infix 1 ~<<;
infix 9 `   ; infix 9 `% ; infix 9 `%%; infixr 9 oo;

fun infer_types thy' = map (inferT_axm (sign_of thy'));

fun calc_axioms comp_dname (eqs : eq list) n (((dname,_),cons) : eq)=
let

(* ----- axioms and definitions concerning the isomorphism ------------------ *)

  val dc_abs = %%(dname^"_abs");
  val dc_rep = %%(dname^"_rep");
  val x_name'= "x";
  val x_name = idx_name eqs x_name' (n+1);

 val ax_abs_iso=(dname^"_abs_iso",mk_trp(dc_rep`(dc_abs`%x_name')=== %x_name'));
 val ax_rep_iso=(dname^"_rep_iso",mk_trp(dc_abs`(dc_rep`%x_name')=== %x_name'));

  val ax_when_def = (dname^"_when_def",%%(dname^"_when") == 
     foldr (uncurry /\ ) (when_funs cons, /\x_name'((when_body cons (fn (x,y) =>
				Bound(1+length cons+x-y)))`(dc_rep`Bound 0))));

  fun con_def outer recu m n (_,args) = let
     fun idxs z x arg = (if is_lazy arg then fn t => %%"up"`t else Id)
			(if recu andalso is_rec arg then (cproj (Bound z) 
			(length eqs) (rec_of arg))`Bound(z-x) else Bound(z-x));
     fun parms [] = %%"one"
     |   parms vs = foldr'(fn(x,t)=> %%"spair"`x`t)(mapn (idxs(length vs))1 vs);
     fun inj y 1 _ = y
     |   inj y _ 0 = %%"sinl"`y
     |   inj y i j = %%"sinr"`(inj y (i-1) (j-1));
  in foldr /\# (args, outer (inj (parms args) m n)) end;

  val ax_copy_def = (dname^"_copy_def", %%(dname^"_copy") == /\"f" (dc_abs oo 
	foldl (op `) (%%(dname^"_when") , 
	              mapn (con_def Id true (length cons)) 0 cons)));

(* -- definitions concerning the constructors, discriminators and selectors - *)

  val axs_con_def = mapn (fn n => fn (con,args) => (extern_name con ^"_def",  
  %%con == con_def (fn t => dc_abs`t) false (length cons) n (con,args))) 0 cons;

  val axs_dis_def = let
	fun ddef (con,_) = (dis_name con ^"_def",%%(dis_name con) == 
		 mk_cfapp(%%(dname^"_when"),map 
			(fn (con',args) => (foldr /\#
			   (args,if con'=con then %%"TT" else %%"FF"))) cons))
	in map ddef cons end;

  val axs_sel_def = let
	fun sdef con n arg = (sel_of arg^"_def",%%(sel_of arg) == 
		 mk_cfapp(%%(dname^"_when"),map 
			(fn (con',args) => if con'<>con then %%"UU" else
			 foldr /\# (args,Bound (length args - n))) cons));
	in flat(map (fn (con,args) => mapn (sdef con) 1 args) cons) end;


(* ----- axiom and definitions concerning induction ------------------------- *)

  fun cproj' T = cproj T (length eqs) n;
  val ax_reach = (dname^"_reach", mk_trp(cproj'(%%"fix"`%%(comp_dname^"_copy"))
					`%x_name === %x_name));
  val ax_take_def = (dname^"_take_def",%%(dname^"_take") == mk_lam("n",cproj'
		    (%%"iterate" $ Bound 0 $ %%(comp_dname^"_copy") $ %%"UU")));
  val ax_finite_def = (dname^"_finite_def",%%(dname^"_finite") == mk_lam(x_name,
	mk_ex("n",(%%(dname^"_take") $ Bound 0)`Bound 1 === Bound 1)));

in [ax_abs_iso, ax_rep_iso, ax_when_def, ax_copy_def] @
    axs_con_def @ axs_dis_def @ axs_sel_def @
   [ax_reach, ax_take_def, ax_finite_def] 
end; (* let *)


in (* local *)

fun add_axioms (comp_dname, eqs : eq list) thy' = let
  val dnames = map (fst o fst) eqs;
  val x_name = idx_name dnames "x"; 
  fun copy_app dname = %%(dname^"_copy")`Bound 0;
  val ax_copy_def =(comp_dname^"_copy_def" , %%(comp_dname^"_copy") ==
				    /\"f"(foldr' cpair (map copy_app dnames)));
  val ax_bisim_def=(comp_dname^"_bisim_def",%%(comp_dname^"_bisim")==mk_lam("R",
    let
      fun one_con (con,args) = let
	val nonrec_args = filter_out is_rec args;
	val    rec_args = filter     is_rec args;
	val    recs_cnt = length rec_args;
	val allargs     = nonrec_args @ rec_args
				      @ map (upd_vname (fn s=> s^"'")) rec_args;
	val allvns      = map vname allargs;
	fun vname_arg s arg = if is_rec arg then vname arg^s else vname arg;
	val vns1        = map (vname_arg "" ) args;
	val vns2        = map (vname_arg "'") args;
	val allargs_cnt = length nonrec_args + 2*recs_cnt;
	val rec_idxs    = (recs_cnt-1) downto 0;
	val nonlazy_idxs = map snd (filter_out (fn (arg,_) => is_lazy arg)
					 (allargs~~((allargs_cnt-1) downto 0)));
	fun rel_app i ra = proj (Bound(allargs_cnt+2)) (length eqs) (rec_of ra) $ 
			   Bound (2*recs_cnt-i) $ Bound (recs_cnt-i);
	val capps = foldr mk_conj (mapn rel_app 1 rec_args, mk_conj(
	   Bound(allargs_cnt+1)===mk_cfapp(%%con,map (bound_arg allvns) vns1),
	   Bound(allargs_cnt+0)===mk_cfapp(%%con,map (bound_arg allvns) vns2)));
        in foldr mk_ex (allvns, foldr mk_conj 
			      (map (defined o Bound) nonlazy_idxs,capps)) end;
      fun one_comp n (_,cons) =mk_all(x_name(n+1),mk_all(x_name(n+1)^"'",mk_imp(
	 		proj (Bound 2) (length eqs) n $ Bound 1 $ Bound 0,
         		foldr' mk_disj (mk_conj(Bound 1 === UU,Bound 0 === UU)
					::map one_con cons))));
    in foldr' mk_conj (mapn one_comp 0 eqs)end ));
  val thy_axs = flat (mapn (calc_axioms comp_dname eqs) 0 eqs) @
		(if length eqs>1 then [ax_copy_def] else []) @ [ax_bisim_def];
in thy' |> add_axioms_i (infer_types thy' thy_axs) end;


fun add_induct ((tname,finite),(typs,cnstrs)) thy' = let
  fun P_name typ = "P"^(if typs = [typ] then "" 
			else string_of_int(1 + find(typ,typs)));
  fun lift_adm t = lift (fn typ => %%"adm" $ %(P_name typ)) 
			(if finite then [] else typs,t);
  fun lift_pred_UU t = lift (fn typ => %(P_name typ) $ UU) (typs,t);
  fun one_cnstr (cnstr,vns,(args,res)) = let 
		val rec_args = filter (fn (_,typ) => typ mem typs)(vns~~args);
		val app = mk_cfapp(%%cnstr,map (bound_arg vns) vns);
	     in foldr mk_All (vns,
			 lift (fn (vn,typ) => %(P_name typ) $ bound_arg vns vn)
			      (rec_args,defined app ==> %(P_name res)$app)) end;
  fun one_conc typ = let val pn = P_name typ 
		     in %pn $ %("x"^implode(tl(explode pn))) end;
  val concl = mk_trp(foldr' mk_conj (map one_conc typs));
  val induct = (tname^"_induct",lift_adm(lift_pred_UU(
			foldr (op ===>) (map one_cnstr cnstrs,concl))));
in thy' |> add_axioms_i (infer_types thy' [induct]) end;

end; (* local *)
end; (* struct *)