src/HOL/SMT_Examples/Boogie_Dijkstra.certs2
author haftmann
Sat Jul 05 11:01:53 2014 +0200 (2014-07-05)
changeset 57514 bdc2c6b40bf2
parent 57204 7c36ce8e45f6
permissions -rw-r--r--
prefer ac_simps collections over separate name bindings for add and mult
     1 9d6b81d96fb21c8c08e3f1fd649ce37bdafb5f92 3044 0
     2 unsat
     3 ((set-logic AUFLIA)
     4 (declare-fun ?v0!19 () B_Vertex$)
     5 (declare-fun ?v1!18 () B_Vertex$)
     6 (declare-fun ?v0!20 () B_Vertex$)
     7 (declare-fun ?v0!17 () B_Vertex$)
     8 (declare-fun ?v1!16 () B_Vertex$)
     9 (declare-fun ?v0!15 () B_Vertex$)
    10 (declare-fun ?v0!14 () B_Vertex$)
    11 (declare-fun ?v0!13 () B_Vertex$)
    12 (declare-fun ?v0!12 () B_Vertex$)
    13 (declare-fun ?v0!11 () B_Vertex$)
    14 (declare-fun ?v1!10 () B_Vertex$)
    15 (declare-fun ?v1!9 (B_Vertex$) B_Vertex$)
    16 (declare-fun ?v0!8 () B_Vertex$)
    17 (declare-fun ?v1!7 (B_Vertex$) B_Vertex$)
    18 (declare-fun ?v1!6 (B_Vertex$) B_Vertex$)
    19 (declare-fun ?v0!5 () B_Vertex$)
    20 (declare-fun ?v0!4 () B_Vertex$)
    21 (declare-fun ?v1!3 () B_Vertex$)
    22 (declare-fun ?v0!2 () B_Vertex$)
    23 (declare-fun ?v1!1 () B_Vertex$)
    24 (declare-fun ?v0!0 () B_Vertex$)
    25 (proof
    26 (let ((?x1893 (v_b_SP_G_2$ ?v0!19)))
    27 (let ((?x1894 (* (- 1) ?x1893)))
    28 (let ((?x1892 (v_b_SP_G_2$ ?v1!18)))
    29 (let ((?x1884 (pair$ ?v1!18 ?v0!19)))
    30 (let ((?x1885 (b_G$ ?x1884)))
    31 (let (($x1896 (>= (+ ?x1885 ?x1892 ?x1894) 0)))
    32 (let (($x1888 (<= (+ b_Infinity$ (* (- 1) ?x1885)) 0)))
    33 (let (($x1883 (fun_app$ v_b_Visited_G_2$ ?v1!18)))
    34 (let (($x2791 (not $x1883)))
    35 (let (($x2806 (or $x2791 $x1888 $x1896)))
    36 (let (($x2811 (not $x2806)))
    37 (let (($x3729 (forall ((?v1 B_Vertex$) )(!(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
    38 (let ((?x1912 (* (- 1) ?x1911)))
    39 (let ((?x273 (v_b_SP_G_2$ ?v1)))
    40 (let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
    41 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    42 (let (($x300 (not $x291)))
    43 (or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) )))
    44 ))
    45 (let (($x3734 (not $x3729)))
    46 (let (($x1914 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)))
    47 (let (($x1909 (= ?v0!20 b_Source$)))
    48 (let (($x3720 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x303 (v_b_SP_G_2$ ?v0)))
    49 (let ((?x1263 (* (- 1) ?x303)))
    50 (let ((?x273 (v_b_SP_G_2$ ?v1)))
    51 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
    52 (let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
    53 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
    54 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    55 (let (($x300 (not $x291)))
    56 (or $x300 $x922 $x1282))))))))) :pattern ( (pair$ ?v1 ?v0) )))
    57 ))
    58 (let (($x3725 (not $x3720)))
    59 (let (($x3737 (or $x3725 $x1909 $x1914 $x3734)))
    60 (let ((?x4393 (fun_app$c v_b_SP_G_1$ ?v0!20)))
    61 (let ((?x4418 (* (- 1) ?x4393)))
    62 (let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
    63 (let ((?x4419 (+ ?x1911 ?x4418)))
    64 (let (($x5977 (>= ?x4419 0)))
    65 (let (($x4400 (= ?x1911 ?x4393)))
    66 (let ((?x4434 (pair$ v_b_v_G_1$ ?v0!20)))
    67 (let ((?x4435 (b_G$ ?x4434)))
    68 (let ((?x4436 (* (- 1) ?x4435)))
    69 (let ((?x3104 (v_b_SP_G_2$ v_b_v_G_1$)))
    70 (let ((?x3105 (* (- 1) ?x3104)))
    71 (let ((?x4546 (+ ?x1911 ?x3105 ?x4436)))
    72 (let (($x4569 (<= ?x4546 0)))
    73 (let (($x3740 (not $x3737)))
    74 (let ((@x8092 (hypothesis $x3740)))
    75 (let ((@x3222 (def-axiom (or $x3737 $x3720))))
    76 (let (($x4161 (>= ?x3104 0)))
    77 (let (($x3703 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0)))
    78 (>= ?x273 0)) :pattern ( (v_b_SP_G_2$ ?v0) )))
    79 ))
    80 (let (($x3743 (or $x2811 $x3740)))
    81 (let (($x3746 (not $x3743)))
    82 (let (($x3712 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
    83 (let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
    84 (let (($x2768 (not $x301)))
    85 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    86 (or $x291 $x2768 $x1262))))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) )))
    87 ))
    88 (let (($x3717 (not $x3712)))
    89 (let (($x3749 (or $x3717 $x3746)))
    90 (let (($x3752 (not $x3749)))
    91 (let (($x1869 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
    92 (let (($x1862 (fun_app$ v_b_Visited_G_2$ ?v0!17)))
    93 (let (($x2745 (not $x1862)))
    94 (let (($x1860 (fun_app$ v_b_Visited_G_2$ ?v1!16)))
    95 (let (($x2760 (or $x1860 $x2745 $x1869)))
    96 (let (($x2765 (not $x2760)))
    97 (let (($x3755 (or $x2765 $x3752)))
    98 (let (($x3758 (not $x3755)))
    99 (let (($x3708 (not $x3703)))
   100 (let (($x3761 (or $x3708 $x3758)))
   101 (let (($x3764 (not $x3761)))
   102 (let ((?x1846 (v_b_SP_G_2$ ?v0!15)))
   103 (let (($x1847 (>= ?x1846 0)))
   104 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   105 (let (($x3904 (>= ?x257 0)))
   106 (let (($x3556 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   107 (>= ?x174 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   108 ))
   109 (let (($x1848 (not $x1847)))
   110 (let (($x3767 (or $x1848 $x3764)))
   111 (let (($x3770 (not $x3767)))
   112 (let ((?x296 (v_b_SP_G_2$ b_Source$)))
   113 (let (($x297 (= ?x296 0)))
   114 (let (($x773 (not $x297)))
   115 (let (($x3773 (or $x773 $x3770)))
   116 (let (($x3776 (not $x3773)))
   117 (let (($x3779 (or $x773 $x3776)))
   118 (let (($x3782 (not $x3779)))
   119 (let (($x3695 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   120 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   121 (let (($x278 (= ?x273 ?x174)))
   122 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   123 (let (($x300 (not $x291)))
   124 (or $x300 $x278)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   125 ))
   126 (let (($x3700 (not $x3695)))
   127 (let (($x3785 (or $x3700 $x3782)))
   128 (let (($x3788 (not $x3785)))
   129 (let ((?x1827 (fun_app$c v_b_SP_G_1$ ?v0!14)))
   130 (let ((?x1826 (v_b_SP_G_2$ ?v0!14)))
   131 (let (($x1828 (= ?x1826 ?x1827)))
   132 (let (($x1829 (or (not (fun_app$ v_b_Visited_G_2$ ?v0!14)) $x1828)))
   133 (let (($x1830 (not $x1829)))
   134 (let (($x3791 (or $x1830 $x3788)))
   135 (let (($x3794 (not $x3791)))
   136 (let (($x3686 (forall ((?v0 B_Vertex$) )(!(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   137 ))
   138 (let (($x3691 (not $x3686)))
   139 (let (($x3797 (or $x3691 $x3794)))
   140 (let (($x3800 (not $x3797)))
   141 (let ((?x1809 (v_b_SP_G_2$ ?v0!13)))
   142 (let ((?x1810 (* (- 1) ?x1809)))
   143 (let ((?x1808 (fun_app$c v_b_SP_G_1$ ?v0!13)))
   144 (let ((?x1811 (+ ?x1808 ?x1810)))
   145 (let (($x1812 (>= ?x1811 0)))
   146 (let (($x1813 (not $x1812)))
   147 (let (($x3803 (or $x1813 $x3800)))
   148 (let (($x3806 (not $x3803)))
   149 (let (($x3678 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   150 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   151 (let (($x278 (= ?x273 ?x174)))
   152 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   153 (let ((?x1173 (* (- 1) ?x257)))
   154 (let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   155 (let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   156 (let (($x2717 (or $x1169 $x1175)))
   157 (let (($x2718 (not $x2717)))
   158 (or $x2718 $x278)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   159 ))
   160 (let (($x3683 (not $x3678)))
   161 (let (($x3670 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0)))
   162 (let ((?x1186 (* (- 1) ?x273)))
   163 (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   164 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   165 (let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
   166 (let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
   167 (let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)))
   168 (or $x1169 $x1175 $x1185)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   169 ))
   170 (let (($x3675 (not $x3670)))
   171 (let ((?x263 (fun_upd$ v_b_Visited_G_1$)))
   172 (let ((?x264 (fun_app$b ?x263 v_b_v_G_1$)))
   173 (let ((?x265 (fun_app$a ?x264 true)))
   174 (let (($x266 (= v_b_Visited_G_2$ ?x265)))
   175 (let (($x2935 (not $x266)))
   176 (let (($x3660 (forall ((?v0 B_Vertex$) )(!(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   177 (let ((?x1173 (* (- 1) ?x257)))
   178 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   179 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   180 (or $x178 (>= (+ ?x174 ?x1173) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   181 ))
   182 (let (($x3665 (not $x3660)))
   183 (let ((?x1173 (* (- 1) ?x257)))
   184 (let ((?x1212 (+ b_Infinity$ ?x1173)))
   185 (let (($x1213 (<= ?x1212 0)))
   186 (let (($x255 (fun_app$ v_b_Visited_G_1$ v_b_v_G_1$)))
   187 (let ((?x1775 (fun_app$c v_b_SP_G_1$ ?v0!12)))
   188 (let ((?x1776 (* (- 1) ?x1775)))
   189 (let ((?x1777 (+ b_Infinity$ ?x1776)))
   190 (let (($x1778 (<= ?x1777 0)))
   191 (let (($x1773 (fun_app$ v_b_Visited_G_1$ ?v0!12)))
   192 (let (($x3809 (or $x1773 $x1778 $x255 $x1213 $x3665 $x2935 $x3675 $x3683 $x3806)))
   193 (let (($x3812 (not $x3809)))
   194 (let ((?x245 (fun_app$c v_b_SP_G_3$ b_Source$)))
   195 (let (($x246 (= ?x245 0)))
   196 (let (($x3622 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   197 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   198 (let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   199 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   200 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   201 (or $x1099 $x922 $x1140)))))) :pattern ( (pair$ ?v1 ?v0) )))
   202 ))
   203 (let (($x3627 (not $x3622)))
   204 (let (($x3630 (or $x3627 $x246)))
   205 (let (($x3633 (not $x3630)))
   206 (let ((?x1734 (fun_app$c v_b_SP_G_3$ ?v0!11)))
   207 (let ((?x1735 (* (- 1) ?x1734)))
   208 (let ((?x1726 (pair$ ?v1!10 ?v0!11)))
   209 (let ((?x1727 (b_G$ ?x1726)))
   210 (let ((?x1721 (fun_app$c v_b_SP_G_3$ ?v1!10)))
   211 (let ((?x2206 (+ ?x1721 ?x1727 ?x1735)))
   212 (let (($x2209 (>= ?x2206 0)))
   213 (let (($x1730 (<= (+ b_Infinity$ (* (- 1) ?x1727)) 0)))
   214 (let (($x1724 (<= (+ b_Infinity$ (* (- 1) ?x1721)) 0)))
   215 (let (($x2645 (or $x1724 $x1730 $x2209)))
   216 (let (($x2650 (not $x2645)))
   217 (let (($x3636 (or $x2650 $x3633)))
   218 (let (($x3639 (not $x3636)))
   219 (let (($x3614 (forall ((?v0 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   220 (let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
   221 (let (($x2192 (= ?x2191 0)))
   222 (let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
   223 (let (($x2617 (not (or $x2176 (not $x2192)))))
   224 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   225 (let (($x127 (= ?v0 b_Source$)))
   226 (or $x127 $x1099 $x2617)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) )))
   227 ))
   228 (let (($x3619 (not $x3614)))
   229 (let (($x3642 (or $x3619 $x3639)))
   230 (let (($x3645 (not $x3642)))
   231 (let (($x3600 (forall ((?v1 B_Vertex$) )(!(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
   232 (let ((?x1662 (* (- 1) ?x1661)))
   233 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   234 (let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
   235 (or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) )))
   236 ))
   237 (let (($x3605 (not $x3600)))
   238 (let (($x1664 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!8))) 0)))
   239 (let (($x1659 (= ?v0!8 b_Source$)))
   240 (let (($x3608 (or $x1659 $x1664 $x3605)))
   241 (let (($x3611 (not $x3608)))
   242 (let (($x3648 (or $x3611 $x3645)))
   243 (let (($x3651 (not $x3648)))
   244 (let (($x220 (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)))
   245 (let (($x2709 (not $x220)))
   246 (let (($x217 (= v_b_SP_G_3$ v_b_SP_G_1$)))
   247 (let (($x2708 (not $x217)))
   248 (let (($x215 (= v_b_v_G_2$ v_b_v_G_0$)))
   249 (let (($x2707 (not $x215)))
   250 (let (($x212 (= v_b_Visited_G_3$ v_b_Visited_G_1$)))
   251 (let (($x2706 (not $x212)))
   252 (let (($x3590 (forall ((?v0 B_Vertex$) )(!(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   253 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   254 (or $x178 $x1002))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   255 ))
   256 (let (($x3595 (not $x3590)))
   257 (let (($x3654 (or $x3595 $x2706 $x2707 $x2708 $x2709 $x3651)))
   258 (let (($x3657 (not $x3654)))
   259 (let (($x3815 (or $x3657 $x3812)))
   260 (let (($x3818 (not $x3815)))
   261 (let (($x3581 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   262 (let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
   263 (let (($x2129 (= ?x2128 0)))
   264 (let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
   265 (let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129)))))
   266 (let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
   267 (let (($x127 (= ?v0 b_Source$)))
   268 (or $x127 $x1002 $x2551)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   269 ))
   270 (let (($x3586 (not $x3581)))
   271 (let (($x3573 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   272 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   273 (let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   274 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   275 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   276 (let (($x179 (not $x178)))
   277 (or $x179 $x922 $x990))))))) :pattern ( (pair$ ?v1 ?v0) )))
   278 ))
   279 (let (($x3578 (not $x3573)))
   280 (let (($x3565 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   281 (let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   282 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   283 (or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) )))
   284 ))
   285 (let (($x3570 (not $x3565)))
   286 (let (($x3561 (not $x3556)))
   287 (let ((?x172 (fun_app$c v_b_SP_G_1$ b_Source$)))
   288 (let (($x173 (= ?x172 0)))
   289 (let (($x2952 (not $x173)))
   290 (let (($x3547 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0)))
   291 (let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
   292 (let (($x2091 (= ?x2090 0)))
   293 (let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
   294 (let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091)))))
   295 (let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
   296 (let (($x127 (= ?v0 b_Source$)))
   297 (or $x127 $x947 $x2478)))))))) :pattern ( (v_b_SP_G_0$ ?v0) )))
   298 ))
   299 (let (($x3552 (not $x3547)))
   300 (let (($x3821 (or $x3552 $x2952 $x3561 $x3570 $x3578 $x3586 $x3818)))
   301 (let (($x3824 (not $x3821)))
   302 (let (($x3533 (forall ((?v1 B_Vertex$) )(!(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
   303 (let ((?x1541 (* (- 1) ?x1540)))
   304 (let ((?x128 (v_b_SP_G_0$ ?v1)))
   305 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   306 (let (($x137 (not $x136)))
   307 (or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) )))
   308 ))
   309 (let (($x3538 (not $x3533)))
   310 (let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
   311 (let ((?x1541 (* (- 1) ?x1540)))
   312 (let ((?x1542 (+ b_Infinity$ ?x1541)))
   313 (let (($x1543 (<= ?x1542 0)))
   314 (let (($x1538 (= ?v0!5 b_Source$)))
   315 (let (($x3541 (or $x1538 $x1543 $x3538)))
   316 (let (($x1539 (not $x1538)))
   317 (let ((@x6246 (unit-resolution (def-axiom (or $x3541 $x1539)) (hypothesis (not $x3541)) $x1539)))
   318 (let (($x5625 (= b_Infinity$ ?x1540)))
   319 (let (($x6457 (not $x5625)))
   320 (let (($x1544 (not $x1543)))
   321 (let ((@x6514 (unit-resolution (def-axiom (or $x3541 $x1544)) (hypothesis (not $x3541)) $x1544)))
   322 (let ((@x5778 (symm (commutativity (= $x5625 (= ?x1540 b_Infinity$))) (= (= ?x1540 b_Infinity$) $x5625))))
   323 (let (($x5616 (= ?x1540 b_Infinity$)))
   324 (let (($x3493 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$)))
   325 (or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) )))
   326 ))
   327 (let (($x360 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   328 (or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))))
   329 ))
   330 (let (($x127 (= ?0 b_Source$)))
   331 (let (($x357 (or $x127 (= (v_b_SP_G_0$ ?0) b_Infinity$))))
   332 (let (($x138 (forall ((?v0 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v0)))
   333 (not $x136)))
   334 ))
   335 (let (($x354 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   336 (let (($x132 (not $x127)))
   337 (or $x132 (= (v_b_SP_G_0$ ?v0) 0)))))
   338 ))
   339 (let (($x890 (and $x354 $x360 $x138)))
   340 (let (($x1329 (forall ((?v0 B_Vertex$) )(let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
   341 (let ((?x1263 (* (- 1) ?x303)))
   342 (let ((?x273 (v_b_SP_G_2$ ?v1)))
   343 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   344 (let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   345 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   346 (let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   347 (let (($x1309 (not $x1262)))
   348 (and $x1309 $x291 $x1306))))))))))
   349 ))
   350 (let (($x127 (= ?v0 b_Source$)))
   351 (let (($x132 (not $x127)))
   352 (let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))))
   353 (or (not $x1300) $x1323))))))
   354 ))
   355 (let (($x1289 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
   356 (let ((?x1263 (* (- 1) ?x303)))
   357 (let ((?x273 (v_b_SP_G_2$ ?v1)))
   358 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   359 (let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
   360 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   361 (let (($x923 (not $x922)))
   362 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   363 (let (($x1276 (and $x291 $x923)))
   364 (let (($x1279 (not $x1276)))
   365 (or $x1279 $x1282))))))))))))
   366 ))
   367 (let (($x1292 (not $x1289)))
   368 (let (($x1332 (or $x1292 $x1329)))
   369 (let (($x1335 (and $x1289 $x1332)))
   370 (let (($x1270 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
   371 (let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   372 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   373 (let (($x300 (not $x291)))
   374 (let (($x302 (and $x300 $x301)))
   375 (let (($x664 (not $x302)))
   376 (or $x664 $x1262))))))))
   377 ))
   378 (let (($x1273 (not $x1270)))
   379 (let (($x1338 (or $x1273 $x1335)))
   380 (let (($x1341 (and $x1270 $x1338)))
   381 (let (($x1256 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   382 (>= ?x273 0)))
   383 ))
   384 (let (($x1259 (not $x1256)))
   385 (let (($x1344 (or $x1259 $x1341)))
   386 (let (($x1347 (and $x1256 $x1344)))
   387 (let (($x1350 (or $x773 $x1347)))
   388 (let (($x1353 (and $x297 $x1350)))
   389 (let (($x652 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   390 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   391 (let (($x278 (= ?x273 ?x174)))
   392 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   393 (let (($x300 (not $x291)))
   394 (or $x300 $x278)))))))
   395 ))
   396 (let (($x785 (not $x652)))
   397 (let (($x1356 (or $x785 $x1353)))
   398 (let (($x1359 (and $x652 $x1356)))
   399 (let (($x1247 (forall ((?v0 B_Vertex$) )(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))
   400 ))
   401 (let (($x1250 (not $x1247)))
   402 (let (($x1362 (or $x1250 $x1359)))
   403 (let (($x1365 (and $x1247 $x1362)))
   404 (let (($x1199 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   405 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   406 (let (($x278 (= ?x273 ?x174)))
   407 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   408 (let ((?x1173 (* (- 1) ?x257)))
   409 (let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   410 (let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   411 (let (($x1179 (and (not $x1169) (not $x1175))))
   412 (or $x1179 $x278))))))))))
   413 ))
   414 (let (($x1193 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   415 (let ((?x1186 (* (- 1) ?x273)))
   416 (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   417 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   418 (let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
   419 (let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
   420 (let (($x1179 (and (not (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)) (not $x1175))))
   421 (let (($x1182 (not $x1179)))
   422 (or $x1182 $x1185))))))))))
   423 ))
   424 (let (($x1209 (forall ((?v0 B_Vertex$) )(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   425 (let ((?x1173 (* (- 1) ?x257)))
   426 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   427 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   428 (or $x178 (>= (+ ?x174 ?x1173) 0)))))))
   429 ))
   430 (let (($x1214 (not $x1213)))
   431 (let (($x256 (not $x255)))
   432 (let (($x1080 (exists ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   433 (let (($x1003 (not $x1002)))
   434 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   435 (let (($x179 (not $x178)))
   436 (and $x179 $x1003))))))
   437 ))
   438 (let (($x1235 (and $x1080 $x256 $x1214 $x1209 $x266 $x1193 $x1199)))
   439 (let (($x1240 (not $x1235)))
   440 (let (($x1368 (or $x1240 $x1365)))
   441 (let (($x1146 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   442 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   443 (let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   444 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   445 (let (($x923 (not $x922)))
   446 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   447 (let (($x1100 (not $x1099)))
   448 (let (($x1134 (and $x1100 $x923)))
   449 (let (($x1137 (not $x1134)))
   450 (or $x1137 $x1140)))))))))))
   451 ))
   452 (let (($x1149 (not $x1146)))
   453 (let (($x1152 (or $x1149 $x246)))
   454 (let (($x1155 (and $x1146 $x1152)))
   455 (let (($x1128 (forall ((?v0 B_Vertex$) )(let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   456 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   457 (and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))))
   458 ))
   459 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   460 (let (($x1100 (not $x1099)))
   461 (let (($x127 (= ?v0 b_Source$)))
   462 (let (($x132 (not $x127)))
   463 (let (($x1103 (and $x132 $x1100)))
   464 (let (($x1106 (not $x1103)))
   465 (or $x1106 $x1122)))))))))
   466 ))
   467 (let (($x1131 (not $x1128)))
   468 (let (($x1158 (or $x1131 $x1155)))
   469 (let (($x1161 (and $x1128 $x1158)))
   470 (let (($x1083 (not $x1080)))
   471 (let (($x1089 (and $x1083 $x212 $x215 $x217 $x220)))
   472 (let (($x1094 (not $x1089)))
   473 (let (($x1164 (or $x1094 $x1161)))
   474 (let (($x1371 (and $x1164 $x1368)))
   475 (let (($x1037 (forall ((?v0 B_Vertex$) )(let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   476 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   477 (let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   478 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   479 (let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   480 (let (($x1017 (not $x1015)))
   481 (and $x1017 $x178 $x1012))))))))
   482 ))
   483 (let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   484 (let (($x1003 (not $x1002)))
   485 (let (($x127 (= ?v0 b_Source$)))
   486 (let (($x132 (not $x127)))
   487 (let (($x1006 (and $x132 $x1003)))
   488 (let (($x1009 (not $x1006)))
   489 (or $x1009 $x1031)))))))))
   490 ))
   491 (let (($x997 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   492 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   493 (let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   494 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   495 (let (($x923 (not $x922)))
   496 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   497 (let (($x983 (and $x178 $x923)))
   498 (let (($x986 (not $x983)))
   499 (or $x986 $x990))))))))))
   500 ))
   501 (let (($x1045 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   502 (let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   503 (let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   504 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   505 (let (($x179 (not $x178)))
   506 (let (($x181 (and $x179 $x180)))
   507 (let (($x403 (not $x181)))
   508 (or $x403 $x1015)))))))))
   509 ))
   510 (let (($x1051 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   511 (>= ?x174 0)))
   512 ))
   513 (let (($x980 (forall ((?v0 B_Vertex$) )(let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   514 (let ((?x128 (v_b_SP_G_0$ ?v1)))
   515 (let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
   516 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   517 (let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
   518 (let (($x960 (not $x907)))
   519 (and $x960 $x136 $x957))))))))
   520 ))
   521 (let (($x127 (= ?v0 b_Source$)))
   522 (let (($x132 (not $x127)))
   523 (let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))))
   524 (let (($x954 (not $x951)))
   525 (or $x954 $x974)))))))
   526 ))
   527 (let (($x1069 (and $x980 $x173 $x1051 $x1045 $x997 $x1037)))
   528 (let (($x1074 (not $x1069)))
   529 (let (($x1374 (or $x1074 $x1371)))
   530 (let (($x1377 (and $x980 $x1374)))
   531 (let (($x939 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   532 (let ((?x128 (v_b_SP_G_0$ ?v1)))
   533 (let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
   534 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   535 (let (($x923 (not $x922)))
   536 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   537 (let (($x926 (and $x136 $x923)))
   538 (let (($x929 (not $x926)))
   539 (or $x929 $x933))))))))))
   540 ))
   541 (let (($x942 (not $x939)))
   542 (let (($x1380 (or $x942 $x1377)))
   543 (let (($x1383 (and $x939 $x1380)))
   544 (let (($x914 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
   545 (let (($x148 (v_b_Visited_G_0$ ?v0)))
   546 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   547 (let (($x137 (not $x136)))
   548 (let (($x149 (and $x137 $x148)))
   549 (let (($x382 (not $x149)))
   550 (or $x382 $x907))))))))
   551 ))
   552 (let (($x917 (not $x914)))
   553 (let (($x1386 (or $x917 $x1383)))
   554 (let (($x1389 (and $x914 $x1386)))
   555 (let (($x899 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
   556 (>= ?x128 0)))
   557 ))
   558 (let (($x902 (not $x899)))
   559 (let (($x1392 (or $x902 $x1389)))
   560 (let (($x1395 (and $x899 $x1392)))
   561 (let ((?x144 (v_b_SP_G_0$ b_Source$)))
   562 (let (($x145 (= ?x144 0)))
   563 (let (($x869 (not $x145)))
   564 (let (($x1398 (or $x869 $x1395)))
   565 (let (($x1401 (and $x145 $x1398)))
   566 (let (($x1407 (not (or (not $x890) $x1401))))
   567 (let (($x320 (forall ((?v0 B_Vertex$) )(let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   568 (let (($x316 (and $x291 (= (v_b_SP_G_2$ ?v0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   569 (let ((?x303 (v_b_SP_G_2$ ?v0)))
   570 (let ((?x273 (v_b_SP_G_2$ ?v1)))
   571 (let (($x314 (< ?x273 ?x303)))
   572 (and $x314 $x316)))))))
   573 ))
   574 (let (($x127 (= ?v0 b_Source$)))
   575 (let (($x132 (not $x127)))
   576 (let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
   577 (=> $x313 $x318))))))
   578 ))
   579 (let (($x321 (and $x320 false)))
   580 (let (($x322 (=> $x321 true)))
   581 (let (($x323 (and $x320 $x322)))
   582 (let (($x311 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   583 (let ((?x273 (v_b_SP_G_2$ ?v1)))
   584 (let ((?x308 (+ ?x273 ?x155)))
   585 (let ((?x303 (v_b_SP_G_2$ ?v0)))
   586 (let (($x156 (< ?x155 b_Infinity$)))
   587 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   588 (let (($x307 (and $x291 $x156)))
   589 (=> $x307 (<= ?x303 ?x308))))))))))
   590 ))
   591 (let (($x324 (=> $x311 $x323)))
   592 (let (($x306 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   593 (let ((?x303 (v_b_SP_G_2$ ?v0)))
   594 (let (($x304 (<= ?x303 ?x273)))
   595 (let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   596 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   597 (let (($x300 (not $x291)))
   598 (let (($x302 (and $x300 $x301)))
   599 (=> $x302 $x304)))))))))
   600 ))
   601 (let (($x326 (=> $x306 (and $x311 $x324))))
   602 (let (($x299 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   603 (<= 0 ?x273)))
   604 ))
   605 (let (($x328 (=> $x299 (and $x306 $x326))))
   606 (let (($x330 (=> $x297 (and $x299 $x328))))
   607 (let (($x293 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   608 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   609 (let (($x278 (= ?x273 ?x174)))
   610 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   611 (=> $x291 $x278))))))
   612 ))
   613 (let (($x295 (and $x293 (and true true))))
   614 (let (($x332 (=> $x295 (and $x297 $x330))))
   615 (let (($x290 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   616 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   617 (<= ?x273 ?x174))))
   618 ))
   619 (let (($x334 (=> $x290 (and $x293 $x332))))
   620 (let (($x280 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   621 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   622 (let (($x278 (= ?x273 ?x174)))
   623 (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   624 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   625 (let ((?x270 (+ ?x257 ?x268)))
   626 (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174))))
   627 (let (($x277 (not $x272)))
   628 (=> $x277 $x278))))))))))
   629 ))
   630 (let (($x276 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   631 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   632 (let ((?x270 (+ ?x257 ?x268)))
   633 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   634 (let (($x274 (= ?x273 ?x270)))
   635 (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0)))))
   636 (=> $x272 $x274))))))))
   637 ))
   638 (let (($x261 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   639 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   640 (let (($x259 (<= ?x257 ?x174)))
   641 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   642 (let (($x179 (not $x178)))
   643 (=> $x179 $x259)))))))
   644 ))
   645 (let (($x258 (< ?x257 b_Infinity$)))
   646 (let (($x209 (exists ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   647 (let (($x191 (< ?x174 b_Infinity$)))
   648 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   649 (let (($x179 (not $x178)))
   650 (and $x179 $x191))))))
   651 ))
   652 (let (($x286 (and $x209 (and $x256 (and $x258 (and $x261 (and $x266 (and $x276 $x280))))))))
   653 (let (($x287 (and true $x286)))
   654 (let (($x288 (and true $x287)))
   655 (let (($x336 (=> $x288 (and $x290 $x334))))
   656 (let (($x248 (and $x246 (=> $x246 true))))
   657 (let (($x244 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   658 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   659 (let ((?x235 (+ ?x230 ?x155)))
   660 (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   661 (let (($x156 (< ?x155 b_Infinity$)))
   662 (let (($x231 (< ?x230 b_Infinity$)))
   663 (let (($x241 (and $x231 $x156)))
   664 (=> $x241 (<= ?x233 ?x235))))))))))
   665 ))
   666 (let (($x249 (=> $x244 $x248)))
   667 (let (($x240 (forall ((?v0 B_Vertex$) )(let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   668 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   669 (let ((?x235 (+ ?x230 ?x155)))
   670 (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   671 (let (($x234 (< ?x230 ?x233)))
   672 (and $x234 (= ?x233 ?x235))))))))
   673 ))
   674 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   675 (let (($x231 (< ?x230 b_Infinity$)))
   676 (let (($x127 (= ?v0 b_Source$)))
   677 (let (($x132 (not $x127)))
   678 (let (($x232 (and $x132 $x231)))
   679 (=> $x232 $x238))))))))
   680 ))
   681 (let (($x251 (=> $x240 (and $x244 $x249))))
   682 (let (($x225 (and true (and $x212 (and $x215 (and $x217 (and $x220 true)))))))
   683 (let (($x226 (and true $x225)))
   684 (let (($x210 (not $x209)))
   685 (let (($x228 (and true (and $x210 $x226))))
   686 (let (($x229 (and true $x228)))
   687 (let (($x253 (=> $x229 (and $x240 $x251))))
   688 (let (($x199 (forall ((?v0 B_Vertex$) )(let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   689 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   690 (let ((?x187 (+ ?x174 ?x155)))
   691 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   692 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   693 (let (($x193 (< ?x174 ?x182)))
   694 (and $x193 (and $x178 (= ?x182 ?x187))))))))))
   695 ))
   696 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   697 (let (($x191 (< ?x174 b_Infinity$)))
   698 (let (($x127 (= ?v0 b_Source$)))
   699 (let (($x132 (not $x127)))
   700 (let (($x192 (and $x132 $x191)))
   701 (=> $x192 $x197))))))))
   702 ))
   703 (let (($x200 (and $x199 true)))
   704 (let (($x190 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   705 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   706 (let ((?x187 (+ ?x174 ?x155)))
   707 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   708 (let (($x156 (< ?x155 b_Infinity$)))
   709 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   710 (let (($x186 (and $x178 $x156)))
   711 (=> $x186 (<= ?x182 ?x187))))))))))
   712 ))
   713 (let (($x185 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   714 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   715 (let (($x183 (<= ?x182 ?x174)))
   716 (let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   717 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   718 (let (($x179 (not $x178)))
   719 (let (($x181 (and $x179 $x180)))
   720 (=> $x181 $x183)))))))))
   721 ))
   722 (let (($x176 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   723 (<= 0 ?x174)))
   724 ))
   725 (let (($x205 (and true (and $x173 (and $x176 (and $x185 (and $x190 $x200)))))))
   726 (let (($x206 (and true $x205)))
   727 (let (($x170 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
   728 (let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   729 (and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))))
   730 ))
   731 (let (($x127 (= ?v0 b_Source$)))
   732 (let (($x132 (not $x127)))
   733 (let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
   734 (=> $x163 $x168))))))
   735 ))
   736 (let (($x338 (=> (and $x170 $x206) (and $x253 $x336))))
   737 (let (($x161 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0)))
   738 (let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   739 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   740 (let (($x156 (< ?x155 b_Infinity$)))
   741 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   742 (let (($x157 (and $x136 $x156)))
   743 (=> $x157 $x159))))))))
   744 ))
   745 (let (($x340 (=> $x161 (and $x170 $x338))))
   746 (let (($x153 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1)))
   747 (let ((?x150 (v_b_SP_G_0$ ?v0)))
   748 (let (($x151 (<= ?x150 ?x128)))
   749 (let (($x148 (v_b_Visited_G_0$ ?v0)))
   750 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   751 (let (($x137 (not $x136)))
   752 (let (($x149 (and $x137 $x148)))
   753 (=> $x149 $x151)))))))))
   754 ))
   755 (let (($x342 (=> $x153 (and $x161 $x340))))
   756 (let (($x147 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
   757 (<= 0 ?x128)))
   758 ))
   759 (let (($x344 (=> $x147 (and $x153 $x342))))
   760 (let (($x346 (=> $x145 (and $x147 $x344))))
   761 (let (($x135 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   762 (let (($x132 (not $x127)))
   763 (=> $x132 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))))
   764 ))
   765 (let (($x131 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   766 (=> $x127 (= (v_b_SP_G_0$ ?v0) 0))))
   767 ))
   768 (let (($x142 (and true (and $x131 (and $x135 (and $x138 true))))))
   769 (let (($x143 (and true $x142)))
   770 (let (($x348 (=> $x143 (and $x145 $x346))))
   771 (let (($x349 (not $x348)))
   772 (let (($x710 (forall ((?v0 B_Vertex$) )(let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   773 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   774 (let ((?x671 (+ ?x155 ?x273)))
   775 (let ((?x303 (v_b_SP_G_2$ ?v0)))
   776 (let (($x689 (= ?x303 ?x671)))
   777 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   778 (let (($x692 (and $x291 $x689)))
   779 (let (($x314 (< ?x273 ?x303)))
   780 (and $x314 $x692))))))))))
   781 ))
   782 (let (($x127 (= ?v0 b_Source$)))
   783 (let (($x132 (not $x127)))
   784 (let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
   785 (or (not $x313) $x698))))))
   786 ))
   787 (let (($x686 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   788 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   789 (let ((?x671 (+ ?x155 ?x273)))
   790 (let ((?x303 (v_b_SP_G_2$ ?v0)))
   791 (let (($x674 (<= ?x303 ?x671)))
   792 (or (not (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x155 b_Infinity$))) $x674)))))))
   793 ))
   794 (let (($x738 (or (not $x686) $x710)))
   795 (let (($x743 (and $x686 $x738)))
   796 (let (($x668 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   797 (let ((?x303 (v_b_SP_G_2$ ?v0)))
   798 (let (($x304 (<= ?x303 ?x273)))
   799 (let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   800 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   801 (let (($x300 (not $x291)))
   802 (let (($x302 (and $x300 $x301)))
   803 (let (($x664 (not $x302)))
   804 (or $x664 $x304))))))))))
   805 ))
   806 (let (($x750 (or (not $x668) $x743)))
   807 (let (($x755 (and $x668 $x750)))
   808 (let (($x762 (or (not $x299) $x755)))
   809 (let (($x767 (and $x299 $x762)))
   810 (let (($x774 (or $x773 $x767)))
   811 (let (($x779 (and $x297 $x774)))
   812 (let (($x786 (or $x785 $x779)))
   813 (let (($x791 (and $x652 $x786)))
   814 (let (($x798 (or (not $x290) $x791)))
   815 (let (($x803 (and $x290 $x798)))
   816 (let (($x617 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   817 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   818 (let (($x278 (= ?x273 ?x174)))
   819 (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   820 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   821 (let ((?x270 (+ ?x257 ?x268)))
   822 (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174))))
   823 (or $x272 $x278)))))))))
   824 ))
   825 (let (($x611 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   826 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   827 (let ((?x270 (+ ?x257 ?x268)))
   828 (let ((?x273 (v_b_SP_G_2$ ?v0)))
   829 (let (($x274 (= ?x273 ?x270)))
   830 (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0)))))
   831 (let (($x277 (not $x272)))
   832 (or $x277 $x274)))))))))
   833 ))
   834 (let (($x620 (and $x611 $x617)))
   835 (let (($x623 (and $x266 $x620)))
   836 (let (($x605 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   837 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   838 (let (($x259 (<= ?x257 ?x174)))
   839 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   840 (or $x178 $x259))))))
   841 ))
   842 (let (($x626 (and $x605 $x623)))
   843 (let (($x629 (and $x258 $x626)))
   844 (let (($x632 (and $x256 $x629)))
   845 (let (($x635 (and $x209 $x632)))
   846 (let (($x810 (or (not $x635) $x803)))
   847 (let (($x557 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   848 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   849 (let ((?x521 (+ ?x155 ?x230)))
   850 (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   851 (let (($x545 (<= ?x233 ?x521)))
   852 (or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545)))))))
   853 ))
   854 (let (($x573 (or (not $x557) $x246)))
   855 (let (($x578 (and $x557 $x573)))
   856 (let (($x542 (forall ((?v0 B_Vertex$) )(let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   857 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   858 (let ((?x521 (+ ?x155 ?x230)))
   859 (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   860 (let (($x524 (= ?x233 ?x521)))
   861 (let (($x234 (< ?x230 ?x233)))
   862 (and $x234 $x524))))))))
   863 ))
   864 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   865 (let (($x231 (< ?x230 b_Infinity$)))
   866 (let (($x127 (= ?v0 b_Source$)))
   867 (let (($x132 (not $x127)))
   868 (let (($x232 (and $x132 $x231)))
   869 (or (not $x232) $x530))))))))
   870 ))
   871 (let (($x585 (or (not $x542) $x578)))
   872 (let (($x590 (and $x542 $x585)))
   873 (let (($x597 (or (not (and $x210 (and $x212 (and $x215 (and $x217 $x220))))) $x590)))
   874 (let (($x815 (and $x597 $x810)))
   875 (let (($x449 (forall ((?v0 B_Vertex$) )(let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   876 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   877 (let ((?x410 (+ ?x155 ?x174)))
   878 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   879 (let (($x428 (= ?x182 ?x410)))
   880 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   881 (let (($x431 (and $x178 $x428)))
   882 (let (($x193 (< ?x174 ?x182)))
   883 (and $x193 $x431))))))))))
   884 ))
   885 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   886 (let (($x191 (< ?x174 b_Infinity$)))
   887 (let (($x127 (= ?v0 b_Source$)))
   888 (let (($x132 (not $x127)))
   889 (let (($x192 (and $x132 $x191)))
   890 (or (not $x192) $x437))))))))
   891 ))
   892 (let (($x425 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   893 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   894 (let ((?x410 (+ ?x155 ?x174)))
   895 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   896 (let (($x413 (<= ?x182 ?x410)))
   897 (or (not (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x155 b_Infinity$))) $x413)))))))
   898 ))
   899 (let (($x459 (and $x425 $x449)))
   900 (let (($x407 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   901 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   902 (let (($x183 (<= ?x182 ?x174)))
   903 (let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   904 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   905 (let (($x179 (not $x178)))
   906 (let (($x181 (and $x179 $x180)))
   907 (let (($x403 (not $x181)))
   908 (or $x403 $x183))))))))))
   909 ))
   910 (let (($x462 (and $x407 $x459)))
   911 (let (($x465 (and $x176 $x462)))
   912 (let (($x468 (and $x173 $x465)))
   913 (let (($x400 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
   914 (let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   915 (and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))))
   916 ))
   917 (let (($x127 (= ?v0 b_Source$)))
   918 (let (($x132 (not $x127)))
   919 (let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
   920 (or (not $x163) $x168))))))
   921 ))
   922 (let (($x482 (and $x400 $x468)))
   923 (let (($x822 (or (not $x482) $x815)))
   924 (let (($x827 (and $x400 $x822)))
   925 (let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0)))
   926 (let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   927 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   928 (let (($x156 (< ?x155 b_Infinity$)))
   929 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   930 (let (($x157 (and $x136 $x156)))
   931 (or (not $x157) $x159))))))))
   932 ))
   933 (let (($x834 (or (not $x393) $x827)))
   934 (let (($x839 (and $x393 $x834)))
   935 (let (($x386 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1)))
   936 (let ((?x150 (v_b_SP_G_0$ ?v0)))
   937 (let (($x151 (<= ?x150 ?x128)))
   938 (let (($x148 (v_b_Visited_G_0$ ?v0)))
   939 (let (($x136 (v_b_Visited_G_0$ ?v1)))
   940 (let (($x137 (not $x136)))
   941 (let (($x149 (and $x137 $x148)))
   942 (let (($x382 (not $x149)))
   943 (or $x382 $x151))))))))))
   944 ))
   945 (let (($x846 (or (not $x386) $x839)))
   946 (let (($x851 (and $x386 $x846)))
   947 (let (($x858 (or (not $x147) $x851)))
   948 (let (($x863 (and $x147 $x858)))
   949 (let (($x870 (or $x869 $x863)))
   950 (let (($x875 (and $x145 $x870)))
   951 (let (($x882 (or (not (and $x354 (and $x360 $x138))) $x875)))
   952 (let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?0)))
   953 (let ((?x1263 (* (- 1) ?x303)))
   954 (let ((?x273 (v_b_SP_G_2$ ?v1)))
   955 (let ((?x155 (b_G$ (pair$ ?v1 ?0))))
   956 (let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   957 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   958 (let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   959 (let (($x1309 (not $x1262)))
   960 (and $x1309 $x291 $x1306))))))))))
   961 ))
   962 (let (($x132 (not $x127)))
   963 (let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?0))) 0)))))
   964 (let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   965 (let ((?x155 (b_G$ (pair$ ?v1 ?0))))
   966 (let ((?x671 (+ ?x155 ?x273)))
   967 (let ((?x303 (v_b_SP_G_2$ ?0)))
   968 (let (($x689 (= ?x303 ?x671)))
   969 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   970 (let (($x692 (and $x291 $x689)))
   971 (let (($x314 (< ?x273 ?x303)))
   972 (and $x314 $x692))))))))))
   973 ))
   974 (let (($x705 (or (not (and $x132 (< (v_b_SP_G_2$ ?0) b_Infinity$))) $x698)))
   975 (let ((?x303 (v_b_SP_G_2$ ?1)))
   976 (let ((?x1263 (* (- 1) ?x303)))
   977 (let ((?x273 (v_b_SP_G_2$ ?0)))
   978 (let ((?x155 (b_G$ (pair$ ?0 ?1))))
   979 (let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   980 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?0)))
   981 (let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   982 (let (($x1309 (not $x1262)))
   983 (let (($x1318 (and $x1309 $x291 $x1306)))
   984 (let ((?x671 (+ ?x155 ?x273)))
   985 (let (($x689 (= ?x303 ?x671)))
   986 (let (($x692 (and $x291 $x689)))
   987 (let (($x314 (< ?x273 ?x303)))
   988 (let (($x695 (and $x314 $x692)))
   989 (let ((@x1317 (monotonicity (rewrite (= $x314 $x1309)) (monotonicity (rewrite (= $x689 $x1306)) (= $x692 (and $x291 $x1306))) (= $x695 (and $x1309 (and $x291 $x1306))))))
   990 (let ((@x1322 (trans @x1317 (rewrite (= (and $x1309 (and $x291 $x1306)) $x1318)) (= $x695 $x1318))))
   991 (let (($x1298 (= (< ?x273 b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) ?x273)) 0)))))
   992 (let ((@x1302 (monotonicity (rewrite $x1298) (= (and $x132 (< ?x273 b_Infinity$)) $x1300))))
   993 (let ((@x1305 (monotonicity @x1302 (= (not (and $x132 (< ?x273 b_Infinity$))) (not $x1300)))))
   994 (let ((@x1328 (monotonicity @x1305 (quant-intro @x1322 (= $x698 $x1323)) (= $x705 (or (not $x1300) $x1323)))))
   995 (let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
   996 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   997 (let (($x923 (not $x922)))
   998 (let (($x1276 (and $x291 $x923)))
   999 (let (($x1279 (not $x1276)))
  1000 (let (($x1286 (or $x1279 $x1282)))
  1001 (let (($x674 (<= ?x303 ?x671)))
  1002 (let (($x681 (or (not (and $x291 (< ?x155 b_Infinity$))) $x674)))
  1003 (let ((@x925 (rewrite (= (< ?x155 b_Infinity$) $x923))))
  1004 (let ((@x1281 (monotonicity (monotonicity @x925 (= (and $x291 (< ?x155 b_Infinity$)) $x1276)) (= (not (and $x291 (< ?x155 b_Infinity$))) $x1279))))
  1005 (let ((@x1291 (quant-intro (monotonicity @x1281 (rewrite (= $x674 $x1282)) (= $x681 $x1286)) (= $x686 $x1289))))
  1006 (let ((@x1334 (monotonicity (monotonicity @x1291 (= (not $x686) $x1292)) (quant-intro @x1328 (= $x710 $x1329)) (= $x738 $x1332))))
  1007 (let (($x301 (fun_app$ v_b_Visited_G_2$ ?1)))
  1008 (let (($x300 (not $x291)))
  1009 (let (($x302 (and $x300 $x301)))
  1010 (let (($x664 (not $x302)))
  1011 (let (($x1267 (or $x664 $x1262)))
  1012 (let (($x304 (<= ?x303 ?x273)))
  1013 (let (($x665 (or $x664 $x304)))
  1014 (let ((@x1272 (quant-intro (monotonicity (rewrite (= $x304 $x1262)) (= $x665 $x1267)) (= $x668 $x1270))))
  1015 (let ((@x1340 (monotonicity (monotonicity @x1272 (= (not $x668) $x1273)) (monotonicity @x1291 @x1334 (= $x743 $x1335)) (= $x750 $x1338))))
  1016 (let ((@x1258 (quant-intro (rewrite (= (<= 0 ?x273) (>= ?x273 0))) (= $x299 $x1256))))
  1017 (let ((@x1346 (monotonicity (monotonicity @x1258 (= (not $x299) $x1259)) (monotonicity @x1272 @x1340 (= $x755 $x1341)) (= $x762 $x1344))))
  1018 (let ((@x1352 (monotonicity (monotonicity @x1258 @x1346 (= $x767 $x1347)) (= $x774 $x1350))))
  1019 (let ((@x1361 (monotonicity (monotonicity (monotonicity @x1352 (= $x779 $x1353)) (= $x786 $x1356)) (= $x791 $x1359))))
  1020 (let (($x1243 (>= (+ (fun_app$c v_b_SP_G_1$ ?0) (* (- 1) ?x273)) 0)))
  1021 (let ((@x1249 (quant-intro (rewrite (= (<= ?x273 (fun_app$c v_b_SP_G_1$ ?0)) $x1243)) (= $x290 $x1247))))
  1022 (let ((@x1364 (monotonicity (monotonicity @x1249 (= (not $x290) $x1250)) @x1361 (= $x798 $x1362))))
  1023 (let (($x1232 (and $x1080 (and $x256 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  1024 (let (($x1230 (= $x632 (and $x256 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  1025 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?0)))
  1026 (let (($x278 (= ?x273 ?x174)))
  1027 (let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
  1028 (let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
  1029 (let (($x1179 (and (not $x1169) (not $x1175))))
  1030 (let (($x1196 (or $x1179 $x278)))
  1031 (let (($x272 (and (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (< (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x174))))
  1032 (let (($x614 (or $x272 $x278)))
  1033 (let ((@x1178 (rewrite (= (< (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x174) (not $x1175)))))
  1034 (let ((@x1172 (rewrite (= (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (not $x1169)))))
  1035 (let ((@x1198 (monotonicity (monotonicity @x1172 @x1178 (= $x272 $x1179)) (= $x614 $x1196))))
  1036 (let (($x1185 (= (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0)) (* (- 1) ?x273)) 0)))
  1037 (let (($x1182 (not $x1179)))
  1038 (let (($x1190 (or $x1182 $x1185)))
  1039 (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?0))))
  1040 (let ((?x270 (+ ?x257 ?x268)))
  1041 (let (($x274 (= ?x273 ?x270)))
  1042 (let (($x277 (not $x272)))
  1043 (let (($x608 (or $x277 $x274)))
  1044 (let ((@x1184 (monotonicity (monotonicity @x1172 @x1178 (= $x272 $x1179)) (= $x277 $x1182))))
  1045 (let ((@x1195 (quant-intro (monotonicity @x1184 (rewrite (= $x274 $x1185)) (= $x608 $x1190)) (= $x611 $x1193))))
  1046 (let ((@x1219 (monotonicity @x1195 (quant-intro @x1198 (= $x617 $x1199)) (= $x620 (and $x1193 $x1199)))))
  1047 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?0)))
  1048 (let (($x1206 (or $x178 (>= (+ ?x174 ?x1173) 0))))
  1049 (let (($x259 (<= ?x257 ?x174)))
  1050 (let (($x602 (or $x178 $x259)))
  1051 (let ((@x1208 (monotonicity (rewrite (= $x259 (>= (+ ?x174 ?x1173) 0))) (= $x602 $x1206))))
  1052 (let ((@x1225 (monotonicity (quant-intro @x1208 (= $x605 $x1209)) (monotonicity @x1219 (= $x623 (and $x266 (and $x1193 $x1199)))) (= $x626 (and $x1209 (and $x266 (and $x1193 $x1199)))))))
  1053 (let ((@x1228 (monotonicity (rewrite (= $x258 $x1214)) @x1225 (= $x629 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  1054 (let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  1055 (let (($x1003 (not $x1002)))
  1056 (let (($x179 (not $x178)))
  1057 (let (($x1077 (and $x179 $x1003)))
  1058 (let ((@x1079 (monotonicity (rewrite (= (< ?x174 b_Infinity$) $x1003)) (= (and $x179 (< ?x174 b_Infinity$)) $x1077))))
  1059 (let ((@x1234 (monotonicity (quant-intro @x1079 (= $x209 $x1080)) (monotonicity @x1228 $x1230) (= $x635 $x1232))))
  1060 (let ((@x1242 (monotonicity (trans @x1234 (rewrite (= $x1232 $x1235)) (= $x635 $x1235)) (= (not $x635) $x1240))))
  1061 (let ((@x1370 (monotonicity @x1242 (monotonicity @x1249 @x1364 (= $x803 $x1365)) (= $x810 $x1368))))
  1062 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?0)))
  1063 (let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?1))) 0)))
  1064 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  1065 (let (($x1100 (not $x1099)))
  1066 (let (($x1134 (and $x1100 $x923)))
  1067 (let (($x1137 (not $x1134)))
  1068 (let (($x1143 (or $x1137 $x1140)))
  1069 (let ((?x521 (+ ?x155 ?x230)))
  1070 (let ((?x233 (fun_app$c v_b_SP_G_3$ ?1)))
  1071 (let (($x545 (<= ?x233 ?x521)))
  1072 (let (($x552 (or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545)))
  1073 (let ((@x1136 (monotonicity (rewrite (= (< ?x230 b_Infinity$) $x1100)) @x925 (= (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$)) $x1134))))
  1074 (let ((@x1139 (monotonicity @x1136 (= (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x1137))))
  1075 (let ((@x1148 (quant-intro (monotonicity @x1139 (rewrite (= $x545 $x1140)) (= $x552 $x1143)) (= $x557 $x1146))))
  1076 (let ((@x1154 (monotonicity (monotonicity @x1148 (= (not $x557) $x1149)) (= $x573 $x1152))))
  1077 (let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  1078 (let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  1079 (and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)))))
  1080 ))
  1081 (let (($x1103 (and $x132 $x1100)))
  1082 (let (($x1106 (not $x1103)))
  1083 (let (($x1125 (or $x1106 $x1122)))
  1084 (let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  1085 (let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  1086 (let ((?x521 (+ ?x155 ?x230)))
  1087 (let ((?x233 (fun_app$c v_b_SP_G_3$ ?0)))
  1088 (let (($x524 (= ?x233 ?x521)))
  1089 (let (($x234 (< ?x230 ?x233)))
  1090 (and $x234 $x524))))))))
  1091 ))
  1092 (let (($x537 (or (not (and $x132 (< ?x230 b_Infinity$))) $x530)))
  1093 (let (($x1119 (and (not (>= (+ ?x230 (* (- 1) ?x233)) 0)) (= (+ ?x155 ?x230 (* (- 1) ?x233)) 0))))
  1094 (let (($x524 (= ?x233 ?x521)))
  1095 (let (($x234 (< ?x230 ?x233)))
  1096 (let (($x527 (and $x234 $x524)))
  1097 (let ((@x1121 (monotonicity (rewrite (= $x234 (not (>= (+ ?x230 (* (- 1) ?x233)) 0)))) (rewrite (= $x524 (= (+ ?x155 ?x230 (* (- 1) ?x233)) 0))) (= $x527 $x1119))))
  1098 (let ((@x1105 (monotonicity (rewrite (= (< ?x230 b_Infinity$) $x1100)) (= (and $x132 (< ?x230 b_Infinity$)) $x1103))))
  1099 (let ((@x1127 (monotonicity (monotonicity @x1105 (= (not (and $x132 (< ?x230 b_Infinity$))) $x1106)) (quant-intro @x1121 (= $x530 $x1122)) (= $x537 $x1125))))
  1100 (let ((@x1133 (monotonicity (quant-intro @x1127 (= $x542 $x1128)) (= (not $x542) $x1131))))
  1101 (let ((@x1160 (monotonicity @x1133 (monotonicity @x1148 @x1154 (= $x578 $x1155)) (= $x585 $x1158))))
  1102 (let ((@x1091 (rewrite (= (and $x1083 (and $x212 (and $x215 (and $x217 $x220)))) $x1089))))
  1103 (let (($x493 (and $x212 (and $x215 (and $x217 $x220)))))
  1104 (let (($x507 (and $x210 $x493)))
  1105 (let ((@x1088 (monotonicity (monotonicity (quant-intro @x1079 (= $x209 $x1080)) (= $x210 $x1083)) (= $x507 (and $x1083 $x493)))))
  1106 (let ((@x1096 (monotonicity (trans @x1088 @x1091 (= $x507 $x1089)) (= (not $x507) $x1094))))
  1107 (let ((@x1166 (monotonicity @x1096 (monotonicity (quant-intro @x1127 (= $x542 $x1128)) @x1160 (= $x590 $x1161)) (= $x597 $x1164))))
  1108 (let (($x1070 (= (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))) $x1069)))
  1109 (let (($x1067 (= $x482 (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))))))
  1110 (let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  1111 (let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  1112 (let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)))
  1113 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  1114 (let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)))
  1115 (let (($x1017 (not $x1015)))
  1116 (and $x1017 $x178 $x1012))))))))
  1117 ))
  1118 (let (($x1006 (and $x132 $x1003)))
  1119 (let (($x1009 (not $x1006)))
  1120 (let (($x1034 (or $x1009 $x1031)))
  1121 (let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  1122 (let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  1123 (let ((?x410 (+ ?x155 ?x174)))
  1124 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?0)))
  1125 (let (($x428 (= ?x182 ?x410)))
  1126 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  1127 (let (($x431 (and $x178 $x428)))
  1128 (let (($x193 (< ?x174 ?x182)))
  1129 (and $x193 $x431))))))))))
  1130 ))
  1131 (let (($x444 (or (not (and $x132 (< ?x174 b_Infinity$))) $x437)))
  1132 (let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?1))) 0)))
  1133 (let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?1))) 0)))
  1134 (let (($x1017 (not $x1015)))
  1135 (let (($x1026 (and $x1017 $x178 $x1012)))
  1136 (let ((?x410 (+ ?x155 ?x174)))
  1137 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?1)))
  1138 (let (($x428 (= ?x182 ?x410)))
  1139 (let (($x431 (and $x178 $x428)))
  1140 (let (($x193 (< ?x174 ?x182)))
  1141 (let (($x434 (and $x193 $x431)))
  1142 (let ((@x1025 (monotonicity (rewrite (= $x193 $x1017)) (monotonicity (rewrite (= $x428 $x1012)) (= $x431 (and $x178 $x1012))) (= $x434 (and $x1017 (and $x178 $x1012))))))
  1143 (let ((@x1030 (trans @x1025 (rewrite (= (and $x1017 (and $x178 $x1012)) $x1026)) (= $x434 $x1026))))
  1144 (let ((@x1008 (monotonicity (rewrite (= (< ?x174 b_Infinity$) $x1003)) (= (and $x132 (< ?x174 b_Infinity$)) $x1006))))
  1145 (let ((@x1036 (monotonicity (monotonicity @x1008 (= (not (and $x132 (< ?x174 b_Infinity$))) $x1009)) (quant-intro @x1030 (= $x437 $x1031)) (= $x444 $x1034))))
  1146 (let (($x990 (>= (+ ?x155 ?x174 (* (- 1) ?x182)) 0)))
  1147 (let (($x983 (and $x178 $x923)))
  1148 (let (($x986 (not $x983)))
  1149 (let (($x994 (or $x986 $x990)))
  1150 (let (($x413 (<= ?x182 ?x410)))
  1151 (let (($x420 (or (not (and $x178 (< ?x155 b_Infinity$))) $x413)))
  1152 (let ((@x988 (monotonicity (monotonicity @x925 (= (and $x178 (< ?x155 b_Infinity$)) $x983)) (= (not (and $x178 (< ?x155 b_Infinity$))) $x986))))
  1153 (let ((@x999 (quant-intro (monotonicity @x988 (rewrite (= $x413 $x990)) (= $x420 $x994)) (= $x425 $x997))))
  1154 (let ((@x1056 (monotonicity @x999 (quant-intro @x1036 (= $x449 $x1037)) (= $x459 (and $x997 $x1037)))))
  1155 (let (($x180 (fun_app$ v_b_Visited_G_1$ ?1)))
  1156 (let (($x181 (and $x179 $x180)))
  1157 (let (($x403 (not $x181)))
  1158 (let (($x1042 (or $x403 $x1015)))
  1159 (let (($x183 (<= ?x182 ?x174)))
  1160 (let (($x404 (or $x403 $x183)))
  1161 (let ((@x1047 (quant-intro (monotonicity (rewrite (= $x183 $x1015)) (= $x404 $x1042)) (= $x407 $x1045))))
  1162 (let ((@x1053 (quant-intro (rewrite (= (<= 0 ?x174) (>= ?x174 0))) (= $x176 $x1051))))
  1163 (let ((@x1062 (monotonicity @x1053 (monotonicity @x1047 @x1056 (= $x462 (and $x1045 (and $x997 $x1037)))) (= $x465 (and $x1051 (and $x1045 (and $x997 $x1037)))))))
  1164 (let ((@x1065 (monotonicity @x1062 (= $x468 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))))))
  1165 (let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  1166 (let ((?x128 (v_b_SP_G_0$ ?v1)))
  1167 (let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0)) ?x155) 0)))
  1168 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  1169 (let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0))) 0)))
  1170 (let (($x960 (not $x907)))
  1171 (and $x960 $x136 $x957))))))))
  1172 ))
  1173 (let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
  1174 (let (($x954 (not $x951)))
  1175 (let (($x977 (or $x954 $x974)))
  1176 (let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
  1177 (let (($x166 (and $x136 (= (v_b_SP_G_0$ ?0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
  1178 (and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?0)) $x166))))
  1179 ))
  1180 (let (($x397 (or (not (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x168)))
  1181 (let (($x957 (= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x155) 0)))
  1182 (let (($x136 (v_b_Visited_G_0$ ?0)))
  1183 (let (($x907 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1))) 0)))
  1184 (let (($x960 (not $x907)))
  1185 (let (($x969 (and $x960 $x136 $x957)))
  1186 (let (($x167 (and (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) (and $x136 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155))))))
  1187 (let (($x964 (= (and $x136 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155))) (and $x136 $x957))))
  1188 (let ((@x959 (rewrite (= (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155)) $x957))))
  1189 (let ((@x968 (monotonicity (rewrite (= (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) $x960)) (monotonicity @x959 $x964) (= $x167 (and $x960 (and $x136 $x957))))))
  1190 (let ((@x973 (trans @x968 (rewrite (= (and $x960 (and $x136 $x957)) $x969)) (= $x167 $x969))))
  1191 (let (($x949 (= (< (v_b_SP_G_0$ ?0) b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
  1192 (let ((@x953 (monotonicity (rewrite $x949) (= (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$)) $x951))))
  1193 (let ((@x956 (monotonicity @x953 (= (not (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x954))))
  1194 (let ((@x982 (quant-intro (monotonicity @x956 (quant-intro @x973 (= $x168 $x974)) (= $x397 $x977)) (= $x400 $x980))))
  1195 (let ((@x1076 (monotonicity (trans (monotonicity @x982 @x1065 $x1067) (rewrite $x1070) (= $x482 $x1069)) (= (not $x482) $x1074))))
  1196 (let ((@x1376 (monotonicity @x1076 (monotonicity @x1166 @x1370 (= $x815 $x1371)) (= $x822 $x1374))))
  1197 (let (($x933 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x155) 0)))
  1198 (let (($x926 (and $x136 $x923)))
  1199 (let (($x929 (not $x926)))
  1200 (let (($x936 (or $x929 $x933)))
  1201 (let ((?x150 (v_b_SP_G_0$ ?1)))
  1202 (let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?0) ?x155))))
  1203 (let (($x390 (or (not (and $x136 (< ?x155 b_Infinity$))) $x159)))
  1204 (let ((@x931 (monotonicity (monotonicity @x925 (= (and $x136 (< ?x155 b_Infinity$)) $x926)) (= (not (and $x136 (< ?x155 b_Infinity$))) $x929))))
  1205 (let ((@x941 (quant-intro (monotonicity @x931 (rewrite (= $x159 $x933)) (= $x390 $x936)) (= $x393 $x939))))
  1206 (let ((@x1382 (monotonicity (monotonicity @x941 (= (not $x393) $x942)) (monotonicity @x982 @x1376 (= $x827 $x1377)) (= $x834 $x1380))))
  1207 (let (($x148 (v_b_Visited_G_0$ ?1)))
  1208 (let (($x137 (not $x136)))
  1209 (let (($x149 (and $x137 $x148)))
  1210 (let (($x382 (not $x149)))
  1211 (let (($x911 (or $x382 $x907)))
  1212 (let ((?x128 (v_b_SP_G_0$ ?0)))
  1213 (let (($x151 (<= ?x150 ?x128)))
  1214 (let (($x383 (or $x382 $x151)))
  1215 (let ((@x916 (quant-intro (monotonicity (rewrite (= $x151 $x907)) (= $x383 $x911)) (= $x386 $x914))))
  1216 (let ((@x1388 (monotonicity (monotonicity @x916 (= (not $x386) $x917)) (monotonicity @x941 @x1382 (= $x839 $x1383)) (= $x846 $x1386))))
  1217 (let ((@x901 (quant-intro (rewrite (= (<= 0 ?x128) (>= ?x128 0))) (= $x147 $x899))))
  1218 (let ((@x1394 (monotonicity (monotonicity @x901 (= (not $x147) $x902)) (monotonicity @x916 @x1388 (= $x851 $x1389)) (= $x858 $x1392))))
  1219 (let ((@x1400 (monotonicity (monotonicity @x901 @x1394 (= $x863 $x1395)) (= $x870 $x1398))))
  1220 (let ((@x895 (monotonicity (rewrite (= (and $x354 (and $x360 $x138)) $x890)) (= (not (and $x354 (and $x360 $x138))) (not $x890)))))
  1221 (let ((@x1406 (monotonicity @x895 (monotonicity @x1400 (= $x875 $x1401)) (= $x882 (or (not $x890) $x1401)))))
  1222 (let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  1223 (let (($x316 (and $x291 (= (v_b_SP_G_2$ ?0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
  1224 (let ((?x303 (v_b_SP_G_2$ ?0)))
  1225 (let ((?x273 (v_b_SP_G_2$ ?v1)))
  1226 (let (($x314 (< ?x273 ?x303)))
  1227 (and $x314 $x316)))))))
  1228 ))
  1229 (let (($x313 (and $x132 (< ?x273 b_Infinity$))))
  1230 (let (($x319 (=> $x313 $x318)))
  1231 (let ((@x691 (monotonicity (rewrite (= (+ ?x273 ?x155) ?x671)) (= (= ?x303 (+ ?x273 ?x155)) $x689))))
  1232 (let ((@x697 (monotonicity (monotonicity @x691 (= (and $x291 (= ?x303 (+ ?x273 ?x155))) $x692)) (= (and $x314 (and $x291 (= ?x303 (+ ?x273 ?x155)))) $x695))))
  1233 (let ((@x703 (monotonicity (quant-intro @x697 (= $x318 $x698)) (= $x319 (=> $x313 $x698)))))
  1234 (let ((@x712 (quant-intro (trans @x703 (rewrite (= (=> $x313 $x698) $x705)) (= $x319 $x705)) (= $x320 $x710))))
  1235 (let ((@x719 (trans (monotonicity @x712 (= $x321 (and $x710 false))) (rewrite (= (and $x710 false) false)) (= $x321 false))))
  1236 (let ((@x726 (trans (monotonicity @x719 (= $x322 (=> false true))) (rewrite (= (=> false true) true)) (= $x322 true))))
  1237 (let ((@x733 (trans (monotonicity @x712 @x726 (= $x323 (and $x710 true))) (rewrite (= (and $x710 true) $x710)) (= $x323 $x710))))
  1238 (let (($x156 (< ?x155 b_Infinity$)))
  1239 (let (($x307 (and $x291 $x156)))
  1240 (let (($x310 (=> $x307 (<= ?x303 (+ ?x273 ?x155)))))
  1241 (let ((@x676 (monotonicity (rewrite (= (+ ?x273 ?x155) ?x671)) (= (<= ?x303 (+ ?x273 ?x155)) $x674))))
  1242 (let ((@x685 (trans (monotonicity @x676 (= $x310 (=> $x307 $x674))) (rewrite (= (=> $x307 $x674) $x681)) (= $x310 $x681))))
  1243 (let ((@x736 (monotonicity (quant-intro @x685 (= $x311 $x686)) @x733 (= $x324 (=> $x686 $x710)))))
  1244 (let ((@x745 (monotonicity (quant-intro @x685 (= $x311 $x686)) (trans @x736 (rewrite (= (=> $x686 $x710) $x738)) (= $x324 $x738)) (= (and $x311 $x324) $x743))))
  1245 (let ((@x748 (monotonicity (quant-intro (rewrite (= (=> $x302 $x304) $x665)) (= $x306 $x668)) @x745 (= $x326 (=> $x668 $x743)))))
  1246 (let ((@x757 (monotonicity (quant-intro (rewrite (= (=> $x302 $x304) $x665)) (= $x306 $x668)) (trans @x748 (rewrite (= (=> $x668 $x743) $x750)) (= $x326 $x750)) (= (and $x306 $x326) $x755))))
  1247 (let ((@x766 (trans (monotonicity @x757 (= $x328 (=> $x299 $x755))) (rewrite (= (=> $x299 $x755) $x762)) (= $x328 $x762))))
  1248 (let ((@x772 (monotonicity (monotonicity @x766 (= (and $x299 $x328) $x767)) (= $x330 (=> $x297 $x767)))))
  1249 (let ((@x781 (monotonicity (trans @x772 (rewrite (= (=> $x297 $x767) $x774)) (= $x330 $x774)) (= (and $x297 $x330) $x779))))
  1250 (let ((@x654 (quant-intro (rewrite (= (=> $x291 $x278) (or $x300 $x278))) (= $x293 $x652))))
  1251 (let ((@x659 (monotonicity @x654 (rewrite (= (and true true) true)) (= $x295 (and $x652 true)))))
  1252 (let ((@x784 (monotonicity (trans @x659 (rewrite (= (and $x652 true) $x652)) (= $x295 $x652)) @x781 (= $x332 (=> $x652 $x779)))))
  1253 (let ((@x793 (monotonicity @x654 (trans @x784 (rewrite (= (=> $x652 $x779) $x786)) (= $x332 $x786)) (= (and $x293 $x332) $x791))))
  1254 (let ((@x802 (trans (monotonicity @x793 (= $x334 (=> $x290 $x791))) (rewrite (= (=> $x290 $x791) $x798)) (= $x334 $x798))))
  1255 (let (($x633 (= (and $x256 (and $x258 (and $x261 (and $x266 (and $x276 $x280))))) $x632)))
  1256 (let ((@x622 (monotonicity (quant-intro (rewrite (= (=> $x272 $x274) $x608)) (= $x276 $x611)) (quant-intro (rewrite (= (=> $x277 $x278) $x614)) (= $x280 $x617)) (= (and $x276 $x280) $x620))))
  1257 (let ((@x628 (monotonicity (quant-intro (rewrite (= (=> $x179 $x259) $x602)) (= $x261 $x605)) (monotonicity @x622 (= (and $x266 (and $x276 $x280)) $x623)) (= (and $x261 (and $x266 (and $x276 $x280))) $x626))))
  1258 (let ((@x631 (monotonicity @x628 (= (and $x258 (and $x261 (and $x266 (and $x276 $x280)))) $x629))))
  1259 (let ((@x640 (monotonicity (monotonicity (monotonicity @x631 $x633) (= $x286 $x635)) (= $x287 (and true $x635)))))
  1260 (let ((@x646 (monotonicity (trans @x640 (rewrite (= (and true $x635) $x635)) (= $x287 $x635)) (= $x288 (and true $x635)))))
  1261 (let ((@x808 (monotonicity (trans @x646 (rewrite (= (and true $x635) $x635)) (= $x288 $x635)) (monotonicity @x802 (= (and $x290 $x334) $x803)) (= $x336 (=> $x635 $x803)))))
  1262 (let ((@x564 (monotonicity (rewrite (= (=> $x246 true) true)) (= $x248 (and $x246 true)))))
  1263 (let (($x231 (< ?x230 b_Infinity$)))
  1264 (let (($x241 (and $x231 $x156)))
  1265 (let (($x243 (=> $x241 (<= ?x233 (+ ?x230 ?x155)))))
  1266 (let ((@x547 (monotonicity (rewrite (= (+ ?x230 ?x155) ?x521)) (= (<= ?x233 (+ ?x230 ?x155)) $x545))))
  1267 (let ((@x556 (trans (monotonicity @x547 (= $x243 (=> $x241 $x545))) (rewrite (= (=> $x241 $x545) $x552)) (= $x243 $x552))))
  1268 (let ((@x571 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x564 (rewrite (= (and $x246 true) $x246)) (= $x248 $x246)) (= $x249 (=> $x557 $x246)))))
  1269 (let ((@x580 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x571 (rewrite (= (=> $x557 $x246) $x573)) (= $x249 $x573)) (= (and $x244 $x249) $x578))))
  1270 (let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  1271 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  1272 (let ((?x235 (+ ?x230 ?x155)))
  1273 (let ((?x233 (fun_app$c v_b_SP_G_3$ ?0)))
  1274 (let (($x234 (< ?x230 ?x233)))
  1275 (and $x234 (= ?x233 ?x235))))))))
  1276 ))
  1277 (let (($x232 (and $x132 $x231)))
  1278 (let (($x239 (=> $x232 $x238)))
  1279 (let ((@x526 (monotonicity (rewrite (= (+ ?x230 ?x155) ?x521)) (= (= ?x233 (+ ?x230 ?x155)) $x524))))
  1280 (let ((@x532 (quant-intro (monotonicity @x526 (= (and $x234 (= ?x233 (+ ?x230 ?x155))) $x527)) (= $x238 $x530))))
  1281 (let ((@x541 (trans (monotonicity @x532 (= $x239 (=> $x232 $x530))) (rewrite (= (=> $x232 $x530) $x537)) (= $x239 $x537))))
  1282 (let ((@x583 (monotonicity (quant-intro @x541 (= $x240 $x542)) @x580 (= $x251 (=> $x542 $x578)))))
  1283 (let ((@x592 (monotonicity (quant-intro @x541 (= $x240 $x542)) (trans @x583 (rewrite (= (=> $x542 $x578) $x585)) (= $x251 $x585)) (= (and $x240 $x251) $x590))))
  1284 (let (($x491 (= (and $x215 (and $x217 (and $x220 true))) (and $x215 (and $x217 $x220)))))
  1285 (let ((@x489 (monotonicity (rewrite (= (and $x220 true) $x220)) (= (and $x217 (and $x220 true)) (and $x217 $x220)))))
  1286 (let ((@x495 (monotonicity (monotonicity @x489 $x491) (= (and $x212 (and $x215 (and $x217 (and $x220 true)))) $x493))))
  1287 (let ((@x502 (trans (monotonicity @x495 (= $x225 (and true $x493))) (rewrite (= (and true $x493) $x493)) (= $x225 $x493))))
  1288 (let ((@x506 (trans (monotonicity @x502 (= $x226 (and true $x493))) (rewrite (= (and true $x493) $x493)) (= $x226 $x493))))
  1289 (let ((@x512 (monotonicity (monotonicity @x506 (= (and $x210 $x226) $x507)) (= $x228 (and true $x507)))))
  1290 (let ((@x518 (monotonicity (trans @x512 (rewrite (= (and true $x507) $x507)) (= $x228 $x507)) (= $x229 (and true $x507)))))
  1291 (let ((@x595 (monotonicity (trans @x518 (rewrite (= (and true $x507) $x507)) (= $x229 $x507)) @x592 (= $x253 (=> $x507 $x590)))))
  1292 (let ((@x817 (monotonicity (trans @x595 (rewrite (= (=> $x507 $x590) $x597)) (= $x253 $x597)) (trans @x808 (rewrite (= (=> $x635 $x803) $x810)) (= $x336 $x810)) (= (and $x253 $x336) $x815))))
  1293 (let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  1294 (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  1295 (let ((?x187 (+ ?x174 ?x155)))
  1296 (let ((?x182 (fun_app$c v_b_SP_G_1$ ?0)))
  1297 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  1298 (let (($x193 (< ?x174 ?x182)))
  1299 (and $x193 (and $x178 (= ?x182 ?x187))))))))))
  1300 ))
  1301 (let (($x191 (< ?x174 b_Infinity$)))
  1302 (let (($x192 (and $x132 $x191)))
  1303 (let (($x198 (=> $x192 $x197)))
  1304 (let ((@x430 (monotonicity (rewrite (= (+ ?x174 ?x155) ?x410)) (= (= ?x182 (+ ?x174 ?x155)) $x428))))
  1305 (let ((@x436 (monotonicity (monotonicity @x430 (= (and $x178 (= ?x182 (+ ?x174 ?x155))) $x431)) (= (and $x193 (and $x178 (= ?x182 (+ ?x174 ?x155)))) $x434))))
  1306 (let ((@x442 (monotonicity (quant-intro @x436 (= $x197 $x437)) (= $x198 (=> $x192 $x437)))))
  1307 (let ((@x451 (quant-intro (trans @x442 (rewrite (= (=> $x192 $x437) $x444)) (= $x198 $x444)) (= $x199 $x449))))
  1308 (let ((@x458 (trans (monotonicity @x451 (= $x200 (and $x449 true))) (rewrite (= (and $x449 true) $x449)) (= $x200 $x449))))
  1309 (let (($x186 (and $x178 $x156)))
  1310 (let (($x189 (=> $x186 (<= ?x182 (+ ?x174 ?x155)))))
  1311 (let ((@x415 (monotonicity (rewrite (= (+ ?x174 ?x155) ?x410)) (= (<= ?x182 (+ ?x174 ?x155)) $x413))))
  1312 (let ((@x424 (trans (monotonicity @x415 (= $x189 (=> $x186 $x413))) (rewrite (= (=> $x186 $x413) $x420)) (= $x189 $x420))))
  1313 (let ((@x461 (monotonicity (quant-intro @x424 (= $x190 $x425)) @x458 (= (and $x190 $x200) $x459))))
  1314 (let ((@x464 (monotonicity (quant-intro (rewrite (= (=> $x181 $x183) $x404)) (= $x185 $x407)) @x461 (= (and $x185 (and $x190 $x200)) $x462))))
  1315 (let ((@x470 (monotonicity (monotonicity @x464 (= (and $x176 (and $x185 (and $x190 $x200))) $x465)) (= (and $x173 (and $x176 (and $x185 (and $x190 $x200)))) $x468))))
  1316 (let ((@x477 (trans (monotonicity @x470 (= $x205 (and true $x468))) (rewrite (= (and true $x468) $x468)) (= $x205 $x468))))
  1317 (let ((@x481 (trans (monotonicity @x477 (= $x206 (and true $x468))) (rewrite (= (and true $x468) $x468)) (= $x206 $x468))))
  1318 (let ((@x402 (quant-intro (rewrite (= (=> (and $x132 (< ?x128 b_Infinity$)) $x168) $x397)) (= $x170 $x400))))
  1319 (let ((@x820 (monotonicity (monotonicity @x402 @x481 (= (and $x170 $x206) $x482)) @x817 (= $x338 (=> $x482 $x815)))))
  1320 (let ((@x829 (monotonicity @x402 (trans @x820 (rewrite (= (=> $x482 $x815) $x822)) (= $x338 $x822)) (= (and $x170 $x338) $x827))))
  1321 (let ((@x395 (quant-intro (rewrite (= (=> (and $x136 $x156) $x159) $x390)) (= $x161 $x393))))
  1322 (let ((@x838 (trans (monotonicity @x395 @x829 (= $x340 (=> $x393 $x827))) (rewrite (= (=> $x393 $x827) $x834)) (= $x340 $x834))))
  1323 (let ((@x844 (monotonicity (quant-intro (rewrite (= (=> $x149 $x151) $x383)) (= $x153 $x386)) (monotonicity @x395 @x838 (= (and $x161 $x340) $x839)) (= $x342 (=> $x386 $x839)))))
  1324 (let ((@x853 (monotonicity (quant-intro (rewrite (= (=> $x149 $x151) $x383)) (= $x153 $x386)) (trans @x844 (rewrite (= (=> $x386 $x839) $x846)) (= $x342 $x846)) (= (and $x153 $x342) $x851))))
  1325 (let ((@x862 (trans (monotonicity @x853 (= $x344 (=> $x147 $x851))) (rewrite (= (=> $x147 $x851) $x858)) (= $x344 $x858))))
  1326 (let ((@x868 (monotonicity (monotonicity @x862 (= (and $x147 $x344) $x863)) (= $x346 (=> $x145 $x863)))))
  1327 (let ((@x877 (monotonicity (trans @x868 (rewrite (= (=> $x145 $x863) $x870)) (= $x346 $x870)) (= (and $x145 $x346) $x875))))
  1328 (let (($x368 (and $x354 (and $x360 $x138))))
  1329 (let (($x371 (and true $x368)))
  1330 (let ((@x362 (quant-intro (rewrite (= (=> $x132 (= ?x128 b_Infinity$)) $x357)) (= $x135 $x360))))
  1331 (let ((@x367 (monotonicity @x362 (rewrite (= (and $x138 true) $x138)) (= (and $x135 (and $x138 true)) (and $x360 $x138)))))
  1332 (let ((@x356 (quant-intro (rewrite (= (=> $x127 (= ?x128 0)) (or $x132 (= ?x128 0)))) (= $x131 $x354))))
  1333 (let ((@x370 (monotonicity @x356 @x367 (= (and $x131 (and $x135 (and $x138 true))) $x368))))
  1334 (let ((@x377 (trans (monotonicity @x370 (= $x142 $x371)) (rewrite (= $x371 $x368)) (= $x142 $x368))))
  1335 (let ((@x381 (trans (monotonicity @x377 (= $x143 $x371)) (rewrite (= $x371 $x368)) (= $x143 $x368))))
  1336 (let ((@x886 (trans (monotonicity @x381 @x877 (= $x348 (=> $x368 $x875))) (rewrite (= (=> $x368 $x875) $x882)) (= $x348 $x882))))
  1337 (let ((@x1411 (trans (monotonicity @x886 (= $x349 (not $x882))) (monotonicity @x1406 (= (not $x882) $x1407)) (= $x349 $x1407))))
  1338 (let ((@x1413 (not-or-elim (mp (asserted $x349) @x1411 $x1407) $x890)))
  1339 (let ((@x1463 (mp~ (and-elim @x1413 $x360) (nnf-pos (refl (~ $x357 $x357)) (~ $x360 $x360)) $x360)))
  1340 (let ((@x3498 (mp @x1463 (quant-intro (refl (= $x357 $x357)) (= $x360 $x3493)) $x3493)))
  1341 (let ((@x6489 (rewrite (= (or (not $x3493) (or $x1538 $x5616)) (or (not $x3493) $x1538 $x5616)))))
  1342 (let ((@x5602 (mp ((_ quant-inst ?v0!5) (or (not $x3493) (or $x1538 $x5616))) @x6489 (or (not $x3493) $x1538 $x5616))))
  1343 (let ((@x5777 (unit-resolution (hypothesis $x6457) (mp (unit-resolution @x5602 @x3498 (hypothesis $x1539) $x5616) @x5778 $x5625) false)))
  1344 (let ((@x5735 (unit-resolution (lemma @x5777 (or $x5625 $x1538)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x6457 $x1543)) @x6514 $x6457) @x6246 false)))
  1345 (let (($x3544 (not $x3541)))
  1346 (let (($x3827 (or $x3544 $x3824)))
  1347 (let (($x3830 (not $x3827)))
  1348 (let (($x3524 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  1349 (let ((?x128 (v_b_SP_G_0$ ?v1)))
  1350 (let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
  1351 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  1352 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  1353 (let (($x137 (not $x136)))
  1354 (or $x137 $x922 $x933))))))) :pattern ( (pair$ ?v1 ?v0) )))
  1355 ))
  1356 (let (($x3529 (not $x3524)))
  1357 (let (($x3833 (or $x3529 $x3830)))
  1358 (let (($x3836 (not $x3833)))
  1359 (let ((?x1522 (v_b_SP_G_0$ ?v0!4)))
  1360 (let ((?x1523 (* (- 1) ?x1522)))
  1361 (let ((?x1521 (v_b_SP_G_0$ ?v1!3)))
  1362 (let ((?x1513 (pair$ ?v1!3 ?v0!4)))
  1363 (let ((?x1514 (b_G$ ?x1513)))
  1364 (let ((?x2045 (+ ?x1514 ?x1521 ?x1523)))
  1365 (let (($x2048 (>= ?x2045 0)))
  1366 (let (($x1517 (<= (+ b_Infinity$ (* (- 1) ?x1514)) 0)))
  1367 (let (($x1512 (v_b_Visited_G_0$ ?v1!3)))
  1368 (let (($x2394 (not $x1512)))
  1369 (let (($x2409 (or $x2394 $x1517 $x2048)))
  1370 (let (($x3500 (forall ((?v0 B_Vertex$) )(!(let (($x136 (v_b_Visited_G_0$ ?v0)))
  1371 (not $x136)) :pattern ( (v_b_Visited_G_0$ ?v0) )))
  1372 ))
  1373 (let ((@x1468 (mp~ (and-elim @x1413 $x138) (nnf-pos (refl (~ $x137 $x137)) (~ $x138 $x138)) $x138)))
  1374 (let ((@x3505 (mp @x1468 (quant-intro (refl (= $x137 $x137)) (= $x138 $x3500)) $x3500)))
  1375 (let ((@x3073 (unit-resolution ((_ quant-inst ?v1!3) (or (not $x3500) $x2394)) @x3505 (hypothesis $x1512) false)))
  1376 (let (($x2414 (not $x2409)))
  1377 (let (($x3839 (or $x2414 $x3836)))
  1378 (let (($x3842 (not $x3839)))
  1379 (let (($x3515 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  1380 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  1381 (or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) )))
  1382 ))
  1383 (let (($x3520 (not $x3515)))
  1384 (let (($x3845 (or $x3520 $x3842)))
  1385 (let (($x3848 (not $x3845)))
  1386 (let (($x1498 (>= (+ (v_b_SP_G_0$ ?v1!1) (* (- 1) (v_b_SP_G_0$ ?v0!2))) 0)))
  1387 (let (($x1491 (v_b_Visited_G_0$ ?v0!2)))
  1388 (let (($x2348 (not $x1491)))
  1389 (let (($x1489 (v_b_Visited_G_0$ ?v1!1)))
  1390 (let (($x2363 (or $x1489 $x2348 $x1498)))
  1391 (let (($x2368 (not $x2363)))
  1392 (let (($x3851 (or $x2368 $x3848)))
  1393 (let (($x3854 (not $x3851)))
  1394 (let (($x3506 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0)))
  1395 (>= ?x128 0)) :pattern ( (v_b_SP_G_0$ ?v0) )))
  1396 ))
  1397 (let (($x3511 (not $x3506)))
  1398 (let (($x3857 (or $x3511 $x3854)))
  1399 (let (($x3860 (not $x3857)))
  1400 (let ((?x1475 (v_b_SP_G_0$ ?v0!0)))
  1401 (let (($x1476 (>= ?x1475 0)))
  1402 (let (($x1477 (not $x1476)))
  1403 (let ((@x5848 (hypothesis $x1477)))
  1404 (let (($x5440 (<= ?x1475 0)))
  1405 (let (($x86 (<= b_Infinity$ 0)))
  1406 (let (($x87 (not $x86)))
  1407 (let ((@x90 (mp (asserted (< 0 b_Infinity$)) (rewrite (= (< 0 b_Infinity$) $x87)) $x87)))
  1408 (let (($x5734 (= b_Infinity$ ?x1475)))
  1409 (let ((@x4994 (symm (commutativity (= $x5734 (= ?x1475 b_Infinity$))) (= (= ?x1475 b_Infinity$) $x5734))))
  1410 (let (($x5461 (= ?x1475 b_Infinity$)))
  1411 (let (($x5589 (= ?v0!0 b_Source$)))
  1412 (let (($x4695 (not $x5589)))
  1413 (let ((@x5096 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1475 0)) $x1476)) @x5848 (not (= ?x1475 0)))))
  1414 (let (($x3487 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$)))
  1415 (let (($x132 (not $x127)))
  1416 (or $x132 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) )))
  1417 ))
  1418 (let ((@x3491 (quant-intro (refl (= (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (= $x354 $x3487))))
  1419 (let ((@x1457 (nnf-pos (refl (~ (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (~ $x354 $x354))))
  1420 (let ((@x3492 (mp (mp~ (and-elim @x1413 $x354) @x1457 $x354) @x3491 $x3487)))
  1421 (let (($x5571 (= (or (not $x3487) (or $x4695 (= ?x1475 0))) (or (not $x3487) $x4695 (= ?x1475 0)))))
  1422 (let ((@x5058 (mp ((_ quant-inst ?v0!0) (or (not $x3487) (or $x4695 (= ?x1475 0)))) (rewrite $x5571) (or (not $x3487) $x4695 (= ?x1475 0)))))
  1423 (let ((@x5156 (rewrite (= (or (not $x3493) (or $x5589 $x5461)) (or (not $x3493) $x5589 $x5461)))))
  1424 (let ((@x5542 (mp ((_ quant-inst ?v0!0) (or (not $x3493) (or $x5589 $x5461))) @x5156 (or (not $x3493) $x5589 $x5461))))
  1425 (let ((@x5003 (mp (unit-resolution @x5542 @x3498 (unit-resolution @x5058 @x3492 @x5096 $x4695) $x5461) @x4994 $x5734)))
  1426 (let ((@x5457 ((_ th-lemma arith triangle-eq) (or (not $x5734) (<= (+ b_Infinity$ (* (- 1) ?x1475)) 0)))))
  1427 (let ((@x5462 (unit-resolution @x5457 @x5003 (<= (+ b_Infinity$ (* (- 1) ?x1475)) 0))))
  1428 (let ((@x5446 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x5440) @x5462 @x90 false) (or (not $x5440) $x1476))))
  1429 (let ((@x6353 (unit-resolution @x5446 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5440 $x1476)) @x5848 $x5440) @x5848 false)))
  1430 (let (($x3863 (or $x1477 $x3860)))
  1431 (let (($x3866 (not $x3863)))
  1432 (let (($x3869 (or $x869 $x3866)))
  1433 (let (($x3872 (not $x3869)))
  1434 (let (($x5983 (not $x3487)))
  1435 (let (($x3194 (or $x5983 $x145)))
  1436 (let ((@x5448 (monotonicity (rewrite (= (= b_Source$ b_Source$) true)) (= (not (= b_Source$ b_Source$)) (not true)))))
  1437 (let ((@x5820 (trans @x5448 (rewrite (= (not true) false)) (= (not (= b_Source$ b_Source$)) false))))
  1438 (let ((@x5657 (monotonicity @x5820 (= (or (not (= b_Source$ b_Source$)) $x145) (or false $x145)))))
  1439 (let ((@x5707 (trans @x5657 (rewrite (= (or false $x145) $x145)) (= (or (not (= b_Source$ b_Source$)) $x145) $x145))))
  1440 (let ((@x5373 (monotonicity @x5707 (= (or $x5983 (or (not (= b_Source$ b_Source$)) $x145)) $x3194))))
  1441 (let ((@x5431 (trans @x5373 (rewrite (= $x3194 $x3194)) (= (or $x5983 (or (not (= b_Source$ b_Source$)) $x145)) $x3194))))
  1442 (let ((@x5763 (mp ((_ quant-inst b_Source$) (or $x5983 (or (not (= b_Source$ b_Source$)) $x145))) @x5431 $x3194)))
  1443 (let (($x3875 (or $x869 $x3872)))
  1444 (let (($x2848 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  1445 (let ((?x1912 (* (- 1) ?x1911)))
  1446 (let ((?x273 (v_b_SP_G_2$ ?v1)))
  1447 (let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  1448 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  1449 (let (($x300 (not $x291)))
  1450 (or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))))
  1451 ))
  1452 (let (($x2833 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
  1453 (let ((?x1263 (* (- 1) ?x303)))
  1454 (let ((?x273 (v_b_SP_G_2$ ?v1)))
  1455 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  1456 (let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
  1457 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  1458 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  1459 (let (($x300 (not $x291)))
  1460 (or $x300 $x922 $x1282))))))))))
  1461 ))
  1462 (let (($x2857 (not (or (not $x2833) $x1909 $x1914 (not $x2848)))))
  1463 (let (($x2862 (or $x2811 $x2857)))
  1464 (let (($x2788 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
  1465 (let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
  1466 (let (($x2768 (not $x301)))
  1467 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  1468 (or $x291 $x2768 $x1262))))))
  1469 ))
  1470 (let (($x2871 (not (or (not $x2788) (not $x2862)))))
  1471 (let (($x2876 (or $x2765 $x2871)))
  1472 (let (($x2884 (not (or $x1259 (not $x2876)))))
  1473 (let (($x2889 (or $x1848 $x2884)))
  1474 (let (($x2897 (not (or $x773 (not $x2889)))))
  1475 (let (($x2902 (or $x773 $x2897)))
  1476 (let (($x2910 (not (or $x785 (not $x2902)))))
  1477 (let (($x2915 (or $x1830 $x2910)))
  1478 (let (($x2923 (not (or $x1250 (not $x2915)))))
  1479 (let (($x2928 (or $x1813 $x2923)))
  1480 (let (($x2742 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  1481 (let ((?x273 (v_b_SP_G_2$ ?v0)))
  1482 (let (($x278 (= ?x273 ?x174)))
  1483 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  1484 (let ((?x1173 (* (- 1) ?x257)))
  1485 (let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  1486 (let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  1487 (let (($x2717 (or $x1169 $x1175)))
  1488 (let (($x2718 (not $x2717)))
  1489 (or $x2718 $x278)))))))))))
  1490 ))
  1491 (let (($x2736 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
  1492 (let ((?x1186 (* (- 1) ?x273)))
  1493 (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
  1494 (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  1495 (let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
  1496 (let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
  1497 (let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)))
  1498 (or $x1169 $x1175 $x1185)))))))))
  1499 ))
  1500 (let (($x2939 (or $x1773 $x1778 $x255 $x1213 (not $x1209) $x2935 (not $x2736) (not $x2742) (not $x2928))))
  1501 (let (($x2940 (not $x2939)))
  1502 (let (($x2672 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  1503 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  1504 (let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
  1505 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  1506 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  1507 (or $x1099 $x922 $x1140)))))))
  1508 ))
  1509 (let (($x2680 (not (or (not $x2672) $x246))))
  1510 (let (($x2685 (or $x2650 $x2680)))
  1511 (let (($x2628 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  1512 (let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  1513 (let (($x2192 (= ?x2191 0)))
  1514 (let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  1515 (let (($x2617 (not (or $x2176 (not $x2192)))))
  1516 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  1517 (let (($x127 (= ?v0 b_Source$)))
  1518 (or $x127 $x1099 $x2617)))))))))
  1519 ))
  1520 (let (($x2694 (not (or (not $x2628) (not $x2685)))))
  1521 (let (($x2591 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  1522 (let ((?x1662 (* (- 1) ?x1661)))
  1523 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  1524 (let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  1525 (or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))))
  1526 ))
  1527 (let (($x2599 (not (or $x1659 $x1664 (not $x2591)))))
  1528 (let (($x2699 (or $x2599 $x2694)))
  1529 (let (($x2576 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  1530 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
  1531 (or $x178 $x1002))))
  1532 ))
  1533 (let (($x2712 (not (or (not $x2576) $x2706 $x2707 $x2708 $x2709 (not $x2699)))))
  1534 (let (($x2945 (or $x2712 $x2940)))
  1535 (let (($x2562 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  1536 (let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  1537 (let (($x2129 (= ?x2128 0)))
  1538 (let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
  1539 (let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129)))))
  1540 (let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  1541 (let (($x127 (= ?v0 b_Source$)))
  1542 (or $x127 $x1002 $x2551)))))))))
  1543 ))
  1544 (let (($x2534 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  1545 (let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  1546 (let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  1547 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  1548 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  1549 (let (($x179 (not $x178)))
  1550 (or $x179 $x922 $x990))))))))
  1551 ))
  1552 (let (($x2512 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  1553 (let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  1554 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  1555 (or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015)))))
  1556 ))
  1557 (let (($x2489 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
  1558 (let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  1559 (let (($x2091 (= ?x2090 0)))
  1560 (let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
  1561 (let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091)))))
  1562 (let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
  1563 (let (($x127 (= ?v0 b_Source$)))
  1564 (or $x127 $x947 $x2478)))))))))
  1565 ))
  1566 (let (($x2958 (or (not $x2489) $x2952 (not $x1051) (not $x2512) (not $x2534) (not $x2562) (not $x2945))))
  1567 (let (($x2959 (not $x2958)))
  1568 (let (($x2451 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  1569 (let ((?x1541 (* (- 1) ?x1540)))
  1570 (let ((?x128 (v_b_SP_G_0$ ?v1)))
  1571 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  1572 (let (($x137 (not $x136)))
  1573 (or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))))
  1574 ))
  1575 (let (($x2459 (not (or $x1538 $x1543 (not $x2451)))))
  1576 (let (($x2964 (or $x2459 $x2959)))
  1577 (let (($x2436 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  1578 (let ((?x128 (v_b_SP_G_0$ ?v1)))
  1579 (let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
  1580 (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  1581 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  1582 (let (($x137 (not $x136)))
  1583 (or $x137 $x922 $x933))))))))
  1584 ))
  1585 (let (($x2973 (not (or (not $x2436) (not $x2964)))))
  1586 (let (($x2978 (or $x2414 $x2973)))
  1587 (let (($x2391 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  1588 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  1589 (or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))))
  1590 ))
  1591 (let (($x2987 (not (or (not $x2391) (not $x2978)))))
  1592 (let (($x2992 (or $x2368 $x2987)))
  1593 (let (($x3000 (not (or $x902 (not $x2992)))))
  1594 (let (($x3005 (or $x1477 $x3000)))
  1595 (let (($x3013 (not (or $x869 (not $x3005)))))
  1596 (let (($x3018 (or $x869 $x3013)))
  1597 (let (($x2837 (or (>= (+ ?x273 (* (- 1) ?x1911)) 0) $x300 (not (= (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))) 0)))))
  1598 (let ((@x3736 (monotonicity (quant-intro (refl (= $x2837 $x2837)) (= $x2848 $x3729)) (= (not $x2848) $x3734))))
  1599 (let ((@x3724 (quant-intro (refl (= (or $x300 $x922 $x1282) (or $x300 $x922 $x1282))) (= $x2833 $x3720))))
  1600 (let ((@x3739 (monotonicity (monotonicity @x3724 (= (not $x2833) $x3725)) @x3736 (= (or (not $x2833) $x1909 $x1914 (not $x2848)) $x3737))))
  1601 (let ((@x3748 (monotonicity (monotonicity (monotonicity @x3739 (= $x2857 $x3740)) (= $x2862 $x3743)) (= (not $x2862) $x3746))))
  1602 (let ((@x3716 (quant-intro (refl (= (or $x291 (not $x301) $x1262) (or $x291 (not $x301) $x1262))) (= $x2788 $x3712))))
  1603 (let ((@x3751 (monotonicity (monotonicity @x3716 (= (not $x2788) $x3717)) @x3748 (= (or (not $x2788) (not $x2862)) $x3749))))
  1604 (let ((@x3760 (monotonicity (monotonicity (monotonicity @x3751 (= $x2871 $x3752)) (= $x2876 $x3755)) (= (not $x2876) $x3758))))
  1605 (let ((@x3707 (quant-intro (refl (= (>= ?x273 0) (>= ?x273 0))) (= $x1256 $x3703))))
  1606 (let ((@x3763 (monotonicity (monotonicity @x3707 (= $x1259 $x3708)) @x3760 (= (or $x1259 (not $x2876)) $x3761))))
  1607 (let ((@x3772 (monotonicity (monotonicity (monotonicity @x3763 (= $x2884 $x3764)) (= $x2889 $x3767)) (= (not $x2889) $x3770))))
  1608 (let ((@x3778 (monotonicity (monotonicity @x3772 (= (or $x773 (not $x2889)) $x3773)) (= $x2897 $x3776))))
  1609 (let ((@x3784 (monotonicity (monotonicity @x3778 (= $x2902 $x3779)) (= (not $x2902) $x3782))))
  1610 (let ((@x3699 (quant-intro (refl (= (or $x300 $x278) (or $x300 $x278))) (= $x652 $x3695))))
  1611 (let ((@x3787 (monotonicity (monotonicity @x3699 (= $x785 $x3700)) @x3784 (= (or $x785 (not $x2902)) $x3785))))
  1612 (let ((@x3796 (monotonicity (monotonicity (monotonicity @x3787 (= $x2910 $x3788)) (= $x2915 $x3791)) (= (not $x2915) $x3794))))
  1613 (let ((@x3693 (monotonicity (quant-intro (refl (= $x1243 $x1243)) (= $x1247 $x3686)) (= $x1250 $x3691))))
  1614 (let ((@x3802 (monotonicity (monotonicity @x3693 @x3796 (= (or $x1250 (not $x2915)) $x3797)) (= $x2923 $x3800))))
  1615 (let ((@x3808 (monotonicity (monotonicity @x3802 (= $x2928 $x3803)) (= (not $x2928) $x3806))))
  1616 (let ((@x3680 (refl (= (or (not (or $x1169 $x1175)) $x278) (or (not (or $x1169 $x1175)) $x278)))))
  1617 (let ((@x3685 (monotonicity (quant-intro @x3680 (= $x2742 $x3678)) (= (not $x2742) $x3683))))
  1618 (let ((@x3674 (quant-intro (refl (= (or $x1169 $x1175 $x1185) (or $x1169 $x1175 $x1185))) (= $x2736 $x3670))))
  1619 (let ((@x3667 (monotonicity (quant-intro (refl (= $x1206 $x1206)) (= $x1209 $x3660)) (= (not $x1209) $x3665))))
  1620 (let ((@x3811 (monotonicity @x3667 (monotonicity @x3674 (= (not $x2736) $x3675)) @x3685 @x3808 (= $x2939 $x3809))))
  1621 (let ((@x3626 (quant-intro (refl (= (or $x1099 $x922 $x1140) (or $x1099 $x922 $x1140))) (= $x2672 $x3622))))
  1622 (let ((@x3632 (monotonicity (monotonicity @x3626 (= (not $x2672) $x3627)) (= (or (not $x2672) $x246) $x3630))))
  1623 (let ((@x3641 (monotonicity (monotonicity (monotonicity @x3632 (= $x2680 $x3633)) (= $x2685 $x3636)) (= (not $x2685) $x3639))))
  1624 (let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?0) ?0))))))
  1625 (let (($x2192 (= ?x2191 0)))
  1626 (let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0)))) 0)))
  1627 (let (($x2617 (not (or $x2176 (not $x2192)))))
  1628 (let (($x2623 (or $x127 $x1099 $x2617)))
  1629 (let ((@x3621 (monotonicity (quant-intro (refl (= $x2623 $x2623)) (= $x2628 $x3614)) (= (not $x2628) $x3619))))
  1630 (let ((@x3647 (monotonicity (monotonicity @x3621 @x3641 (= (or (not $x2628) (not $x2685)) $x3642)) (= $x2694 $x3645))))
  1631 (let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  1632 (let ((?x1662 (* (- 1) ?x1661)))
  1633 (let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?0 ?v0!8))) 0)))
  1634 (let (($x2580 (or (>= (+ ?x230 ?x1662) 0) (not $x2148))))
  1635 (let ((@x3607 (monotonicity (quant-intro (refl (= $x2580 $x2580)) (= $x2591 $x3600)) (= (not $x2591) $x3605))))
  1636 (let ((@x3613 (monotonicity (monotonicity @x3607 (= (or $x1659 $x1664 (not $x2591)) $x3608)) (= $x2599 $x3611))))
  1637 (let ((@x3653 (monotonicity (monotonicity @x3613 @x3647 (= $x2699 $x3648)) (= (not $x2699) $x3651))))
  1638 (let ((@x3594 (quant-intro (refl (= (or $x178 $x1002) (or $x178 $x1002))) (= $x2576 $x3590))))
  1639 (let ((@x3656 (monotonicity (monotonicity @x3594 (= (not $x2576) $x3595)) @x3653 (= (or (not $x2576) $x2706 $x2707 $x2708 $x2709 (not $x2699)) $x3654))))
  1640 (let ((@x3817 (monotonicity (monotonicity @x3656 (= $x2712 $x3657)) (monotonicity @x3811 (= $x2940 $x3812)) (= $x2945 $x3815))))
  1641 (let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?0) ?0))))))
  1642 (let (($x2129 (= ?x2128 0)))
  1643 (let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0)))) 0)))
  1644 (let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?0))) (not $x2129)))))
  1645 (let (($x2557 (or $x127 $x1002 $x2551)))
  1646 (let ((@x3588 (monotonicity (quant-intro (refl (= $x2557 $x2557)) (= $x2562 $x3581)) (= (not $x2562) $x3586))))
  1647 (let ((@x3577 (quant-intro (refl (= (or $x179 $x922 $x990) (or $x179 $x922 $x990))) (= $x2534 $x3573))))
  1648 (let ((@x3569 (quant-intro (refl (= (or $x178 (not $x180) $x1015) (or $x178 (not $x180) $x1015))) (= $x2512 $x3565))))
  1649 (let ((@x3560 (quant-intro (refl (= (>= ?x174 0) (>= ?x174 0))) (= $x1051 $x3556))))
  1650 (let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?0) ?0))))))
  1651 (let (($x2091 (= ?x2090 0)))
  1652 (let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0)))) 0)))
  1653 (let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?0))) (not $x2091)))))
  1654 (let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
  1655 (let (($x2484 (or $x127 $x947 $x2478)))
  1656 (let ((@x3554 (monotonicity (quant-intro (refl (= $x2484 $x2484)) (= $x2489 $x3547)) (= (not $x2489) $x3552))))
  1657 (let ((@x3823 (monotonicity @x3554 (monotonicity @x3560 (= (not $x1051) $x3561)) (monotonicity @x3569 (= (not $x2512) $x3570)) (monotonicity @x3577 (= (not $x2534) $x3578)) @x3588 (monotonicity @x3817 (= (not $x2945) $x3818)) (= $x2958 $x3821))))
  1658 (let (($x2440 (or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?0 ?v0!5))) 0)))))
  1659 (let ((@x3540 (monotonicity (quant-intro (refl (= $x2440 $x2440)) (= $x2451 $x3533)) (= (not $x2451) $x3538))))
  1660 (let ((@x3546 (monotonicity (monotonicity @x3540 (= (or $x1538 $x1543 (not $x2451)) $x3541)) (= $x2459 $x3544))))
  1661 (let ((@x3829 (monotonicity @x3546 (monotonicity @x3823 (= $x2959 $x3824)) (= $x2964 $x3827))))
  1662 (let ((@x3528 (quant-intro (refl (= (or $x137 $x922 $x933) (or $x137 $x922 $x933))) (= $x2436 $x3524))))
  1663 (let ((@x3835 (monotonicity (monotonicity @x3528 (= (not $x2436) $x3529)) (monotonicity @x3829 (= (not $x2964) $x3830)) (= (or (not $x2436) (not $x2964)) $x3833))))
  1664 (let ((@x3844 (monotonicity (monotonicity (monotonicity @x3835 (= $x2973 $x3836)) (= $x2978 $x3839)) (= (not $x2978) $x3842))))
  1665 (let ((@x3519 (quant-intro (refl (= (or $x136 (not $x148) $x907) (or $x136 (not $x148) $x907))) (= $x2391 $x3515))))
  1666 (let ((@x3847 (monotonicity (monotonicity @x3519 (= (not $x2391) $x3520)) @x3844 (= (or (not $x2391) (not $x2978)) $x3845))))
  1667 (let ((@x3856 (monotonicity (monotonicity (monotonicity @x3847 (= $x2987 $x3848)) (= $x2992 $x3851)) (= (not $x2992) $x3854))))
  1668 (let ((@x3510 (quant-intro (refl (= (>= ?x128 0) (>= ?x128 0))) (= $x899 $x3506))))
  1669 (let ((@x3859 (monotonicity (monotonicity @x3510 (= $x902 $x3511)) @x3856 (= (or $x902 (not $x2992)) $x3857))))
  1670 (let ((@x3868 (monotonicity (monotonicity (monotonicity @x3859 (= $x3000 $x3860)) (= $x3005 $x3863)) (= (not $x3005) $x3866))))
  1671 (let ((@x3874 (monotonicity (monotonicity @x3868 (= (or $x869 (not $x3005)) $x3869)) (= $x3013 $x3872))))
  1672 (let (($x2251 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  1673 (let ((?x1912 (* (- 1) ?x1911)))
  1674 (let ((?x273 (v_b_SP_G_2$ ?v1)))
  1675 (let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  1676 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  1677 (let (($x2245 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 $x2242)))
  1678 (not $x2245))))))))
  1679 ))
  1680 (let (($x1915 (not $x1914)))
  1681 (let (($x1910 (not $x1909)))
  1682 (let (($x2260 (and $x1289 $x1910 $x1915 $x2251)))
  1683 (let (($x1891 (not (and $x1883 (not $x1888)))))
  1684 (let (($x1897 (or $x1891 $x1896)))
  1685 (let (($x1898 (not $x1897)))
  1686 (let (($x2265 (or $x1898 $x2260)))
  1687 (let (($x2268 (and $x1270 $x2265)))
  1688 (let (($x1864 (not (and (not $x1860) $x1862))))
  1689 (let (($x1870 (or $x1864 $x1869)))
  1690 (let (($x1871 (not $x1870)))
  1691 (let (($x2271 (or $x1871 $x2268)))
  1692 (let (($x2274 (and $x1256 $x2271)))
  1693 (let (($x2277 (or $x1848 $x2274)))
  1694 (let (($x2280 (and $x297 $x2277)))
  1695 (let (($x2283 (or $x773 $x2280)))
  1696 (let (($x2286 (and $x652 $x2283)))
  1697 (let (($x2289 (or $x1830 $x2286)))
  1698 (let (($x2292 (and $x1247 $x2289)))
  1699 (let (($x2295 (or $x1813 $x2292)))
  1700 (let (($x1779 (not $x1778)))
  1701 (let (($x1774 (not $x1773)))
  1702 (let (($x2301 (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x1193 $x1199 $x2295)))
  1703 (let (($x1749 (not $x246)))
  1704 (let (($x1752 (and $x1146 $x1749)))
  1705 (let (($x1733 (not (and (not $x1724) (not $x1730)))))
  1706 (let (($x2212 (or $x1733 $x2209)))
  1707 (let (($x2215 (not $x2212)))
  1708 (let (($x2218 (or $x2215 $x1752)))
  1709 (let (($x2203 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  1710 (let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  1711 (let (($x2192 (= ?x2191 0)))
  1712 (let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  1713 (let (($x2197 (and (not $x2176) $x2192)))
  1714 (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  1715 (let (($x1100 (not $x1099)))
  1716 (let (($x127 (= ?v0 b_Source$)))
  1717 (let (($x132 (not $x127)))
  1718 (let (($x1103 (and $x132 $x1100)))
  1719 (let (($x1106 (not $x1103)))
  1720 (or $x1106 $x2197)))))))))))))
  1721 ))
  1722 (let (($x2221 (and $x2203 $x2218)))
  1723 (let (($x2157 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  1724 (let ((?x1662 (* (- 1) ?x1661)))
  1725 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  1726 (let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  1727 (let (($x2151 (and (not (>= (+ ?x230 ?x1662) 0)) $x2148)))
  1728 (not $x2151)))))))
  1729 ))
  1730 (let (($x1665 (not $x1664)))
  1731 (let (($x1660 (not $x1659)))
  1732 (let (($x2163 (and $x1660 $x1665 $x2157)))
  1733 (let (($x2224 (or $x2163 $x2221)))
  1734 (let (($x1641 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  1735 (let (($x1003 (not $x1002)))
  1736 (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
  1737 (let (($x179 (not $x178)))
  1738 (let (($x1077 (and $x179 $x1003)))
  1739 (not $x1077)))))))
  1740 ))
  1741 (let (($x2230 (and $x1641 $x212 $x215 $x217 $x220 $x2224)))
  1742 (let (($x2306 (or $x2230 $x2301)))
  1743 (let (($x2140 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  1744 (let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  1745 (let (($x2129 (= ?x2128 0)))
  1746 (let ((?x1613 (?v1!7 ?v0)))
  1747 (let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  1748 (let (($x2134 (and (not (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x1613))) 0)) $x1618 $x2129)))
  1749 (let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  1750 (let (($x1003 (not $x1002)))
  1751 (let (($x127 (= ?v0 b_Source$)))
  1752 (let (($x132 (not $x127)))
  1753 (let (($x1006 (and $x132 $x1003)))
  1754 (let (($x1009 (not $x1006)))
  1755 (or $x1009 $x2134))))))))))))))
  1756 ))
  1757 (let (($x2102 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
  1758 (let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  1759 (let (($x2091 (= ?x2090 0)))
  1760 (let ((?x1578 (?v1!6 ?v0)))
  1761 (let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  1762 (let (($x2096 (and (not (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?x1578))) 0)) $x1583 $x2091)))
  1763 (let (($x127 (= ?v0 b_Source$)))
  1764 (let (($x132 (not $x127)))
  1765 (let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))))
  1766 (let (($x954 (not $x951)))
  1767 (or $x954 $x2096))))))))))))
  1768 ))
  1769 (let (($x2315 (and $x2102 $x173 $x1051 $x1045 $x997 $x2140 $x2306)))
  1770 (let (($x1567 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  1771 (let ((?x1541 (* (- 1) ?x1540)))
  1772 (let ((?x128 (v_b_SP_G_0$ ?v1)))
  1773 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  1774 (let (($x1554 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0))))
  1775 (not $x1554)))))))
  1776 ))
  1777 (let (($x2062 (and $x1539 $x1544 $x1567)))
  1778 (let (($x2320 (or $x2062 $x2315)))
  1779 (let (($x2323 (and $x939 $x2320)))
  1780 (let (($x1520 (not (and $x1512 (not $x1517)))))
  1781 (let (($x2051 (or $x1520 $x2048)))
  1782 (let (($x2054 (not $x2051)))
  1783 (let (($x2326 (or $x2054 $x2323)))
  1784 (let (($x2329 (and $x914 $x2326)))
  1785 (let (($x1493 (not (and (not $x1489) $x1491))))
  1786 (let (($x1499 (or $x1493 $x1498)))
  1787 (let (($x1500 (not $x1499)))
  1788 (let (($x2332 (or $x1500 $x2329)))
  1789 (let (($x2335 (and $x899 $x2332)))
  1790 (let (($x2338 (or $x1477 $x2335)))
  1791 (let (($x2341 (and $x145 $x2338)))
  1792 (let (($x2344 (or $x869 $x2341)))
  1793 (let ((@x2942 (rewrite (= (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x2736 $x2742 $x2928) $x2940))))
  1794 (let (($x2242 (= (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))) 0)))
  1795 (let (($x2245 (and (not (>= (+ ?x273 (* (- 1) ?x1911)) 0)) $x291 $x2242)))
  1796 (let (($x2248 (not $x2245)))
  1797 (let ((@x2843 (monotonicity (rewrite (= $x2245 (not $x2837))) (= $x2248 (not (not $x2837))))))
  1798 (let ((@x2850 (quant-intro (trans @x2843 (rewrite (= (not (not $x2837)) $x2837)) (= $x2248 $x2837)) (= $x2251 $x2848))))
  1799 (let ((@x2820 (monotonicity (rewrite (= $x1276 (not (or $x300 $x922)))) (= $x1279 (not (not (or $x300 $x922)))))))
  1800 (let ((@x2824 (trans @x2820 (rewrite (= (not (not (or $x300 $x922))) (or $x300 $x922))) (= $x1279 (or $x300 $x922)))))
  1801 (let ((@x2832 (trans (monotonicity @x2824 (= $x1286 (or (or $x300 $x922) $x1282))) (rewrite (= (or (or $x300 $x922) $x1282) (or $x300 $x922 $x1282))) (= $x1286 (or $x300 $x922 $x1282)))))
  1802 (let ((@x2853 (monotonicity (quant-intro @x2832 (= $x1289 $x2833)) @x2850 (= $x2260 (and $x2833 $x1910 $x1915 $x2848)))))
  1803 (let ((@x2861 (trans @x2853 (rewrite (= (and $x2833 $x1910 $x1915 $x2848) $x2857)) (= $x2260 $x2857))))
  1804 (let ((@x2798 (monotonicity (rewrite (= (and $x1883 (not $x1888)) (not (or $x2791 $x1888)))) (= $x1891 (not (not (or $x2791 $x1888)))))))
  1805 (let ((@x2802 (trans @x2798 (rewrite (= (not (not (or $x2791 $x1888))) (or $x2791 $x1888))) (= $x1891 (or $x2791 $x1888)))))
  1806 (let ((@x2810 (trans (monotonicity @x2802 (= $x1897 (or (or $x2791 $x1888) $x1896))) (rewrite (= (or (or $x2791 $x1888) $x1896) $x2806)) (= $x1897 $x2806))))
  1807 (let ((@x2864 (monotonicity (monotonicity @x2810 (= $x1898 $x2811)) @x2861 (= $x2265 $x2862))))
  1808 (let ((@x2785 (rewrite (= (or (or $x291 (not $x301)) $x1262) (or $x291 (not $x301) $x1262)))))
  1809 (let ((@x2777 (rewrite (= (not (not (or $x291 (not $x301)))) (or $x291 (not $x301))))))
  1810 (let ((@x2775 (monotonicity (rewrite (= $x302 (not (or $x291 (not $x301))))) (= $x664 (not (not (or $x291 (not $x301))))))))
  1811 (let ((@x2782 (monotonicity (trans @x2775 @x2777 (= $x664 (or $x291 (not $x301)))) (= $x1267 (or (or $x291 (not $x301)) $x1262)))))
  1812 (let ((@x2790 (quant-intro (trans @x2782 @x2785 (= $x1267 (or $x291 (not $x301) $x1262))) (= $x1270 $x2788))))
  1813 (let ((@x2875 (trans (monotonicity @x2790 @x2864 (= $x2268 (and $x2788 $x2862))) (rewrite (= (and $x2788 $x2862) $x2871)) (= $x2268 $x2871))))
  1814 (let ((@x2752 (monotonicity (rewrite (= (and (not $x1860) $x1862) (not (or $x1860 $x2745)))) (= $x1864 (not (not (or $x1860 $x2745)))))))
  1815 (let ((@x2756 (trans @x2752 (rewrite (= (not (not (or $x1860 $x2745))) (or $x1860 $x2745))) (= $x1864 (or $x1860 $x2745)))))
  1816 (let ((@x2764 (trans (monotonicity @x2756 (= $x1870 (or (or $x1860 $x2745) $x1869))) (rewrite (= (or (or $x1860 $x2745) $x1869) $x2760)) (= $x1870 $x2760))))
  1817 (let ((@x2878 (monotonicity (monotonicity @x2764 (= $x1871 $x2765)) @x2875 (= $x2271 $x2876))))
  1818 (let ((@x2888 (trans (monotonicity @x2878 (= $x2274 (and $x1256 $x2876))) (rewrite (= (and $x1256 $x2876) $x2884)) (= $x2274 $x2884))))
  1819 (let ((@x2894 (monotonicity (monotonicity @x2888 (= $x2277 $x2889)) (= $x2280 (and $x297 $x2889)))))
  1820 (let ((@x2904 (monotonicity (trans @x2894 (rewrite (= (and $x297 $x2889) $x2897)) (= $x2280 $x2897)) (= $x2283 $x2902))))
  1821 (let ((@x2914 (trans (monotonicity @x2904 (= $x2286 (and $x652 $x2902))) (rewrite (= (and $x652 $x2902) $x2910)) (= $x2286 $x2910))))
  1822 (let ((@x2920 (monotonicity (monotonicity @x2914 (= $x2289 $x2915)) (= $x2292 (and $x1247 $x2915)))))
  1823 (let ((@x2930 (monotonicity (trans @x2920 (rewrite (= (and $x1247 $x2915) $x2923)) (= $x2292 $x2923)) (= $x2295 $x2928))))
  1824 (let ((@x2741 (monotonicity (rewrite (= $x1179 (not (or $x1169 $x1175)))) (= $x1196 (or (not (or $x1169 $x1175)) $x278)))))
  1825 (let ((@x2723 (monotonicity (rewrite (= $x1179 (not (or $x1169 $x1175)))) (= $x1182 (not (not (or $x1169 $x1175)))))))
  1826 (let ((@x2727 (trans @x2723 (rewrite (= (not (not (or $x1169 $x1175))) (or $x1169 $x1175))) (= $x1182 (or $x1169 $x1175)))))
  1827 (let ((@x2735 (trans (monotonicity @x2727 (= $x1190 (or (or $x1169 $x1175) $x1185))) (rewrite (= (or (or $x1169 $x1175) $x1185) (or $x1169 $x1175 $x1185))) (= $x1190 (or $x1169 $x1175 $x1185)))))
  1828 (let ((@x2933 (monotonicity (quant-intro @x2735 (= $x1193 $x2736)) (quant-intro @x2741 (= $x1199 $x2742)) @x2930 (= $x2301 (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x2736 $x2742 $x2928)))))
  1829 (let ((@x2659 (monotonicity (rewrite (= $x1134 (not (or $x1099 $x922)))) (= $x1137 (not (not (or $x1099 $x922)))))))
  1830 (let ((@x2663 (trans @x2659 (rewrite (= (not (not (or $x1099 $x922))) (or $x1099 $x922))) (= $x1137 (or $x1099 $x922)))))
  1831 (let ((@x2671 (trans (monotonicity @x2663 (= $x1143 (or (or $x1099 $x922) $x1140))) (rewrite (= (or (or $x1099 $x922) $x1140) (or $x1099 $x922 $x1140))) (= $x1143 (or $x1099 $x922 $x1140)))))
  1832 (let ((@x2677 (monotonicity (quant-intro @x2671 (= $x1146 $x2672)) (= $x1752 (and $x2672 $x1749)))))
  1833 (let ((@x2637 (monotonicity (rewrite (= (and (not $x1724) (not $x1730)) (not (or $x1724 $x1730)))) (= $x1733 (not (not (or $x1724 $x1730)))))))
  1834 (let ((@x2641 (trans @x2637 (rewrite (= (not (not (or $x1724 $x1730))) (or $x1724 $x1730))) (= $x1733 (or $x1724 $x1730)))))
  1835 (let ((@x2649 (trans (monotonicity @x2641 (= $x2212 (or (or $x1724 $x1730) $x2209))) (rewrite (= (or (or $x1724 $x1730) $x2209) $x2645)) (= $x2212 $x2645))))
  1836 (let ((@x2687 (monotonicity (monotonicity @x2649 (= $x2215 $x2650)) (trans @x2677 (rewrite (= (and $x2672 $x1749) $x2680)) (= $x1752 $x2680)) (= $x2218 $x2685))))
  1837 (let ((@x2610 (monotonicity (rewrite (= $x1103 (not (or $x127 $x1099)))) (= $x1106 (not (not (or $x127 $x1099)))))))
  1838 (let ((@x2614 (trans @x2610 (rewrite (= (not (not (or $x127 $x1099))) (or $x127 $x1099))) (= $x1106 (or $x127 $x1099)))))
  1839 (let ((@x2622 (monotonicity @x2614 (rewrite (= (and (not $x2176) $x2192) $x2617)) (= (or $x1106 (and (not $x2176) $x2192)) (or (or $x127 $x1099) $x2617)))))
  1840 (let ((@x2627 (trans @x2622 (rewrite (= (or (or $x127 $x1099) $x2617) $x2623)) (= (or $x1106 (and (not $x2176) $x2192)) $x2623))))
  1841 (let ((@x2690 (monotonicity (quant-intro @x2627 (= $x2203 $x2628)) @x2687 (= $x2221 (and $x2628 $x2685)))))
  1842 (let (($x2151 (and (not (>= (+ ?x230 ?x1662) 0)) $x2148)))
  1843 (let (($x2154 (not $x2151)))
  1844 (let ((@x2586 (monotonicity (rewrite (= $x2151 (not $x2580))) (= $x2154 (not (not $x2580))))))
  1845 (let ((@x2593 (quant-intro (trans @x2586 (rewrite (= (not (not $x2580)) $x2580)) (= $x2154 $x2580)) (= $x2157 $x2591))))
  1846 (let ((@x2603 (trans (monotonicity @x2593 (= $x2163 (and $x1660 $x1665 $x2591))) (rewrite (= (and $x1660 $x1665 $x2591) $x2599)) (= $x2163 $x2599))))
  1847 (let ((@x2701 (monotonicity @x2603 (trans @x2690 (rewrite (= (and $x2628 $x2685) $x2694)) (= $x2221 $x2694)) (= $x2224 $x2699))))
  1848 (let ((@x2571 (monotonicity (rewrite (= $x1077 (not (or $x178 $x1002)))) (= (not $x1077) (not (not (or $x178 $x1002)))))))
  1849 (let ((@x2575 (trans @x2571 (rewrite (= (not (not (or $x178 $x1002))) (or $x178 $x1002))) (= (not $x1077) (or $x178 $x1002)))))
  1850 (let ((@x2704 (monotonicity (quant-intro @x2575 (= $x1641 $x2576)) @x2701 (= $x2230 (and $x2576 $x212 $x215 $x217 $x220 $x2699)))))
  1851 (let ((@x2716 (trans @x2704 (rewrite (= (and $x2576 $x212 $x215 $x217 $x220 $x2699) $x2712)) (= $x2230 $x2712))))
  1852 (let ((?x1613 (?v1!7 ?0)))
  1853 (let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  1854 (let (($x2134 (and (not $x2113) $x1618 $x2129)))
  1855 (let (($x2137 (or $x1009 $x2134)))
  1856 (let ((@x2543 (monotonicity (rewrite (= $x1006 (not (or $x127 $x1002)))) (= $x1009 (not (not (or $x127 $x1002)))))))
  1857 (let ((@x2547 (trans @x2543 (rewrite (= (not (not (or $x127 $x1002))) (or $x127 $x1002))) (= $x1009 (or $x127 $x1002)))))
  1858 (let ((@x2556 (monotonicity @x2547 (rewrite (= $x2134 $x2551)) (= $x2137 (or (or $x127 $x1002) $x2551)))))
  1859 (let ((@x2561 (trans @x2556 (rewrite (= (or (or $x127 $x1002) $x2551) $x2557)) (= $x2137 $x2557))))
  1860 (let ((@x2521 (monotonicity (rewrite (= $x983 (not (or $x179 $x922)))) (= $x986 (not (not (or $x179 $x922)))))))
  1861 (let ((@x2525 (trans @x2521 (rewrite (= (not (not (or $x179 $x922))) (or $x179 $x922))) (= $x986 (or $x179 $x922)))))
  1862 (let ((@x2533 (trans (monotonicity @x2525 (= $x994 (or (or $x179 $x922) $x990))) (rewrite (= (or (or $x179 $x922) $x990) (or $x179 $x922 $x990))) (= $x994 (or $x179 $x922 $x990)))))
  1863 (let ((@x2509 (rewrite (= (or (or $x178 (not $x180)) $x1015) (or $x178 (not $x180) $x1015)))))
  1864 (let ((@x2501 (rewrite (= (not (not (or $x178 (not $x180)))) (or $x178 (not $x180))))))
  1865 (let ((@x2499 (monotonicity (rewrite (= $x181 (not (or $x178 (not $x180))))) (= $x403 (not (not (or $x178 (not $x180))))))))
  1866 (let ((@x2506 (monotonicity (trans @x2499 @x2501 (= $x403 (or $x178 (not $x180)))) (= $x1042 (or (or $x178 (not $x180)) $x1015)))))
  1867 (let ((@x2514 (quant-intro (trans @x2506 @x2509 (= $x1042 (or $x178 (not $x180) $x1015))) (= $x1045 $x2512))))
  1868 (let ((?x1578 (?v1!6 ?0)))
  1869 (let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  1870 (let (($x2096 (and (not $x2075) $x1583 $x2091)))
  1871 (let (($x2099 (or $x954 $x2096)))
  1872 (let ((@x2470 (monotonicity (rewrite (= $x951 (not (or $x127 $x947)))) (= $x954 (not (not (or $x127 $x947)))))))
  1873 (let ((@x2474 (trans @x2470 (rewrite (= (not (not (or $x127 $x947))) (or $x127 $x947))) (= $x954 (or $x127 $x947)))))
  1874 (let ((@x2483 (monotonicity @x2474 (rewrite (= $x2096 $x2478)) (= $x2099 (or (or $x127 $x947) $x2478)))))
  1875 (let ((@x2488 (trans @x2483 (rewrite (= (or (or $x127 $x947) $x2478) $x2484)) (= $x2099 $x2484))))
  1876 (let ((@x2950 (monotonicity (quant-intro @x2488 (= $x2102 $x2489)) @x2514 (quant-intro @x2533 (= $x997 $x2534)) (quant-intro @x2561 (= $x2140 $x2562)) (monotonicity @x2716 (trans @x2933 @x2942 (= $x2301 $x2940)) (= $x2306 $x2945)) (= $x2315 (and $x2489 $x173 $x1051 $x2512 $x2534 $x2562 $x2945)))))
  1877 (let ((@x2963 (trans @x2950 (rewrite (= (and $x2489 $x173 $x1051 $x2512 $x2534 $x2562 $x2945) $x2959)) (= $x2315 $x2959))))
  1878 (let (($x1554 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?0 ?v0!5))) 0))))
  1879 (let (($x1564 (not $x1554)))
  1880 (let ((@x2446 (monotonicity (rewrite (= $x1554 (not $x2440))) (= $x1564 (not (not $x2440))))))
  1881 (let ((@x2453 (quant-intro (trans @x2446 (rewrite (= (not (not $x2440)) $x2440)) (= $x1564 $x2440)) (= $x1567 $x2451))))
  1882 (let ((@x2463 (trans (monotonicity @x2453 (= $x2062 (and $x1539 $x1544 $x2451))) (rewrite (= (and $x1539 $x1544 $x2451) $x2459)) (= $x2062 $x2459))))
  1883 (let ((@x2423 (monotonicity (rewrite (= $x926 (not (or $x137 $x922)))) (= $x929 (not (not (or $x137 $x922)))))))
  1884 (let ((@x2427 (trans @x2423 (rewrite (= (not (not (or $x137 $x922))) (or $x137 $x922))) (= $x929 (or $x137 $x922)))))
  1885 (let ((@x2435 (trans (monotonicity @x2427 (= $x936 (or (or $x137 $x922) $x933))) (rewrite (= (or (or $x137 $x922) $x933) (or $x137 $x922 $x933))) (= $x936 (or $x137 $x922 $x933)))))
  1886 (let ((@x2969 (monotonicity (quant-intro @x2435 (= $x939 $x2436)) (monotonicity @x2463 @x2963 (= $x2320 $x2964)) (= $x2323 (and $x2436 $x2964)))))
  1887 (let ((@x2401 (monotonicity (rewrite (= (and $x1512 (not $x1517)) (not (or $x2394 $x1517)))) (= $x1520 (not (not (or $x2394 $x1517)))))))
  1888 (let ((@x2405 (trans @x2401 (rewrite (= (not (not (or $x2394 $x1517))) (or $x2394 $x1517))) (= $x1520 (or $x2394 $x1517)))))
  1889 (let ((@x2413 (trans (monotonicity @x2405 (= $x2051 (or (or $x2394 $x1517) $x2048))) (rewrite (= (or (or $x2394 $x1517) $x2048) $x2409)) (= $x2051 $x2409))))
  1890 (let ((@x2980 (monotonicity (monotonicity @x2413 (= $x2054 $x2414)) (trans @x2969 (rewrite (= (and $x2436 $x2964) $x2973)) (= $x2323 $x2973)) (= $x2326 $x2978))))
  1891 (let ((@x2388 (rewrite (= (or (or $x136 (not $x148)) $x907) (or $x136 (not $x148) $x907)))))
  1892 (let ((@x2380 (rewrite (= (not (not (or $x136 (not $x148)))) (or $x136 (not $x148))))))
  1893 (let ((@x2378 (monotonicity (rewrite (= $x149 (not (or $x136 (not $x148))))) (= $x382 (not (not (or $x136 (not $x148))))))))
  1894 (let ((@x2385 (monotonicity (trans @x2378 @x2380 (= $x382 (or $x136 (not $x148)))) (= $x911 (or (or $x136 (not $x148)) $x907)))))
  1895 (let ((@x2393 (quant-intro (trans @x2385 @x2388 (= $x911 (or $x136 (not $x148) $x907))) (= $x914 $x2391))))
  1896 (let ((@x2991 (trans (monotonicity @x2393 @x2980 (= $x2329 (and $x2391 $x2978))) (rewrite (= (and $x2391 $x2978) $x2987)) (= $x2329 $x2987))))
  1897 (let ((@x2355 (monotonicity (rewrite (= (and (not $x1489) $x1491) (not (or $x1489 $x2348)))) (= $x1493 (not (not (or $x1489 $x2348)))))))
  1898 (let ((@x2359 (trans @x2355 (rewrite (= (not (not (or $x1489 $x2348))) (or $x1489 $x2348))) (= $x1493 (or $x1489 $x2348)))))
  1899 (let ((@x2367 (trans (monotonicity @x2359 (= $x1499 (or (or $x1489 $x2348) $x1498))) (rewrite (= (or (or $x1489 $x2348) $x1498) $x2363)) (= $x1499 $x2363))))
  1900 (let ((@x2994 (monotonicity (monotonicity @x2367 (= $x1500 $x2368)) @x2991 (= $x2332 $x2992))))
  1901 (let ((@x3004 (trans (monotonicity @x2994 (= $x2335 (and $x899 $x2992))) (rewrite (= (and $x899 $x2992) $x3000)) (= $x2335 $x3000))))
  1902 (let ((@x3010 (monotonicity (monotonicity @x3004 (= $x2338 $x3005)) (= $x2341 (and $x145 $x3005)))))
  1903 (let ((@x3020 (monotonicity (trans @x3010 (rewrite (= (and $x145 $x3005) $x3013)) (= $x2341 $x3013)) (= $x2344 $x3018))))
  1904 (let (($x1938 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  1905 (let ((?x1912 (* (- 1) ?x1911)))
  1906 (let ((?x273 (v_b_SP_G_2$ ?v1)))
  1907 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  1908 (let (($x1925 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0))))
  1909 (not $x1925)))))))
  1910 ))
  1911 (let (($x1932 (not (not (and $x1910 $x1915)))))
  1912 (let (($x1942 (and $x1932 $x1938)))
  1913 (let (($x1947 (and $x1289 $x1942)))
  1914 (let (($x1951 (or $x1898 $x1947)))
  1915 (let (($x1955 (and $x1270 $x1951)))
  1916 (let (($x1959 (or $x1871 $x1955)))
  1917 (let (($x1963 (and $x1256 $x1959)))
  1918 (let (($x1967 (or $x1848 $x1963)))
  1919 (let (($x1842 (not $x773)))
  1920 (let (($x1971 (and $x1842 $x1967)))
  1921 (let (($x1975 (or $x773 $x1971)))
  1922 (let (($x1979 (and $x652 $x1975)))
  1923 (let (($x1983 (or $x1830 $x1979)))
  1924 (let (($x1987 (and $x1247 $x1983)))
  1925 (let (($x1991 (or $x1813 $x1987)))
  1926 (let (($x1801 (and (and $x1774 $x1779) $x256 $x1214 $x1209 $x266 $x1193 $x1199)))
  1927 (let (($x1995 (and $x1801 $x1991)))
  1928 (let (($x1739 (not (or $x1733 (>= (+ ?x1727 ?x1721 ?x1735) 0)))))
  1929 (let (($x1756 (or $x1739 $x1752)))
  1930 (let (($x1713 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  1931 (let ((?x1097 (* (- 1) ?x230)))
  1932 (let ((?x1699 (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))))
  1933 (let ((?x1704 (b_G$ (pair$ (?v1!9 ?v0) ?v0))))
  1934 (let (($x1706 (= (+ ?x1704 ?x1699 ?x1097) 0)))
  1935 (let (($x1707 (and (not (>= (+ ?x1699 ?x1097) 0)) $x1706)))
  1936 (let (($x1099 (<= (+ b_Infinity$ ?x1097) 0)))
  1937 (let (($x1100 (not $x1099)))
  1938 (let (($x127 (= ?v0 b_Source$)))
  1939 (let (($x132 (not $x127)))
  1940 (let (($x1103 (and $x132 $x1100)))
  1941 (let (($x1106 (not $x1103)))
  1942 (or $x1106 $x1707))))))))))))))
  1943 ))
  1944 (let (($x1760 (and $x1713 $x1756)))
  1945 (let (($x1687 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  1946 (let ((?x1662 (* (- 1) ?x1661)))
  1947 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  1948 (let (($x1675 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0))))
  1949 (not $x1675))))))
  1950 ))
  1951 (let (($x1681 (not (not (and $x1660 $x1665)))))
  1952 (let (($x1691 (and $x1681 $x1687)))
  1953 (let (($x1764 (or $x1691 $x1760)))
  1954 (let (($x1652 (and $x1641 $x212 $x215 $x217 $x220)))
  1955 (let (($x1768 (and $x1652 $x1764)))
  1956 (let (($x1999 (or $x1768 $x1995)))
  1957 (let (($x1629 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  1958 (let ((?x1000 (* (- 1) ?x174)))
  1959 (let ((?x1613 (?v1!7 ?v0)))
  1960 (let ((?x1614 (fun_app$c v_b_SP_G_1$ ?x1613)))
  1961 (let ((?x1620 (b_G$ (pair$ ?x1613 ?v0))))
  1962 (let (($x1622 (= (+ ?x1620 ?x1614 ?x1000) 0)))
  1963 (let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  1964 (let (($x1623 (and (not (>= (+ ?x1614 ?x1000) 0)) $x1618 $x1622)))
  1965 (let (($x1002 (<= (+ b_Infinity$ ?x1000) 0)))
  1966 (let (($x1003 (not $x1002)))
  1967 (let (($x127 (= ?v0 b_Source$)))
  1968 (let (($x132 (not $x127)))
  1969 (let (($x1006 (and $x132 $x1003)))
  1970 (let (($x1009 (not $x1006)))
  1971 (or $x1009 $x1623))))))))))))))))
  1972 ))
  1973 (let (($x1594 (forall ((?v0 B_Vertex$) )(let ((?x1585 (b_G$ (pair$ (?v1!6 ?v0) ?v0))))
  1974 (let ((?x128 (v_b_SP_G_0$ ?v0)))
  1975 (let ((?x945 (* (- 1) ?x128)))
  1976 (let ((?x1578 (?v1!6 ?v0)))
  1977 (let ((?x1579 (v_b_SP_G_0$ ?x1578)))
  1978 (let (($x1587 (= (+ ?x1579 ?x945 ?x1585) 0)))
  1979 (let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  1980 (let (($x1588 (and (not (>= (+ ?x1579 ?x945) 0)) $x1583 $x1587)))
  1981 (let (($x127 (= ?v0 b_Source$)))
  1982 (let (($x132 (not $x127)))
  1983 (let (($x951 (and $x132 (not (<= (+ b_Infinity$ ?x945) 0)))))
  1984 (let (($x954 (not $x951)))
  1985 (or $x954 $x1588))))))))))))))
  1986 ))
  1987 (let (($x1632 (and $x1594 $x173 $x1051 $x1045 $x997 $x1629)))
  1988 (let (($x2003 (and $x1632 $x1999)))
  1989 (let (($x1561 (not (not (and $x1539 $x1544)))))
  1990 (let (($x1571 (and $x1561 $x1567)))
  1991 (let (($x2007 (or $x1571 $x2003)))
  1992 (let (($x2011 (and $x939 $x2007)))
  1993 (let (($x1527 (not (or $x1520 (>= (+ ?x1521 ?x1523 ?x1514) 0)))))
  1994 (let (($x2015 (or $x1527 $x2011)))
  1995 (let (($x2019 (and $x914 $x2015)))
  1996 (let (($x2023 (or $x1500 $x2019)))
  1997 (let (($x2027 (and $x899 $x2023)))
  1998 (let (($x2031 (or $x1477 $x2027)))
  1999 (let (($x1471 (not $x869)))
  2000 (let (($x2035 (and $x1471 $x2031)))
  2001 (let (($x2039 (or $x869 $x2035)))
  2002 (let (($x1925 (and (not (>= (+ ?x273 (* (- 1) ?x1911)) 0)) $x291 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) 0))))
  2003 (let (($x1935 (not $x1925)))
  2004 (let (($x2243 (= (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) 0) $x2242)))
  2005 (let (($x2240 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))))))
  2006 (let ((@x2250 (monotonicity (monotonicity (monotonicity (rewrite $x2240) $x2243) (= $x1925 $x2245)) (= $x1935 $x2248))))
  2007 (let ((@x2256 (monotonicity (rewrite (= $x1932 (and $x1910 $x1915))) (quant-intro @x2250 (= $x1938 $x2251)) (= $x1942 (and (and $x1910 $x1915) $x2251)))))
  2008 (let ((@x2264 (trans (monotonicity @x2256 (= $x1947 (and $x1289 (and (and $x1910 $x1915) $x2251)))) (rewrite (= (and $x1289 (and (and $x1910 $x1915) $x2251)) $x2260)) (= $x1947 $x2260))))
  2009 (let ((@x2273 (monotonicity (monotonicity (monotonicity @x2264 (= $x1951 $x2265)) (= $x1955 $x2268)) (= $x1959 $x2271))))
  2010 (let ((@x2282 (monotonicity (rewrite (= $x1842 $x297)) (monotonicity (monotonicity @x2273 (= $x1963 $x2274)) (= $x1967 $x2277)) (= $x1971 $x2280))))
  2011 (let ((@x2291 (monotonicity (monotonicity (monotonicity @x2282 (= $x1975 $x2283)) (= $x1979 $x2286)) (= $x1983 $x2289))))
  2012 (let ((@x2300 (monotonicity (monotonicity (monotonicity @x2291 (= $x1987 $x2292)) (= $x1991 $x2295)) (= $x1995 (and $x1801 $x2295)))))
  2013 (let ((@x2211 (monotonicity (rewrite (= (+ ?x1727 ?x1721 ?x1735) ?x2206)) (= (>= (+ ?x1727 ?x1721 ?x1735) 0) $x2209))))
  2014 (let ((@x2214 (monotonicity @x2211 (= (or $x1733 (>= (+ ?x1727 ?x1721 ?x1735) 0)) $x2212))))
  2015 (let (($x2197 (and (not $x2176) $x2192)))
  2016 (let (($x2200 (or $x1106 $x2197)))
  2017 (let ((?x1097 (* (- 1) ?x230)))
  2018 (let ((?x1699 (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))))
  2019 (let ((?x1704 (b_G$ (pair$ (?v1!9 ?0) ?0))))
  2020 (let (($x1706 (= (+ ?x1704 ?x1699 ?x1097) 0)))
  2021 (let (($x1707 (and (not (>= (+ ?x1699 ?x1097) 0)) $x1706)))
  2022 (let (($x1710 (or $x1106 $x1707)))
  2023 (let ((@x2189 (monotonicity (rewrite (= (+ ?x1704 ?x1699 ?x1097) (+ ?x1097 ?x1699 ?x1704))) (= $x1706 (= (+ ?x1097 ?x1699 ?x1704) 0)))))
  2024 (let ((@x2196 (trans @x2189 (rewrite (= (= (+ ?x1097 ?x1699 ?x1704) 0) $x2192)) (= $x1706 $x2192))))
  2025 (let ((@x2173 (monotonicity (rewrite (= (+ ?x1699 ?x1097) (+ ?x1097 ?x1699))) (= (>= (+ ?x1699 ?x1097) 0) (>= (+ ?x1097 ?x1699) 0)))))
  2026 (let ((@x2180 (trans @x2173 (rewrite (= (>= (+ ?x1097 ?x1699) 0) $x2176)) (= (>= (+ ?x1699 ?x1097) 0) $x2176))))
  2027 (let ((@x2199 (monotonicity (monotonicity @x2180 (= (not (>= (+ ?x1699 ?x1097) 0)) (not $x2176))) @x2196 (= $x1707 $x2197))))
  2028 (let ((@x2223 (monotonicity (quant-intro (monotonicity @x2199 (= $x1710 $x2200)) (= $x1713 $x2203)) (monotonicity (monotonicity @x2214 (= $x1739 $x2215)) (= $x1756 $x2218)) (= $x1760 $x2221))))
  2029 (let (($x1675 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) 0))))
  2030 (let (($x1684 (not $x1675)))
  2031 (let (($x2146 (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) (+ ?x230 ?x1662 (b_G$ (pair$ ?0 ?v0!8))))))
  2032 (let ((@x2150 (monotonicity (rewrite $x2146) (= (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) 0) $x2148))))
  2033 (let ((@x2159 (quant-intro (monotonicity (monotonicity @x2150 (= $x1675 $x2151)) (= $x1684 $x2154)) (= $x1687 $x2157))))
  2034 (let ((@x2162 (monotonicity (rewrite (= $x1681 (and $x1660 $x1665))) @x2159 (= $x1691 (and (and $x1660 $x1665) $x2157)))))
  2035 (let ((@x2167 (trans @x2162 (rewrite (= (and (and $x1660 $x1665) $x2157) $x2163)) (= $x1691 $x2163))))
  2036 (let ((@x2229 (monotonicity (monotonicity @x2167 @x2223 (= $x1764 $x2224)) (= $x1768 (and $x1652 $x2224)))))
  2037 (let ((@x2308 (monotonicity (trans @x2229 (rewrite (= (and $x1652 $x2224) $x2230)) (= $x1768 $x2230)) (trans @x2300 (rewrite (= (and $x1801 $x2295) $x2301)) (= $x1995 $x2301)) (= $x1999 $x2306))))
  2038 (let ((?x1000 (* (- 1) ?x174)))
  2039 (let ((?x1614 (fun_app$c v_b_SP_G_1$ ?x1613)))
  2040 (let ((?x1620 (b_G$ (pair$ ?x1613 ?0))))
  2041 (let (($x1622 (= (+ ?x1620 ?x1614 ?x1000) 0)))
  2042 (let (($x1623 (and (not (>= (+ ?x1614 ?x1000) 0)) $x1618 $x1622)))
  2043 (let (($x1626 (or $x1009 $x1623)))
  2044 (let ((@x2126 (monotonicity (rewrite (= (+ ?x1620 ?x1614 ?x1000) (+ ?x1000 ?x1614 ?x1620))) (= $x1622 (= (+ ?x1000 ?x1614 ?x1620) 0)))))
  2045 (let ((@x2133 (trans @x2126 (rewrite (= (= (+ ?x1000 ?x1614 ?x1620) 0) $x2129)) (= $x1622 $x2129))))
  2046 (let ((@x2110 (monotonicity (rewrite (= (+ ?x1614 ?x1000) (+ ?x1000 ?x1614))) (= (>= (+ ?x1614 ?x1000) 0) (>= (+ ?x1000 ?x1614) 0)))))
  2047 (let ((@x2117 (trans @x2110 (rewrite (= (>= (+ ?x1000 ?x1614) 0) $x2113)) (= (>= (+ ?x1614 ?x1000) 0) $x2113))))
  2048 (let ((@x2136 (monotonicity (monotonicity @x2117 (= (not (>= (+ ?x1614 ?x1000) 0)) (not $x2113))) @x2133 (= $x1623 $x2134))))
  2049 (let (($x1587 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128) (b_G$ (pair$ ?x1578 ?0))) 0)))
  2050 (let (($x1588 (and (not (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)) $x1583 $x1587)))
  2051 (let (($x1591 (or $x954 $x1588)))
  2052 (let (($x2086 (= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578) (b_G$ (pair$ ?x1578 ?0))) 0)))
  2053 (let (($x2084 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128) (b_G$ (pair$ ?x1578 ?0))) (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578) (b_G$ (pair$ ?x1578 ?0))))))
  2054 (let ((@x2095 (trans (monotonicity (rewrite $x2084) (= $x1587 $x2086)) (rewrite (= $x2086 $x2091)) (= $x1587 $x2091))))
  2055 (let (($x2081 (= (not (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)) (not $x2075))))
  2056 (let (($x1581 (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)))
  2057 (let (($x2068 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)))))
  2058 (let ((@x2072 (monotonicity (rewrite $x2068) (= $x1581 (>= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)) 0)))))
  2059 (let ((@x2079 (trans @x2072 (rewrite (= (>= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)) 0) $x2075)) (= $x1581 $x2075))))
  2060 (let ((@x2101 (monotonicity (monotonicity (monotonicity @x2079 $x2081) @x2095 (= $x1588 $x2096)) (= $x1591 $x2099))))
  2061 (let ((@x2311 (monotonicity (quant-intro @x2101 (= $x1594 $x2102)) (quant-intro (monotonicity @x2136 (= $x1626 $x2137)) (= $x1629 $x2140)) (= $x1632 (and $x2102 $x173 $x1051 $x1045 $x997 $x2140)))))
  2062 (let ((@x2314 (monotonicity @x2311 @x2308 (= $x2003 (and (and $x2102 $x173 $x1051 $x1045 $x997 $x2140) $x2306)))))
  2063 (let ((@x2319 (trans @x2314 (rewrite (= (and (and $x2102 $x173 $x1051 $x1045 $x997 $x2140) $x2306) $x2315)) (= $x2003 $x2315))))
  2064 (let ((@x2061 (monotonicity (rewrite (= $x1561 (and $x1539 $x1544))) (= $x1571 (and (and $x1539 $x1544) $x1567)))))
  2065 (let ((@x2066 (trans @x2061 (rewrite (= (and (and $x1539 $x1544) $x1567) $x2062)) (= $x1571 $x2062))))
  2066 (let ((@x2325 (monotonicity (monotonicity @x2066 @x2319 (= $x2007 $x2320)) (= $x2011 $x2323))))
  2067 (let ((@x2050 (monotonicity (rewrite (= (+ ?x1521 ?x1523 ?x1514) ?x2045)) (= (>= (+ ?x1521 ?x1523 ?x1514) 0) $x2048))))
  2068 (let ((@x2053 (monotonicity @x2050 (= (or $x1520 (>= (+ ?x1521 ?x1523 ?x1514) 0)) $x2051))))
  2069 (let ((@x2328 (monotonicity (monotonicity @x2053 (= $x1527 $x2054)) @x2325 (= $x2015 $x2326))))
  2070 (let ((@x2337 (monotonicity (monotonicity (monotonicity @x2328 (= $x2019 $x2329)) (= $x2023 $x2332)) (= $x2027 $x2335))))
  2071 (let ((@x2343 (monotonicity (rewrite (= $x1471 $x145)) (monotonicity @x2337 (= $x2031 $x2338)) (= $x2035 $x2341))))
  2072 (let (($x1926 (exists ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  2073 (let ((?x1912 (* (- 1) ?x1911)))
  2074 (let ((?x273 (v_b_SP_G_2$ ?v1)))
  2075 (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  2076 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0)))))))
  2077 ))
  2078 (let ((@x1944 (nnf-neg (refl (~ $x1932 $x1932)) (nnf-neg (refl (~ $x1935 $x1935)) (~ (not $x1926) $x1938)) (~ (not (or (not (and $x1910 $x1915)) $x1926)) $x1942))))
  2079 (let ((@x1946 (trans (sk (~ (not $x1329) (not (or (not (and $x1910 $x1915)) $x1926)))) @x1944 (~ (not $x1329) $x1942))))
  2080 (let ((@x1907 (nnf-neg (nnf-pos (refl (~ $x1286 $x1286)) (~ $x1289 $x1289)) (~ (not $x1292) $x1289))))
  2081 (let ((@x1954 (nnf-neg (sk (~ $x1292 $x1898)) (nnf-neg @x1907 @x1946 (~ (not $x1332) $x1947)) (~ (not $x1335) $x1951))))
  2082 (let ((@x1880 (nnf-neg (nnf-pos (refl (~ $x1267 $x1267)) (~ $x1270 $x1270)) (~ (not $x1273) $x1270))))
  2083 (let ((@x1962 (nnf-neg (sk (~ $x1273 $x1871)) (nnf-neg @x1880 @x1954 (~ (not $x1338) $x1955)) (~ (not $x1341) $x1959))))
  2084 (let ((@x1857 (nnf-neg (nnf-pos (refl (~ (>= ?x273 0) (>= ?x273 0))) (~ $x1256 $x1256)) (~ (not $x1259) $x1256))))
  2085 (let ((@x1970 (nnf-neg (sk (~ $x1259 $x1848)) (nnf-neg @x1857 @x1962 (~ (not $x1344) $x1963)) (~ (not $x1347) $x1967))))
  2086 (let ((@x1978 (nnf-neg (refl (~ $x773 $x773)) (nnf-neg (refl (~ $x1842 $x1842)) @x1970 (~ (not $x1350) $x1971)) (~ (not $x1353) $x1975))))
  2087 (let ((@x1839 (nnf-neg (nnf-pos (refl (~ (or $x300 $x278) (or $x300 $x278))) (~ $x652 $x652)) (~ (not $x785) $x652))))
  2088 (let ((@x1986 (nnf-neg (sk (~ $x785 $x1830)) (nnf-neg @x1839 @x1978 (~ (not $x1356) $x1979)) (~ (not $x1359) $x1983))))
  2089 (let ((@x1822 (nnf-neg (nnf-pos (refl (~ $x1243 $x1243)) (~ $x1247 $x1247)) (~ (not $x1250) $x1247))))
  2090 (let ((@x1994 (nnf-neg (sk (~ $x1250 $x1813)) (nnf-neg @x1822 @x1986 (~ (not $x1362) $x1987)) (~ (not $x1365) $x1991))))
  2091 (let ((@x1803 (monotonicity (sk (~ $x1080 (and $x1774 $x1779))) (refl (~ $x256 $x256)) (refl (~ $x1214 $x1214)) (nnf-pos (refl (~ $x1206 $x1206)) (~ $x1209 $x1209)) (refl (~ $x266 $x266)) (nnf-pos (refl (~ $x1190 $x1190)) (~ $x1193 $x1193)) (nnf-pos (refl (~ $x1196 $x1196)) (~ $x1199 $x1199)) (~ $x1235 $x1801))))
  2092 (let ((@x1998 (nnf-neg (nnf-neg @x1803 (~ (not $x1240) $x1801)) @x1994 (~ (not $x1368) $x1995))))
  2093 (let ((@x1748 (nnf-neg (nnf-pos (refl (~ $x1143 $x1143)) (~ $x1146 $x1146)) (~ (not $x1149) $x1146))))
  2094 (let ((@x1759 (nnf-neg (sk (~ $x1149 $x1739)) (nnf-neg @x1748 (refl (~ $x1749 $x1749)) (~ (not $x1152) $x1752)) (~ (not $x1155) $x1756))))
  2095 (let ((@x1715 (nnf-pos (monotonicity (refl (~ $x1106 $x1106)) (sk (~ $x1122 $x1707)) (~ $x1125 $x1710)) (~ $x1128 $x1713))))
  2096 (let ((@x1763 (nnf-neg (nnf-neg @x1715 (~ (not $x1131) $x1713)) @x1759 (~ (not $x1158) $x1760))))
  2097 (let (($x1676 (exists ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  2098 (let ((?x1662 (* (- 1) ?x1661)))
  2099 (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  2100 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0))))))
  2101 ))
  2102 (let ((@x1693 (nnf-neg (refl (~ $x1681 $x1681)) (nnf-neg (refl (~ $x1684 $x1684)) (~ (not $x1676) $x1687)) (~ (not (or (not (and $x1660 $x1665)) $x1676)) $x1691))))
  2103 (let ((@x1695 (trans (sk (~ $x1131 (not (or (not (and $x1660 $x1665)) $x1676)))) @x1693 (~ $x1131 $x1691))))
  2104 (let ((@x1654 (monotonicity (nnf-neg (refl (~ (not $x1077) (not $x1077))) (~ $x1083 $x1641)) (refl (~ $x212 $x212)) (refl (~ $x215 $x215)) (refl (~ $x217 $x217)) (refl (~ $x220 $x220)) (~ $x1089 $x1652))))
  2105 (let ((@x1771 (nnf-neg (nnf-neg @x1654 (~ (not $x1094) $x1652)) (nnf-neg @x1695 @x1763 (~ (not $x1161) $x1764)) (~ (not $x1164) $x1768))))
  2106 (let ((@x1631 (nnf-pos (monotonicity (refl (~ $x1009 $x1009)) (sk (~ $x1031 $x1623)) (~ $x1034 $x1626)) (~ $x1037 $x1629))))
  2107 (let ((@x1596 (nnf-pos (monotonicity (refl (~ $x954 $x954)) (sk (~ $x974 $x1588)) (~ $x977 $x1591)) (~ $x980 $x1594))))
  2108 (let ((@x1634 (monotonicity @x1596 (refl (~ $x173 $x173)) (nnf-pos (refl (~ (>= ?x174 0) (>= ?x174 0))) (~ $x1051 $x1051)) (nnf-pos (refl (~ $x1042 $x1042)) (~ $x1045 $x1045)) (nnf-pos (refl (~ $x994 $x994)) (~ $x997 $x997)) @x1631 (~ $x1069 $x1632))))
  2109 (let ((@x2006 (nnf-neg (nnf-neg @x1634 (~ (not $x1074) $x1632)) (nnf-neg @x1771 @x1998 (~ (not $x1371) $x1999)) (~ (not $x1374) $x2003))))
  2110 (let (($x1555 (exists ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  2111 (let ((?x1541 (* (- 1) ?x1540)))
  2112 (let ((?x128 (v_b_SP_G_0$ ?v1)))
  2113 (let (($x136 (v_b_Visited_G_0$ ?v1)))
  2114 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))
  2115 ))
  2116 (let ((@x1573 (nnf-neg (refl (~ $x1561 $x1561)) (nnf-neg (refl (~ $x1564 $x1564)) (~ (not $x1555) $x1567)) (~ (not (or (not (and $x1539 $x1544)) $x1555)) $x1571))))
  2117 (let ((@x1575 (trans (sk (~ (not $x980) (not (or (not (and $x1539 $x1544)) $x1555)))) @x1573 (~ (not $x980) $x1571))))
  2118 (let ((@x1536 (nnf-neg (nnf-pos (refl (~ $x936 $x936)) (~ $x939 $x939)) (~ (not $x942) $x939))))
  2119 (let ((@x2014 (nnf-neg @x1536 (nnf-neg @x1575 @x2006 (~ (not $x1377) $x2007)) (~ (not $x1380) $x2011))))
  2120 (let ((@x1509 (nnf-neg (nnf-pos (refl (~ $x911 $x911)) (~ $x914 $x914)) (~ (not $x917) $x914))))
  2121 (let ((@x2022 (nnf-neg @x1509 (nnf-neg (sk (~ $x942 $x1527)) @x2014 (~ (not $x1383) $x2015)) (~ (not $x1386) $x2019))))
  2122 (let ((@x1486 (nnf-neg (nnf-pos (refl (~ (>= ?x128 0) (>= ?x128 0))) (~ $x899 $x899)) (~ (not $x902) $x899))))
  2123 (let ((@x2030 (nnf-neg @x1486 (nnf-neg (sk (~ $x917 $x1500)) @x2022 (~ (not $x1389) $x2023)) (~ (not $x1392) $x2027))))
  2124 (let ((@x2038 (nnf-neg (refl (~ $x1471 $x1471)) (nnf-neg (sk (~ $x902 $x1477)) @x2030 (~ (not $x1395) $x2031)) (~ (not $x1398) $x2035))))
  2125 (let ((@x2042 (mp~ (not-or-elim (mp (asserted $x349) @x1411 $x1407) (not $x1401)) (nnf-neg (refl (~ $x869 $x869)) @x2038 (~ (not $x1401) $x2039)) $x2039)))
  2126 (let ((@x3878 (mp (mp (mp @x2042 (monotonicity @x2343 (= $x2039 $x2344)) $x2344) @x3020 $x3018) (monotonicity @x3874 (= $x3018 $x3875)) $x3875)))
  2127 (let ((@x4209 (unit-resolution @x3878 (lemma (unit-resolution @x5763 @x3492 (hypothesis $x869) false) $x145) $x3872)))
  2128 (let ((@x4211 (unit-resolution (def-axiom (or $x3866 $x1477 $x3860)) (unit-resolution (def-axiom (or $x3869 $x3863)) @x4209 $x3863) (lemma @x6353 $x1476) $x3860)))
  2129 (let ((@x6165 (unit-resolution ((_ quant-inst ?v0!2) (or (not $x3500) $x2348)) @x3505 (hypothesis $x1491) false)))
  2130 (let ((@x4215 (unit-resolution (def-axiom (or $x3854 $x2368 $x3848)) (unit-resolution (def-axiom (or $x2363 $x1491)) (lemma @x6165 $x2348) $x2363) (unit-resolution (def-axiom (or $x3857 $x3851)) @x4211 $x3851) $x3848)))
  2131 (let ((@x4217 (unit-resolution (def-axiom (or $x3842 $x2414 $x3836)) (unit-resolution (def-axiom (or $x3845 $x3839)) @x4215 $x3839) (unit-resolution (def-axiom (or $x2409 $x1512)) (lemma @x3073 $x2394) $x2409) $x3836)))
  2132 (let ((@x4219 (unit-resolution (def-axiom (or $x3830 $x3544 $x3824)) (unit-resolution (def-axiom (or $x3833 $x3827)) @x4217 $x3827) (lemma @x5735 $x3541) $x3824)))
  2133 (let ((@x5955 (unit-resolution (def-axiom (or $x3821 $x3556)) @x4219 $x3556)))
  2134 (let (($x4373 (or $x3561 $x3904)))
  2135 (let ((@x4363 ((_ quant-inst v_b_v_G_1$) $x4373)))
  2136 (let ((@x5049 (unit-resolution @x4363 @x5955 $x3904)))
  2137 (let ((?x5210 (pair$ v_b_v_G_1$ ?v0!15)))
  2138 (let ((?x5018 (b_G$ ?x5210)))
  2139 (let ((?x4456 (* (- 1) ?x1846)))
  2140 (let ((?x6267 (+ ?x257 ?x4456 ?x5018)))
  2141 (let (($x5853 (<= ?x6267 0)))
  2142 (let (($x6128 (= ?x6267 0)))
  2143 (let (($x6822 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!15)) ?x5018) 0)))
  2144 (let (($x4911 (<= (+ b_Infinity$ (* (- 1) ?x5018)) 0)))
  2145 (let (($x6706 (or $x4911 $x6822)))
  2146 (let (($x6711 (not $x6706)))
  2147 (let ((@x5703 (hypothesis $x1848)))
  2148 (let (($x5745 (or (not (>= (+ ?x1846 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!15))) 0)) $x1847)))
  2149 (let ((?x4480 (fun_app$c v_b_SP_G_1$ ?v0!15)))
  2150 (let (($x5850 (>= ?x4480 0)))
  2151 (let ((@x5698 ((_ th-lemma arith farkas -1 1 1) @x5703 (hypothesis (>= (+ ?x1846 (* (- 1) ?x4480)) 0)) (unit-resolution ((_ quant-inst ?v0!15) (or $x3561 $x5850)) @x5955 $x5850) false)))
  2152 (let ((@x6183 (unit-resolution (lemma @x5698 $x5745) @x5703 (not (>= (+ ?x1846 (* (- 1) ?x4480)) 0)))))
  2153 (let ((@x6242 ((_ th-lemma arith triangle-eq) (or (not (= ?x1846 ?x4480)) (>= (+ ?x1846 (* (- 1) ?x4480)) 0)))))
  2154 (let ((@x4529 (unit-resolution (def-axiom (or $x3821 $x173)) @x4219 $x173)))
  2155 (let ((@x5142 (hypothesis $x3657)))
  2156 (let ((@x4265 (unit-resolution (def-axiom (or $x3654 $x217)) @x5142 $x217)))
  2157 (let ((?x5667 (fun_app$c v_b_SP_G_1$ ?v1!10)))
  2158 (let ((?x5152 (fun_app$c v_b_SP_G_1$ ?v0!11)))
  2159 (let ((?x5630 (* (- 1) ?x5152)))
  2160 (let (($x4072 (>= (+ ?x1727 ?x5630 ?x5667) 0)))
  2161 (let (($x5699 (fun_app$ v_b_Visited_G_1$ ?v1!10)))
  2162 (let (($x1725 (not $x1724)))
  2163 (let ((@x4170 (hypothesis $x2650)))
  2164 (let (($x4150 (>= (+ ?x1721 (* (- 1) ?x5667)) 0)))
  2165 (let ((@x4195 (monotonicity (symm (hypothesis $x217) (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x5667 ?x1721))))
  2166 (let ((@x4203 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1721 ?x5667)) $x4150)) (symm @x4195 (= ?x1721 ?x5667)) $x4150)))
  2167 (let (($x4167 (or (not (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)) (not $x4150) $x1724)))
  2168 (let ((@x4163 ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x4150) (hypothesis (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)) (hypothesis $x1725) false)))
  2169 (let ((@x4204 (unit-resolution (lemma @x4163 $x4167) @x4203 (unit-resolution (def-axiom (or $x2645 $x1725)) @x4170 $x1725) (not (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)))))
  2170 (let (($x6045 (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)))
  2171 (let (($x5247 (or $x5699 $x6045)))
  2172 (let ((@x3048 (mp ((_ quant-inst ?v1!10) (or $x3595 $x5247)) (rewrite (= (or $x3595 $x5247) (or $x3595 $x5699 $x6045))) (or $x3595 $x5699 $x6045))))
  2173 (let ((@x4206 (unit-resolution (unit-resolution @x3048 (hypothesis $x3590) $x5247) @x4204 $x5699)))
  2174 (let ((@x4223 (unit-resolution (def-axiom (or $x3821 $x3573)) @x4219 $x3573)))
  2175 (let (($x5758 (not $x5699)))
  2176 (let (($x4064 (or $x3578 $x5758 $x1730 $x4072)))
  2177 (let (($x5845 (or $x5758 $x1730 (>= (+ ?x1727 ?x5667 ?x5630) 0))))
  2178 (let (($x4065 (or $x3578 $x5845)))
  2179 (let ((@x4061 (monotonicity (rewrite (= (+ ?x1727 ?x5667 ?x5630) (+ ?x1727 ?x5630 ?x5667))) (= (>= (+ ?x1727 ?x5667 ?x5630) 0) $x4072))))
  2180 (let ((@x4102 (monotonicity (monotonicity @x4061 (= $x5845 (or $x5758 $x1730 $x4072))) (= $x4065 (or $x3578 (or $x5758 $x1730 $x4072))))))
  2181 (let ((@x4106 (trans @x4102 (rewrite (= (or $x3578 (or $x5758 $x1730 $x4072)) $x4064)) (= $x4065 $x4064))))
  2182 (let ((@x4225 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x4065) @x4106 $x4064) @x4223 (unit-resolution (def-axiom (or $x2645 (not $x1730))) @x4170 (not $x1730)) (or $x5758 $x4072))))
  2183 (let ((@x4228 (monotonicity (symm (hypothesis $x217) (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x5152 ?x1734))))
  2184 (let ((@x4234 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1734 ?x5152)) (<= (+ ?x1734 ?x5630) 0))) (symm @x4228 (= ?x1734 ?x5152)) (<= (+ ?x1734 ?x5630) 0))))
  2185 (let ((@x4235 ((_ th-lemma arith farkas -1 -1 1 1) @x4234 (unit-resolution (def-axiom (or $x2645 (not $x2209))) @x4170 (not $x2209)) @x4203 (unit-resolution @x4225 @x4206 $x4072) false)))
  2186 (let ((@x4885 (unit-resolution (lemma @x4235 (or $x2645 $x3595 $x2708)) @x4265 (unit-resolution (def-axiom (or $x3654 $x3590)) @x5142 $x3590) $x2645)))
  2187 (let (($x4595 (<= (+ ?x1661 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!7 ?v0!8)))) 0)))
  2188 (let ((?x3922 (?v1!7 ?v0!8)))
  2189 (let ((?x3910 (fun_app$c v_b_SP_G_1$ ?x3922)))
  2190 (let ((?x3989 (* (- 1) ?x3910)))
  2191 (let ((?x3142 (fun_app$c v_b_SP_G_1$ ?v0!8)))
  2192 (let (($x3936 (<= (+ ?x3142 ?x3989) 0)))
  2193 (let (($x4266 (not $x3936)))
  2194 (let ((?x3945 (pair$ ?x3922 ?v0!8)))
  2195 (let ((?x3946 (b_G$ ?x3945)))
  2196 (let ((?x3031 (* (- 1) ?x3946)))
  2197 (let ((?x3056 (+ ?x3142 ?x3989 ?x3031)))
  2198 (let (($x3032 (= ?x3056 0)))
  2199 (let (($x3033 (not $x3032)))
  2200 (let (($x3034 (or $x3936 (not (fun_app$ v_b_Visited_G_1$ ?x3922)) $x3033)))
  2201 (let (($x3049 (not $x3034)))
  2202 (let ((@x3978 (hypothesis $x1665)))
  2203 (let ((?x3144 (* (- 1) ?x3142)))
  2204 (let ((?x3984 (+ ?x1661 ?x3144)))
  2205 (let (($x3969 (>= ?x3984 0)))
  2206 (let ((@x4544 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1661 ?x3142)) $x3969)) (monotonicity @x4265 (= ?x1661 ?x3142)) $x3969)))
  2207 (let ((@x3973 ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x3969) (hypothesis (<= (+ b_Infinity$ ?x3144) 0)) @x3978 false)))
  2208 (let ((@x4027 (lemma @x3973 (or (not (<= (+ b_Infinity$ ?x3144) 0)) (not $x3969) $x1664))))
  2209 (let ((@x4552 (unit-resolution @x4027 @x4544 @x3978 (not (<= (+ b_Infinity$ ?x3144) 0)))))
  2210 (let ((@x3425 (def-axiom (or $x3630 $x1749))))
  2211 (let ((@x4543 (unit-resolution @x3425 (trans (monotonicity @x4265 (= ?x245 ?x172)) @x4529 $x246) $x3630)))
  2212 (let ((@x3134 (def-axiom (or $x3639 $x2650 $x3633))))
  2213 (let ((@x3138 (def-axiom (or $x3642 $x3636))))
  2214 (let ((@x3120 (def-axiom (or $x3651 $x3611 $x3645))))
  2215 (let ((@x4905 (unit-resolution @x3120 (unit-resolution @x3138 (unit-resolution @x3134 @x4543 @x4885 $x3639) $x3642) (unit-resolution (def-axiom (or $x3654 $x3648)) @x5142 $x3648) $x3611)))
  2216 (let ((@x4545 (unit-resolution (def-axiom (or $x3821 $x3581)) @x4219 $x3581)))
  2217 (let (($x4738 (= (or $x3586 (or $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049)) (or $x3586 $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049))))
  2218 (let ((@x4737 ((_ quant-inst ?v0!8) (or $x3586 (or $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049)))))
  2219 (let ((@x5209 (mp @x4737 (rewrite $x4738) (or $x3586 $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049))))
  2220 (let ((@x4406 (unit-resolution @x5209 @x4545 (unit-resolution (def-axiom (or $x3608 $x1660)) @x4905 $x1660) @x4552 $x3049)))
  2221 (let ((?x3126 (fun_app$c v_b_SP_G_3$ ?x3922)))
  2222 (let ((?x4327 (+ ?x3126 ?x3989)))
  2223 (let (($x4402 (<= ?x4327 0)))
  2224 (let ((@x4541 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3126 ?x3910)) $x4402)) (monotonicity @x4265 (= ?x3126 ?x3910)) $x4402)))
  2225 (let ((@x4852 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x3969) (hypothesis $x4595) (hypothesis $x4402) (hypothesis $x4266) false)))
  2226 (let ((@x4542 (unit-resolution (lemma @x4852 (or (not $x4595) (not $x3969) (not $x4402) $x3936)) @x4544 @x4541 (unit-resolution (def-axiom (or $x3034 $x4266)) @x4406 $x4266) (not $x4595))))
  2227 (let ((?x5182 (* (- 1) ?x3126)))
  2228 (let ((?x4179 (+ ?x1661 ?x5182 ?x3031)))
  2229 (let (($x5089 (= ?x4179 0)))
  2230 (let (($x3918 (>= ?x4179 0)))
  2231 (let (($x5284 (>= ?x3056 0)))
  2232 (let ((@x4264 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3033 $x5284)) (unit-resolution (def-axiom (or $x3034 $x3032)) @x4406 $x3032) $x5284)))
  2233 (let ((@x5267 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x3918 (not $x5284) (not $x3969) (not $x4402))) @x4264 @x4544 @x4541 $x3918)))
  2234 (let (($x3917 (<= ?x4179 0)))
  2235 (let (($x4407 (>= ?x4327 0)))
  2236 (let ((@x4549 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3126 ?x3910)) $x4407)) (monotonicity @x4265 (= ?x3126 ?x3910)) $x4407)))
  2237 (let (($x3979 (<= ?x3984 0)))
  2238 (let ((@x6239 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1661 ?x3142)) $x3979)) (monotonicity @x4265 (= ?x1661 ?x3142)) $x3979)))
  2239 (let (($x5179 (<= ?x3056 0)))
  2240 (let ((@x3960 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3033 $x5179)) (unit-resolution (def-axiom (or $x3034 $x3032)) @x4406 $x3032) $x5179)))
  2241 (let ((@x4631 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x3917 (not $x5179) (not $x3979) (not $x4407))) @x3960 @x6239 @x4549 $x3917)))
  2242 (let ((@x4760 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x5089 (not $x3917) (not $x3918))) @x4631 @x5267 $x5089)))
  2243 (let (($x4746 (not $x5089)))
  2244 (let (($x4181 (or $x4595 $x4746)))
  2245 (let (($x3184 (or $x3605 $x4595 $x4746)))
  2246 (let (($x5980 (>= (+ ?x3126 ?x1662) 0)))
  2247 (let (($x5913 (or $x5980 (not (= (+ ?x3126 ?x1662 ?x3946) 0)))))
  2248 (let (($x3976 (or $x3605 $x5913)))
  2249 (let ((@x4178 (monotonicity (rewrite (= (+ ?x3126 ?x1662 ?x3946) (+ ?x1662 ?x3126 ?x3946))) (= (= (+ ?x3126 ?x1662 ?x3946) 0) (= (+ ?x1662 ?x3126 ?x3946) 0)))))
  2250 (let ((@x4745 (trans @x4178 (rewrite (= (= (+ ?x1662 ?x3126 ?x3946) 0) $x5089)) (= (= (+ ?x3126 ?x1662 ?x3946) 0) $x5089))))
  2251 (let ((@x5181 (monotonicity (rewrite (= (+ ?x3126 ?x1662) (+ ?x1662 ?x3126))) (= $x5980 (>= (+ ?x1662 ?x3126) 0)))))
  2252 (let ((@x4634 (trans @x5181 (rewrite (= (>= (+ ?x1662 ?x3126) 0) $x4595)) (= $x5980 $x4595))))
  2253 (let ((@x4184 (monotonicity @x4634 (monotonicity @x4745 (= (not (= (+ ?x3126 ?x1662 ?x3946) 0)) $x4746)) (= $x5913 $x4181))))
  2254 (let ((@x3916 (trans (monotonicity @x4184 (= $x3976 (or $x3605 $x4181))) (rewrite (= (or $x3605 $x4181) $x3184)) (= $x3976 $x3184))))
  2255 (let ((@x5060 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!8)) $x3976) @x3916 $x3184) (unit-resolution (def-axiom (or $x3608 $x3600)) @x4905 $x3600) $x4181)))
  2256 (let ((@x6153 (unit-resolution (lemma (unit-resolution @x5060 @x4760 @x4542 false) (or $x3654 $x1664)) @x5142 $x1664)))
  2257 (let ((@x6273 (unit-resolution @x3120 (unit-resolution (def-axiom (or $x3608 $x1665)) @x6153 $x3608) (unit-resolution (def-axiom (or $x3654 $x3648)) @x5142 $x3648) $x3645)))
  2258 (let ((@x5939 (unit-resolution @x3425 (unit-resolution @x3134 (unit-resolution @x3138 @x6273 $x3636) @x4885 $x3633) $x1749)))
  2259 (let ((@x5914 (unit-resolution @x5939 (trans (monotonicity @x4265 (= ?x245 ?x172)) @x4529 $x246) false)))
  2260 (let ((@x6386 (unit-resolution (def-axiom (or $x3818 $x3657 $x3812)) (unit-resolution (def-axiom (or $x3821 $x3815)) @x4219 $x3815) $x3815)))
  2261 (let ((@x6181 (unit-resolution @x6386 (lemma @x5914 $x3654) $x3812)))
  2262 (let ((@x5944 (unit-resolution (def-axiom (or $x3809 $x3678)) @x6181 $x3678)))
  2263 (let (($x4481 (= ?x1846 ?x4480)))
  2264 (let (($x3188 (or $x3683 $x6711 $x4481)))
  2265 (let (($x5285 (or (not (or $x4911 (<= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) 0))) $x4481)))
  2266 (let (($x6363 (or $x3683 $x5285)))
  2267 (let (($x5370 (<= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) 0)))
  2268 (let ((@x4465 (rewrite (= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) (+ ?x1173 ?x4480 (* (- 1) ?x5018))))))
  2269 (let ((@x6818 (monotonicity @x4465 (= $x5370 (<= (+ ?x1173 ?x4480 (* (- 1) ?x5018)) 0)))))
  2270 (let ((@x6705 (trans @x6818 (rewrite (= (<= (+ ?x1173 ?x4480 (* (- 1) ?x5018)) 0) $x6822)) (= $x5370 $x6822))))
  2271 (let ((@x5840 (monotonicity (monotonicity @x6705 (= (or $x4911 $x5370) $x6706)) (= (not (or $x4911 $x5370)) $x6711))))
  2272 (let ((@x6545 (monotonicity (monotonicity @x5840 (= $x5285 (or $x6711 $x4481))) (= $x6363 (or $x3683 (or $x6711 $x4481))))))
  2273 (let ((@x4811 (trans @x6545 (rewrite (= (or $x3683 (or $x6711 $x4481)) $x3188)) (= $x6363 $x3188))))
  2274 (let ((@x6726 (unit-resolution (mp ((_ quant-inst ?v0!15) $x6363) @x4811 $x3188) @x5944 (unit-resolution @x6242 @x6183 (not $x4481)) $x6711)))
  2275 (let ((@x6470 (unit-resolution (def-axiom (or $x6706 (not $x4911))) (hypothesis $x6711) (not $x4911))))
  2276 (let ((@x6494 (unit-resolution (def-axiom (or $x6706 (not $x6822))) (hypothesis $x6711) (not $x6822))))
  2277 (let (($x6511 (or $x4911 $x6822 $x6128)))
  2278 (let ((@x6588 (unit-resolution (def-axiom (or $x3809 $x3670)) @x6181 $x3670)))
  2279 (let (($x6235 (or $x3675 $x4911 $x6822 $x6128)))
  2280 (let (($x6510 (or $x4911 $x5370 (= (+ ?x257 ?x5018 ?x4456) 0))))
  2281 (let (($x6263 (or $x3675 $x6510)))
  2282 (let ((@x6480 (monotonicity (rewrite (= (+ ?x257 ?x5018 ?x4456) ?x6267)) (= (= (+ ?x257 ?x5018 ?x4456) 0) $x6128))))
  2283 (let ((@x4472 (monotonicity (monotonicity @x6705 @x6480 (= $x6510 $x6511)) (= $x6263 (or $x3675 $x6511)))))
  2284 (let ((@x5852 (mp ((_ quant-inst ?v0!15) $x6263) (trans @x4472 (rewrite (= (or $x3675 $x6511) $x6235)) (= $x6263 $x6235)) $x6235)))
  2285 (let ((@x6501 (unit-resolution (unit-resolution @x5852 @x6588 $x6511) @x6494 @x6470 (hypothesis (not $x6128)) false)))
  2286 (let ((@x4608 (lemma @x6501 (or $x6706 $x6128))))
  2287 (let ((@x6959 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6128) $x5853)) (unit-resolution @x4608 @x6726 $x6128) $x5853)))
  2288 (let (($x6603 (>= ?x5018 0)))
  2289 (let (($x6582 (<= ?x5018 0)))
  2290 (let (($x6583 (not $x6582)))
  2291 (let (($x6156 (= v_b_v_G_1$ ?v0!15)))
  2292 (let (($x5538 (not $x6156)))
  2293 (let ((@x7337 (symm (commutativity (= $x6156 (= ?v0!15 v_b_v_G_1$))) (= (= ?v0!15 v_b_v_G_1$) $x6156))))
  2294 (let (($x6631 (= ?v0!15 v_b_v_G_1$)))
  2295 (let (($x7483 (not $x6631)))
  2296 (let (($x6269 (fun_app$ v_b_Visited_G_1$ ?v0!15)))
  2297 (let (($x7698 (or $x6631 $x6269)))
  2298 (let (($x6630 (fun_app$ ?x265 ?v0!15)))
  2299 (let (($x7702 (= $x6630 $x7698)))
  2300 (let (($x3468 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(!(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  2301 (= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) )))
  2302 ))
  2303 (let (($x77 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  2304 (= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
  2305 ))
  2306 (let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0)))
  2307 (let (($x74 (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0)))))
  2308 (let (($x72 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  2309 (= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
  2310 ))
  2311 (let ((@x76 (rewrite (= (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))) $x74))))
  2312 (let ((@x1443 (mp~ (mp (asserted $x72) (quant-intro @x76 (= $x72 $x77)) $x77) (nnf-pos (refl (~ $x74 $x74)) (~ $x77 $x77)) $x77)))
  2313 (let ((@x3473 (mp @x1443 (quant-intro (refl (= $x74 $x74)) (= $x77 $x3468)) $x3468)))
  2314 (let (($x4114 (not $x3468)))
  2315 (let (($x6435 (or $x4114 $x7702)))
  2316 (let ((@x5925 (monotonicity (rewrite (= (ite $x6631 true $x6269) $x7698)) (= (= $x6630 (ite $x6631 true $x6269)) $x7702))))
  2317 (let ((@x6213 (monotonicity @x5925 (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435))))
  2318 (let ((@x7487 (trans @x6213 (rewrite (= $x6435 $x6435)) (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435))))
  2319 (let ((@x7488 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!15) (or $x4114 (= $x6630 (ite $x6631 true $x6269)))) @x7487 $x6435)))
  2320 (let ((@x5875 (symm (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (= ?x265 v_b_Visited_G_2$))))
  2321 (let ((@x7321 (symm (monotonicity @x5875 (= $x6630 (fun_app$ v_b_Visited_G_2$ ?v0!15))) (= (fun_app$ v_b_Visited_G_2$ ?v0!15) $x6630))))
  2322 (let ((@x7322 (monotonicity @x7321 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!15)) (not $x6630)))))
  2323 (let (($x4415 (fun_app$ v_b_Visited_G_2$ ?v0!15)))
  2324 (let (($x4479 (not $x4415)))
  2325 (let ((?x5054 (b_G$ (pair$ v_b_v_G_1$ ?v0!13))))
  2326 (let ((?x4706 (+ ?x257 ?x1810 ?x5054)))
  2327 (let (($x4687 (= ?x4706 0)))
  2328 (let (($x5187 (>= (+ ?x257 (* (- 1) ?x1808) ?x5054) 0)))
  2329 (let (($x5051 (<= (+ b_Infinity$ (* (- 1) ?x5054)) 0)))
  2330 (let (($x5186 (or $x5051 $x5187)))
  2331 (let (($x5221 (not $x5186)))
  2332 (let ((@x5744 (monotonicity (commutativity (= (= ?x1808 ?x1809) (= ?x1809 ?x1808))) (= (not (= ?x1808 ?x1809)) (not (= ?x1809 ?x1808))))))
  2333 (let (($x5690 (not (= ?x1808 ?x1809))))
  2334 (let ((@x5726 (mp (unit-resolution ((_ th-lemma arith triangle-eq) (or $x5690 $x1812)) (hypothesis $x1813) $x5690) @x5744 (not (= ?x1809 ?x1808)))))
  2335 (let (($x5270 (= ?x1809 ?x1808)))
  2336 (let (($x5230 (or $x5221 $x5270)))
  2337 (let ((@x4739 (hypothesis $x3678)))
  2338 (let (($x5327 (or $x3683 $x5221 $x5270)))
  2339 (let (($x5333 (or (not (or $x5051 (<= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) 0))) $x5270)))
  2340 (let (($x5268 (or $x3683 $x5333)))
  2341 (let (($x5095 (<= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) 0)))
  2342 (let ((@x5120 (rewrite (= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) (+ ?x1173 ?x1808 (* (- 1) ?x5054))))))
  2343 (let ((@x5127 (monotonicity @x5120 (= $x5095 (<= (+ ?x1173 ?x1808 (* (- 1) ?x5054)) 0)))))
  2344 (let ((@x4705 (trans @x5127 (rewrite (= (<= (+ ?x1173 ?x1808 (* (- 1) ?x5054)) 0) $x5187)) (= $x5095 $x5187))))
  2345 (let ((@x5229 (monotonicity (monotonicity @x4705 (= (or $x5051 $x5095) $x5186)) (= (not (or $x5051 $x5095)) $x5221))))
  2346 (let ((@x5269 (monotonicity (monotonicity @x5229 (= $x5333 $x5230)) (= $x5268 (or $x3683 $x5230)))))
  2347 (let ((@x5432 (mp ((_ quant-inst ?v0!13) $x5268) (trans @x5269 (rewrite (= (or $x3683 $x5230) $x5327)) (= $x5268 $x5327)) $x5327)))
  2348 (let ((@x5729 (unit-resolution (def-axiom (or $x5186 (not $x5051))) (unit-resolution (unit-resolution @x5432 @x4739 $x5230) @x5726 $x5221) (not $x5051))))
  2349 (let ((@x5749 (unit-resolution (def-axiom (or $x5186 (not $x5187))) (unit-resolution (unit-resolution @x5432 @x4739 $x5230) @x5726 $x5221) (not $x5187))))
  2350 (let (($x5211 (or $x5051 $x5187 $x4687)))
  2351 (let ((@x5807 (hypothesis $x3670)))
  2352 (let (($x5189 (or $x3675 $x5051 $x5187 $x4687)))
  2353 (let (($x5102 (or $x5051 $x5095 (= (+ ?x257 ?x5054 ?x1810) 0))))
  2354 (let (($x5163 (or $x3675 $x5102)))
  2355 (let ((@x5164 (monotonicity (rewrite (= (+ ?x257 ?x5054 ?x1810) ?x4706)) (= (= (+ ?x257 ?x5054 ?x1810) 0) $x4687))))
  2356 (let ((@x5215 (monotonicity (monotonicity @x4705 @x5164 (= $x5102 $x5211)) (= $x5163 (or $x3675 $x5211)))))
  2357 (let ((@x5376 (mp ((_ quant-inst ?v0!13) $x5163) (trans @x5215 (rewrite (= (or $x3675 $x5211) $x5189)) (= $x5163 $x5189)) $x5189)))
  2358 (let ((@x5714 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4687) (>= ?x4706 0))) (unit-resolution (unit-resolution @x5376 @x5807 $x5211) @x5749 @x5729 $x4687) (>= ?x4706 0))))
  2359 (let ((@x5723 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= ?x1811 0) $x1812)) (hypothesis $x1813) (<= ?x1811 0))))
  2360 (let ((@x6888 (unit-resolution (lemma ((_ th-lemma arith farkas 1 -1 1) @x5723 @x5749 @x5714 false) (or $x1812 $x3675 $x3683)) @x6588 @x5944 $x1812)))
  2361 (let ((@x6891 (unit-resolution (def-axiom (or $x3806 $x1813 $x3800)) @x6888 (unit-resolution (def-axiom (or $x3809 $x3803)) @x6181 $x3803) $x3800)))
  2362 (let (($x6050 (= ?v0!14 v_b_v_G_1$)))
  2363 (let (($x5678 (fun_app$ v_b_Visited_G_1$ ?v0!14)))
  2364 (let (($x4963 (or $x6050 $x5678)))
  2365 (let (($x6049 (fun_app$ ?x265 ?v0!14)))
  2366 (let (($x6452 (= $x6049 $x4963)))
  2367 (let (($x5869 (or $x4114 $x6452)))
  2368 (let ((@x6355 (monotonicity (rewrite (= (ite $x6050 true $x5678) $x4963)) (= (= $x6049 (ite $x6050 true $x5678)) $x6452))))
  2369 (let ((@x5854 (monotonicity @x6355 (= (or $x4114 (= $x6049 (ite $x6050 true $x5678))) $x5869))))
  2370 (let ((@x6366 (trans @x5854 (rewrite (= $x5869 $x5869)) (= (or $x4114 (= $x6049 (ite $x6050 true $x5678))) $x5869))))
  2371 (let ((@x6233 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!14) (or $x4114 (= $x6049 (ite $x6050 true $x5678)))) @x6366 $x5869)))
  2372 (let ((@x6372 (symm (monotonicity @x5875 (= $x6049 (fun_app$ v_b_Visited_G_2$ ?v0!14))) (= (fun_app$ v_b_Visited_G_2$ ?v0!14) $x6049))))
  2373 (let (($x1824 (fun_app$ v_b_Visited_G_2$ ?v0!14)))
  2374 (let ((@x4837 (mp (unit-resolution (def-axiom (or $x1829 $x1824)) (hypothesis $x1830) $x1824) @x6372 $x6049)))
  2375 (let ((@x5037 (unit-resolution (def-axiom (or (not $x6452) (not $x6049) $x4963)) @x4837 (unit-resolution @x6233 @x3473 $x6452) $x4963)))
  2376 (let (($x4290 (not $x5678)))
  2377 (let ((?x5658 (* (- 1) ?x1827)))
  2378 (let ((?x4907 (+ ?x257 ?x5658)))
  2379 (let (($x6523 (>= ?x4907 0)))
  2380 (let (($x6556 (not $x6523)))
  2381 (let (($x4887 (>= (+ ?x257 ?x5658 (b_G$ (pair$ v_b_v_G_1$ ?v0!14))) 0)))
  2382 (let (($x4812 (not $x4887)))
  2383 (let (($x4783 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  2384 (let (($x5110 (or $x4783 $x4887)))
  2385 (let (($x5079 (not $x5110)))
  2386 (let ((@x5065 (unit-resolution (def-axiom (or $x1829 (not $x1828))) (hypothesis $x1830) (not $x1828))))
  2387 (let (($x4844 (or $x3683 $x5079 $x1828)))
  2388 (let (($x4891 (<= (+ ?x1827 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  2389 (let (($x5552 (or (not (or $x4783 $x4891)) $x1828)))
  2390 (let (($x4766 (or $x3683 $x5552)))
  2391 (let (($x4493 (<= (+ ?x1173 ?x1827 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  2392 (let (($x5019 (= (+ ?x1827 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) (+ ?x1173 ?x1827 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))))))
  2393 (let ((@x5288 (trans (monotonicity (rewrite $x5019) (= $x4891 $x4493)) (rewrite (= $x4493 $x4887)) (= $x4891 $x4887))))
  2394 (let ((@x5082 (monotonicity (monotonicity @x5288 (= (or $x4783 $x4891) $x5110)) (= (not (or $x4783 $x4891)) $x5079))))
  2395 (let ((@x5868 (monotonicity (monotonicity @x5082 (= $x5552 (or $x5079 $x1828))) (= $x4766 (or $x3683 (or $x5079 $x1828))))))
  2396 (let ((@x5811 (trans @x5868 (rewrite (= (or $x3683 (or $x5079 $x1828)) $x4844)) (= $x4766 $x4844))))
  2397 (let ((@x6433 (unit-resolution (def-axiom (or $x5110 $x4812)) (unit-resolution (mp ((_ quant-inst ?v0!14) $x4766) @x5811 $x4844) @x5944 @x5065 $x5079) $x4812)))
  2398 (let ((?x6047 (pair$ v_b_v_G_1$ ?v0!14)))
  2399 (let ((?x6491 (b_G$ ?x6047)))
  2400 (let (($x5826 (>= ?x6491 0)))
  2401 (let ((@x6283 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6491 0)) $x5826)) (hypothesis (not $x5826)) (not (= ?x6491 0)))))
  2402 (let (($x5742 (= v_b_v_G_1$ ?v0!14)))
  2403 (let (($x5751 (<= ?x6491 0)))
  2404 (let ((@x6302 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5826 $x5751)) (hypothesis (not $x5826)) $x5751)))
  2405 (let (($x5738 (or $x5742 (not $x5751))))
  2406 (let (($x3480 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x84 (= ?v0 ?v1)))
  2407 (or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) )))
  2408 ))
  2409 (let (($x120 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1)))
  2410 (or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))))
  2411 ))
  2412 (let (($x84 (= ?1 ?0)))
  2413 (let (($x117 (or $x84 (not (<= (b_G$ (pair$ ?1 ?0)) 0)))))
  2414 (let (($x105 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1)))
  2415 (let ((?x85 (b_G$ ?x29)))
  2416 (let (($x102 (< 0 ?x85)))
  2417 (=> (not (= ?v0 ?v1)) $x102)))))
  2418 ))
  2419 (let (($x110 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1)))
  2420 (let ((?x85 (b_G$ ?x29)))
  2421 (let (($x102 (< 0 ?x85)))
  2422 (let (($x84 (= ?v0 ?v1)))
  2423 (or $x84 $x102))))))
  2424 ))
  2425 (let ((?x29 (pair$ ?1 ?0)))
  2426 (let ((?x85 (b_G$ ?x29)))
  2427 (let (($x102 (< 0 ?x85)))
  2428 (let ((@x119 (monotonicity (rewrite (= $x102 (not (<= ?x85 0)))) (= (or $x84 $x102) $x117))))
  2429 (let ((@x112 (quant-intro (rewrite (= (=> (not $x84) $x102) (or $x84 $x102))) (= $x105 $x110))))
  2430 (let ((@x125 (mp (asserted $x105) (trans @x112 (quant-intro @x119 (= $x110 $x120)) (= $x105 $x120)) $x120)))
  2431 (let ((@x3485 (mp (mp~ @x125 (nnf-pos (refl (~ $x117 $x117)) (~ $x120 $x120)) $x120) (quant-intro (refl (= $x117 $x117)) (= $x120 $x3480)) $x3480)))
  2432 (let ((@x5780 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3480) $x5738)) (rewrite (= (or (not $x3480) $x5738) (or (not $x3480) $x5742 (not $x5751)))) (or (not $x3480) $x5742 (not $x5751)))))
  2433 (let (($x5739 (= ?x6491 0)))
  2434 (let (($x5781 (or (not $x5742) $x5739)))
  2435 (let (($x3474 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :pattern ( (pair$ ?v0 ?v1) )))
  2436 ))
  2437 (let (($x99 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)))
  2438 ))
  2439 (let ((@x3476 (refl (= (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  2440 (let ((@x1447 (refl (~ (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  2441 (let (($x93 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1)))
  2442 (=> $x84 (= (b_G$ (pair$ ?v0 ?v1)) 0))))
  2443 ))
  2444 (let ((@x98 (rewrite (= (=> $x84 (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  2445 (let ((@x1448 (mp~ (mp (asserted $x93) (quant-intro @x98 (= $x93 $x99)) $x99) (nnf-pos @x1447 (~ $x99 $x99)) $x99)))
  2446 (let ((@x3479 (mp @x1448 (quant-intro @x3476 (= $x99 $x3474)) $x3474)))
  2447 (let ((@x5817 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3474) $x5781)) (rewrite (= (or (not $x3474) $x5781) (or (not $x3474) (not $x5742) $x5739))) (or (not $x3474) (not $x5742) $x5739))))
  2448 (let ((@x6306 (unit-resolution (unit-resolution @x5817 @x3479 $x5781) (unit-resolution (unit-resolution @x5780 @x3485 $x5738) @x6302 $x5742) @x6283 false)))
  2449 (let ((@x6555 ((_ th-lemma arith farkas 1 -1 1) (lemma @x6306 $x5826) (hypothesis $x4812) (hypothesis $x6523) false)))
  2450 (let ((@x6225 (unit-resolution (def-axiom (or $x3809 $x256)) @x6181 $x256)))
  2451 (let ((@x5748 (unit-resolution (def-axiom (or $x3821 $x3565)) @x4219 $x3565)))
  2452 (let ((@x6018 (rewrite (= (or $x3570 (or $x255 $x4290 $x6523)) (or $x3570 $x255 $x4290 $x6523)))))
  2453 (let ((@x6055 (mp ((_ quant-inst ?v0!14 v_b_v_G_1$) (or $x3570 (or $x255 $x4290 $x6523))) @x6018 (or $x3570 $x255 $x4290 $x6523))))
  2454 (let ((@x6222 (unit-resolution @x6055 @x5748 @x6225 (hypothesis $x5678) (hypothesis $x6556) false)))
  2455 (let ((@x5057 (unit-resolution (lemma @x6222 (or $x4290 $x6523)) (unit-resolution (lemma @x6555 (or $x6556 $x4887)) @x6433 $x6556) $x4290)))
  2456 (let ((@x6293 (monotonicity (unit-resolution (def-axiom (or (not $x4963) $x6050 $x5678)) @x5057 @x5037 $x6050) (= ?x1827 ?x257))))
  2457 (let (($x3052 (= ?x3104 ?x257)))
  2458 (let ((?x3130 (pair$ v_b_v_G_1$ v_b_v_G_1$)))
  2459 (let ((?x3096 (b_G$ ?x3130)))
  2460 (let (($x3079 (>= ?x3096 0)))
  2461 (let (($x3088 (<= (+ b_Infinity$ (* (- 1) ?x3096)) 0)))
  2462 (let (($x4242 (or $x3088 $x3079)))
  2463 (let (($x4785 (= ?x3096 0)))
  2464 (let (($x3151 (not $x3474)))
  2465 (let (($x4816 (or $x3151 $x4785)))
  2466 (let ((@x4770 (monotonicity (rewrite (= (= v_b_v_G_1$ v_b_v_G_1$) true)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) (not true)))))
  2467 (let ((@x4775 (trans @x4770 (rewrite (= (not true) false)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) false))))
  2468 (let ((@x4767 (monotonicity @x4775 (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785) (or false $x4785)))))
  2469 (let ((@x4773 (trans @x4767 (rewrite (= (or false $x4785) $x4785)) (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785) $x4785))))
  2470 (let ((@x4820 (monotonicity @x4773 (= (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785)) $x4816))))
  2471 (let ((@x4821 (trans @x4820 (rewrite (= $x4816 $x4816)) (= (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785)) $x4816))))
  2472 (let ((@x4822 (mp ((_ quant-inst v_b_v_G_1$ v_b_v_G_1$) (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785))) @x4821 $x4816)))
  2473 (let ((@x4849 (lemma (unit-resolution @x4822 @x3479 (hypothesis (not $x4785)) false) $x4785)))
  2474 (let ((@x6019 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4785) $x3079)) @x4849 $x3079)))
  2475 (let ((@x4316 (def-axiom (or $x4242 (not $x3079)))))
  2476 (let (($x4245 (not $x4242)))
  2477 (let (($x3975 (or $x3683 $x4245 $x3052)))
  2478 (let (($x3053 (or (not (or $x3088 (<= (+ ?x257 ?x1173 (* (- 1) ?x3096)) 0))) $x3052)))
  2479 (let (($x3958 (or $x3683 $x3053)))
  2480 (let (($x3103 (<= (+ ?x257 ?x1173 (* (- 1) ?x3096)) 0)))
  2481 (let ((@x4023 (monotonicity (rewrite (= (+ ?x257 ?x1173 (* (- 1) ?x3096)) (* (- 1) ?x3096))) (= $x3103 (<= (* (- 1) ?x3096) 0)))))
  2482 (let ((@x4044 (trans @x4023 (rewrite (= (<= (* (- 1) ?x3096) 0) $x3079)) (= $x3103 $x3079))))
  2483 (let ((@x4247 (monotonicity (monotonicity @x4044 (= (or $x3088 $x3103) $x4242)) (= (not (or $x3088 $x3103)) $x4245))))
  2484 (let ((@x4254 (monotonicity (monotonicity @x4247 (= $x3053 (or $x4245 $x3052))) (= $x3958 (or $x3683 (or $x4245 $x3052))))))
  2485 (let ((@x4258 (trans @x4254 (rewrite (= (or $x3683 (or $x4245 $x3052)) $x3975)) (= $x3958 $x3975))))
  2486 (let ((@x4259 (mp ((_ quant-inst v_b_v_G_1$) $x3958) @x4258 $x3975)))
  2487 (let ((@x6268 (monotonicity (unit-resolution (def-axiom (or (not $x4963) $x6050 $x5678)) @x5057 @x5037 $x6050) (= ?x1826 ?x3104))))
  2488 (let ((@x6107 (trans @x6268 (unit-resolution @x4259 @x5944 (unit-resolution @x4316 @x6019 $x4242) $x3052) (= ?x1826 ?x257))))
  2489 (let ((@x6162 (unit-resolution @x5065 (trans @x6107 (symm @x6293 (= ?x257 ?x1827)) $x1828) false)))
  2490 (let ((@x7615 (unit-resolution (def-axiom (or $x3794 $x1830 $x3788)) (lemma @x6162 $x1829) (unit-resolution (def-axiom (or $x3797 $x3791)) @x6891 $x3791) $x3788)))
  2491 (let ((@x7616 (unit-resolution (def-axiom (or $x3785 $x3695)) @x7615 $x3695)))
  2492 (let ((@x7443 (mp ((_ quant-inst ?v0!15) (or $x3700 (or $x4479 $x4481))) (rewrite (= (or $x3700 (or $x4479 $x4481)) (or $x3700 $x4479 $x4481))) (or $x3700 $x4479 $x4481))))
  2493 (let ((@x7323 (mp (unit-resolution @x7443 @x7616 (unit-resolution @x6242 @x6183 (not $x4481)) $x4479) @x7322 (not $x6630))))
  2494 (let ((@x7334 (unit-resolution (def-axiom (or (not $x7702) $x6630 (not $x7698))) @x7323 (unit-resolution @x7488 @x3473 $x7702) (not $x7698))))
  2495 (let ((@x7344 (mp (unit-resolution (def-axiom (or $x7698 $x7483)) @x7334 $x7483) (monotonicity @x7337 (= $x7483 $x5538)) $x5538)))
  2496 (let (($x5470 (or $x6156 $x6583)))
  2497 (let ((@x6577 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or (not $x3480) $x5470)) (rewrite (= (or (not $x3480) $x5470) (or (not $x3480) $x6156 $x6583))) (or (not $x3480) $x6156 $x6583))))
  2498 (let ((@x7345 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x6603 $x6582)) (unit-resolution (unit-resolution @x6577 @x3485 $x5470) @x7344 $x6583) $x6603)))
  2499 (let (($x4153 (<= ?x296 0)))
  2500 (let ((?x4058 (* (- 1) ?x296)))
  2501 (let ((?x4124 (+ ?x172 ?x4058)))
  2502 (let (($x4125 (>= ?x4124 0)))
  2503 (let ((@x6892 (unit-resolution (def-axiom (or $x3797 $x3686)) @x6891 $x3686)))
  2504 (let (($x4878 (or $x3691 $x4125)))
  2505 (let ((@x4880 ((_ quant-inst b_Source$) $x4878)))
  2506 (let (($x3198 (<= ?x172 0)))
  2507 (let ((@x4532 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x2952 $x3198)) @x4529 $x3198)))
  2508 (let ((@x6899 (unit-resolution ((_ th-lemma arith assign-bounds -1 1) (or $x4153 (not $x3198) (not $x4125))) @x4532 (or $x4153 (not $x4125)))))
  2509 (let ((@x6900 (unit-resolution @x6899 (unit-resolution @x4880 @x6892 $x4125) $x4153)))
  2510 (let (($x3887 (= v_b_v_G_1$ b_Source$)))
  2511 (let (($x5313 (not $x3887)))
  2512 (let ((@x5202 (hypothesis $x773)))
  2513 (let ((?x4565 (pair$ b_Source$ b_Source$)))
  2514 (let ((?x4566 (b_G$ ?x4565)))
  2515 (let ((?x4567 (* (- 1) ?x4566)))
  2516 (let ((?x4041 (pair$ v_b_v_G_1$ b_Source$)))
  2517 (let ((?x4042 (b_G$ ?x4041)))
  2518 (let ((@x4671 (monotonicity (symm (hypothesis $x3887) (= b_Source$ v_b_v_G_1$)) (= ?x4565 ?x4041))))
  2519 (let ((@x4659 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x4042 ?x4566)) (>= (+ ?x4042 ?x4567) 0))) (monotonicity (symm @x4671 (= ?x4041 ?x4565)) (= ?x4042 ?x4566)) (>= (+ ?x4042 ?x4567) 0))))
  2520 (let ((?x4049 (* (- 1) ?x4042)))
  2521 (let ((?x5672 (+ ?x3096 ?x4049)))
  2522 (let (($x5674 (>= ?x5672 0)))
  2523 (let ((@x4664 (monotonicity (monotonicity (hypothesis $x3887) (= ?x3130 ?x4041)) (= ?x3096 ?x4042))))
  2524 (let (($x4315 (not $x3079)))
  2525 (let ((@x4728 (trans (monotonicity (hypothesis $x3887) (= ?x257 ?x172)) @x4529 (= ?x257 0))))
  2526 (let ((@x4830 (monotonicity (monotonicity (hypothesis $x3887) (= ?x3104 ?x296)) @x4728 (= $x3052 $x297))))
  2527 (let ((@x4736 (mp @x5202 (monotonicity (symm @x4830 (= $x297 $x3052)) (= $x773 (not $x3052))) (not $x3052))))
  2528 (let ((@x5369 (unit-resolution @x4316 (unit-resolution (unit-resolution @x4259 @x4739 (or $x4245 $x3052)) @x4736 $x4245) $x4315)))
  2529 (let (($x4601 (= ?x4566 0)))
  2530 (let (($x4613 (or $x3151 $x4601)))
  2531 (let ((@x4604 (monotonicity @x5820 (= (or (not (= b_Source$ b_Source$)) $x4601) (or false $x4601)))))
  2532 (let ((@x4630 (trans @x4604 (rewrite (= (or false $x4601) $x4601)) (= (or (not (= b_Source$ b_Source$)) $x4601) $x4601))))
  2533 (let ((@x4617 (monotonicity @x4630 (= (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601)) $x4613))))
  2534 (let ((@x4620 (trans @x4617 (rewrite (= $x4613 $x4613)) (= (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601)) $x4613))))
  2535 (let ((@x4621 (mp ((_ quant-inst b_Source$ b_Source$) (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601))) @x4620 $x4613)))
  2536 (let ((@x5180 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4601) (>= ?x4566 0))) (unit-resolution @x4621 @x3479 $x4601) (>= ?x4566 0))))
  2537 (let ((@x5283 ((_ th-lemma arith farkas 1 -1 1 1) @x5180 @x5369 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3096 ?x4042)) $x5674)) @x4664 $x5674) @x4659 false)))
  2538 (let (($x5310 (<= ?x4042 0)))
  2539 (let ((?x4076 (+ ?x257 ?x4058 ?x4042)))
  2540 (let (($x4096 (<= ?x4076 0)))
  2541 (let (($x4079 (= ?x4076 0)))
  2542 (let (($x4053 (<= (+ ?x172 ?x1173 ?x4049) 0)))
  2543 (let (($x4051 (<= (+ b_Infinity$ ?x4049) 0)))
  2544 (let (($x4054 (or $x4051 $x4053)))
  2545 (let (($x4055 (not $x4054)))
  2546 (let ((@x5609 (symm (monotonicity @x4529 (= (= ?x296 ?x172) $x297)) (= $x297 (= ?x296 ?x172)))))
  2547 (let ((@x5618 (mp @x5202 (monotonicity @x5609 (= $x773 (not (= ?x296 ?x172)))) (not (= ?x296 ?x172)))))
  2548 (let (($x4056 (= ?x296 ?x172)))
  2549 (let (($x4057 (or $x4055 $x4056)))
  2550 (let (($x4295 (or $x3683 $x4055 $x4056)))
  2551 (let ((@x4884 (mp ((_ quant-inst b_Source$) (or $x3683 $x4057)) (rewrite (= (or $x3683 $x4057) $x4295)) $x4295)))
  2552 (let ((@x5791 (unit-resolution (def-axiom (or $x4054 (not $x4051))) (hypothesis $x4055) (not $x4051))))
  2553 (let ((@x5806 (unit-resolution (def-axiom (or $x4054 (not $x4053))) (hypothesis $x4055) (not $x4053))))
  2554 (let (($x4082 (or $x4051 $x4053 $x4079)))
  2555 (let (($x4085 (or $x3675 $x4051 $x4053 $x4079)))
  2556 (let (($x4075 (or $x4051 $x4053 (= (+ ?x257 ?x4042 ?x4058) 0))))
  2557 (let (($x4086 (or $x3675 $x4075)))
  2558 (let ((@x4081 (monotonicity (rewrite (= (+ ?x257 ?x4042 ?x4058) ?x4076)) (= (= (+ ?x257 ?x4042 ?x4058) 0) $x4079))))
  2559 (let ((@x4090 (monotonicity (monotonicity @x4081 (= $x4075 $x4082)) (= $x4086 (or $x3675 $x4082)))))
  2560 (let ((@x4095 (mp ((_ quant-inst b_Source$) $x4086) (trans @x4090 (rewrite (= (or $x3675 $x4082) $x4085)) (= $x4086 $x4085)) $x4085)))
  2561 (let ((@x5789 (unit-resolution (unit-resolution @x4095 @x5807 $x4082) @x5806 @x5791 (hypothesis (not $x4079)) false)))
  2562 (let ((@x5623 (unit-resolution (lemma @x5789 (or $x4054 $x4079 $x3675)) (unit-resolution (unit-resolution @x4884 @x4739 $x4057) @x5618 $x4055) @x5807 $x4079)))
  2563 (let ((@x5923 (hypothesis $x4096)))
  2564 (let ((@x5933 ((_ th-lemma arith farkas -1 1 -1 1) (hypothesis $x3904) (hypothesis $x4153) (hypothesis (not $x5310)) @x5923 false)))
  2565 (let ((@x5938 (lemma @x5933 (or $x5310 (not $x3904) (not $x4153) (not $x4096)))))
  2566 (let ((@x5596 (unit-resolution @x5938 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4079) $x4096)) @x5623 $x4096) (hypothesis $x4153) @x5049 $x5310)))
  2567 (let (($x5886 (= (or (not $x3480) (or $x3887 (not $x5310))) (or (not $x3480) $x3887 (not $x5310)))))
  2568 (let ((@x5952 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or (not $x3480) (or $x3887 (not $x5310)))) (rewrite $x5886) (or (not $x3480) $x3887 (not $x5310)))))
  2569 (let ((@x5597 (unit-resolution @x5952 @x3485 @x5596 (unit-resolution (lemma @x5283 (or $x5313 $x3683 $x297)) @x5202 @x4739 $x5313) false)))
  2570 (let ((@x6788 (unit-resolution (lemma @x5597 (or $x297 (not $x4153) $x3675 $x3683)) @x6900 @x6588 @x5944 $x297)))
  2571 (let ((@x7810 (unit-resolution (def-axiom (or $x3782 $x773 $x3776)) (unit-resolution (def-axiom (or $x3785 $x3779)) @x7615 $x3779) @x6788 $x3776)))
  2572 (let ((@x3347 (def-axiom (or $x3770 $x1848 $x3764))))
  2573 (let ((@x9293 (unit-resolution @x3347 (unit-resolution (def-axiom (or $x3773 $x3767)) @x7810 $x3767) $x3767)))
  2574 (let ((@x9294 (unit-resolution @x9293 (lemma ((_ th-lemma arith farkas 1 1 -1 1) @x5703 @x7345 @x6959 @x5049 false) $x1847) $x3764)))
  2575 (let ((@x3367 (def-axiom (or $x3761 $x3703))))
  2576 (let (($x4335 (or $x3708 $x4161)))
  2577 (let ((@x4337 ((_ quant-inst v_b_v_G_1$) $x4335)))
  2578 (let (($x4126 (fun_app$ v_b_Visited_G_2$ v_b_v_G_1$)))
  2579 (let (($x3136 (fun_app$ ?x265 v_b_v_G_1$)))
  2580 (let (($x3461 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(!(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :pattern ( (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) )))
  2581 ))
  2582 (let (($x57 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
  2583 ))
  2584 (let (($x54 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
  2585 (let (($x52 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
  2586 ))
  2587 (let (($x51 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
  2588 (let ((@x62 (mp (asserted $x52) (quant-intro (rewrite (= $x51 $x54)) (= $x52 $x57)) $x57)))
  2589 (let ((@x3466 (mp (mp~ @x62 (nnf-pos (refl (~ $x54 $x54)) (~ $x57 $x57)) $x57) (quant-intro (refl (= $x54 $x54)) (= $x57 $x3461)) $x3461)))
  2590 (let (($x6140 (or (not $x3461) $x3136)))
  2591 (let ((@x6106 (monotonicity (rewrite (= (= $x3136 true) $x3136)) (= (or (not $x3461) (= $x3136 true)) $x6140))))
  2592 (let ((@x5837 (trans @x6106 (rewrite (= $x6140 $x6140)) (= (or (not $x3461) (= $x3136 true)) $x6140))))
  2593 (let ((@x5928 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true) (or (not $x3461) (= $x3136 true))) @x5837 $x6140)))
  2594 (let ((@x7482 (mp (unit-resolution @x5928 @x3466 $x3136) (monotonicity @x5875 (= $x3136 $x4126)) $x4126)))
  2595 (let (($x4570 (>= ?x4546 0)))
  2596 (let ((@x5420 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x4570 $x4569)) (hypothesis (not $x4569)) $x4570)))
  2597 (let (($x4438 (<= (+ b_Infinity$ ?x4436) 0)))
  2598 (let (($x4127 (not $x4126)))
  2599 (let (($x5352 (or $x3725 $x4127 $x4438 $x4569)))
  2600 (let (($x5336 (>= (+ ?x4435 ?x3104 (* (- 1) ?x1911)) 0)))
  2601 (let (($x5339 (or $x4127 $x4438 $x5336)))
  2602 (let (($x5353 (or $x3725 $x5339)))
  2603 (let ((@x5341 (rewrite (= (+ ?x4435 ?x3104 (* (- 1) ?x1911)) (+ (* (- 1) ?x1911) ?x3104 ?x4435)))))
  2604 (let ((@x5344 (monotonicity @x5341 (= $x5336 (>= (+ (* (- 1) ?x1911) ?x3104 ?x4435) 0)))))
  2605 (let ((@x5348 (trans @x5344 (rewrite (= (>= (+ (* (- 1) ?x1911) ?x3104 ?x4435) 0) $x4569)) (= $x5336 $x4569))))
  2606 (let ((@x5357 (monotonicity (monotonicity @x5348 (= $x5339 (or $x4127 $x4438 $x4569))) (= $x5353 (or $x3725 (or $x4127 $x4438 $x4569))))))
  2607 (let ((@x5361 (trans @x5357 (rewrite (= (or $x3725 (or $x4127 $x4438 $x4569)) $x5352)) (= $x5353 $x5352))))
  2608 (let ((@x5424 (unit-resolution (mp ((_ quant-inst ?v0!20 v_b_v_G_1$) $x5353) @x5361 $x5352) (hypothesis $x3720) (hypothesis $x4126) (hypothesis (not $x4569)) $x4438)))
  2609 (let ((@x5428 (lemma ((_ th-lemma arith farkas 1 1 1 1) @x5424 (hypothesis $x4161) @x5420 (hypothesis $x1915) false) (or $x4569 (not $x4161) $x1914 $x3725 $x4127))))
  2610 (let ((@x7692 (unit-resolution (unit-resolution @x5428 @x7482 (or $x4569 (not $x4161) $x1914 $x3725)) (unit-resolution @x4337 (unit-resolution @x3367 @x9294 $x3703) $x4161) (or $x4569 $x1914 $x3725))))
  2611 (let ((@x7751 (unit-resolution @x7692 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) (unit-resolution @x3222 @x8092 $x3720) $x4569)))
  2612 (let (($x5386 (= v_b_v_G_1$ ?v0!20)))
  2613 (let (($x5390 (not $x5386)))
  2614 (let ((@x9325 (symm (commutativity (= $x5386 (= ?v0!20 v_b_v_G_1$))) (= (= ?v0!20 v_b_v_G_1$) $x5386))))
  2615 (let (($x5240 (= ?v0!20 v_b_v_G_1$)))
  2616 (let (($x9145 (not $x5240)))
  2617 (let (($x4609 (fun_app$ v_b_Visited_G_1$ ?v0!20)))
  2618 (let (($x9130 (or $x5240 $x4609)))
  2619 (let (($x5237 (fun_app$ ?x265 ?v0!20)))
  2620 (let (($x9133 (= $x5237 $x9130)))
  2621 (let (($x9136 (or $x4114 $x9133)))
  2622 (let ((@x9135 (monotonicity (rewrite (= (ite $x5240 true $x4609) $x9130)) (= (= $x5237 (ite $x5240 true $x4609)) $x9133))))
  2623 (let ((@x9140 (monotonicity @x9135 (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136))))
  2624 (let ((@x9143 (trans @x9140 (rewrite (= $x9136 $x9136)) (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136))))
  2625 (let ((@x9144 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) (or $x4114 (= $x5237 (ite $x5240 true $x4609)))) @x9143 $x9136)))
  2626 (let ((@x9316 (symm (monotonicity @x5875 (= $x5237 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x5237))))
  2627 (let ((@x9318 (monotonicity @x9316 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) (not $x5237)))))
  2628 (let (($x4278 (fun_app$ v_b_Visited_G_2$ ?v0!20)))
  2629 (let (($x4279 (not $x4278)))
  2630 (let (($x4403 (or $x4279 $x4400)))
  2631 (let ((@x8012 (mp ((_ quant-inst ?v0!20) (or $x3700 $x4403)) (rewrite (= (or $x3700 $x4403) (or $x3700 $x4279 $x4400))) (or $x3700 $x4279 $x4400))))
  2632 (let ((@x9292 (unit-resolution (unit-resolution @x8012 @x7616 $x4403) (hypothesis (not $x4400)) $x4279)))
  2633 (let ((@x9320 (unit-resolution (def-axiom (or (not $x9133) $x5237 (not $x9130))) (mp @x9292 @x9318 (not $x5237)) (unit-resolution @x9144 @x3473 $x9133) (not $x9130))))
  2634 (let ((@x9328 (mp (unit-resolution (def-axiom (or $x9130 $x9145)) @x9320 $x9145) (monotonicity @x9325 (= $x9145 $x5390)) $x5390)))
  2635 (let (($x5387 (<= ?x4435 0)))
  2636 (let (($x5391 (= ?x4435 0)))
  2637 (let ((?x3106 (+ ?x257 ?x3096 ?x3105)))
  2638 (let (($x4239 (<= ?x3106 0)))
  2639 (let ((?x3884 (+ ?x257 ?x3105)))
  2640 (let (($x3885 (<= ?x3884 0)))
  2641 (let (($x6004 (= ?x257 ?x3104)))
  2642 (let ((@x7828 (mp (unit-resolution @x4259 @x5944 (unit-resolution @x4316 @x6019 $x4242) $x3052) (symm (commutativity (= $x6004 $x3052)) (= $x3052 $x6004)) $x6004)))
  2643 (let (($x4177 (<= ?x3096 0)))
  2644 (let ((@x6933 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4785) $x4177)) @x4849 $x4177)))
  2645 (let ((@x7838 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x4239 (not $x3885) (not $x4177))) @x6933 (or $x4239 (not $x3885)))))
  2646 (let ((@x7839 (unit-resolution @x7838 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6004) $x3885)) @x7828 $x3885) $x4239)))
  2647 (let (($x3044 (>= ?x3106 0)))
  2648 (let (($x3886 (>= ?x3884 0)))
  2649 (let (($x5927 (or $x3691 $x3886)))
  2650 (let ((@x5941 ((_ quant-inst v_b_v_G_1$) $x5927)))
  2651 (let ((@x6925 (unit-resolution @x5941 @x6892 $x3886)))
  2652 (let ((@x6929 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x3044 $x4315 (not $x3886))) @x6019 (or $x3044 (not $x3886)))))
  2653 (let ((@x6930 (unit-resolution @x6929 @x6925 $x3044)))
  2654 (let ((?x4381 (+ ?x1911 ?x3105)))
  2655 (let (($x7049 (<= ?x4381 0)))
  2656 (let (($x7135 (= ?x4546 0)))
  2657 (let ((?x1912 (* (- 1) ?x1911)))
  2658 (let ((?x4487 (+ ?x257 ?x1912 ?x4435)))
  2659 (let (($x4507 (<= ?x4487 0)))
  2660 (let (($x5673 (= ?x4487 0)))
  2661 (let (($x6827 (>= (+ ?x257 ?x4418 ?x4435) 0)))
  2662 (let (($x6723 (or $x4438 $x6827)))
  2663 (let (($x6684 (not $x6723)))
  2664 (let (($x6831 (or $x6684 $x4400)))
  2665 (let (($x6789 (or $x3683 $x6684 $x4400)))
  2666 (let (($x4443 (or (not (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0))) $x4400)))
  2667 (let (($x6790 (or $x3683 $x4443)))
  2668 (let ((@x6945 (monotonicity (rewrite (= (+ ?x4393 ?x1173 ?x4436) (+ ?x1173 ?x4393 ?x4436))) (= (<= (+ ?x4393 ?x1173 ?x4436) 0) (<= (+ ?x1173 ?x4393 ?x4436) 0)))))
  2669 (let ((@x6725 (trans @x6945 (rewrite (= (<= (+ ?x1173 ?x4393 ?x4436) 0) $x6827)) (= (<= (+ ?x4393 ?x1173 ?x4436) 0) $x6827))))
  2670 (let ((@x6730 (monotonicity @x6725 (= (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0)) $x6723))))
  2671 (let ((@x6830 (monotonicity @x6730 (= (not (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0))) $x6684))))
  2672 (let ((@x6829 (monotonicity (monotonicity @x6830 (= $x4443 $x6831)) (= $x6790 (or $x3683 $x6831)))))
  2673 (let ((@x6824 (mp ((_ quant-inst ?v0!20) $x6790) (trans @x6829 (rewrite (= (or $x3683 $x6831) $x6789)) (= $x6790 $x6789)) $x6789)))
  2674 (let ((@x9281 (unit-resolution (unit-resolution @x6824 @x5944 $x6831) (hypothesis (not $x4400)) $x6684)))
  2675 (let ((@x7436 (unit-resolution (def-axiom (or $x6723 (not $x4438))) (hypothesis $x6684) (not $x4438))))
  2676 (let ((@x7494 (unit-resolution (def-axiom (or $x6723 (not $x6827))) (hypothesis $x6684) (not $x6827))))
  2677 (let (($x6621 (or $x4438 $x6827 $x5673)))
  2678 (let (($x6987 (or $x3675 $x4438 $x6827 $x5673)))
  2679 (let (($x4440 (<= (+ ?x4393 ?x1173 ?x4436) 0)))
  2680 (let (($x4486 (or $x4438 $x4440 (= (+ ?x257 ?x4435 ?x1912) 0))))
  2681 (let (($x6624 (or $x3675 $x4486)))
  2682 (let ((@x5324 (monotonicity (rewrite (= (+ ?x257 ?x4435 ?x1912) ?x4487)) (= (= (+ ?x257 ?x4435 ?x1912) 0) $x5673))))
  2683 (let ((@x6996 (monotonicity (monotonicity @x6725 @x5324 (= $x4486 $x6621)) (= $x6624 (or $x3675 $x6621)))))
  2684 (let ((@x7057 (mp ((_ quant-inst ?v0!20) $x6624) (trans @x6996 (rewrite (= (or $x3675 $x6621) $x6987)) (= $x6624 $x6987)) $x6987)))
  2685 (let ((@x7649 (unit-resolution (unit-resolution @x7057 @x6588 $x6621) @x7494 @x7436 (hypothesis (not $x5673)) false)))
  2686 (let ((@x7699 (lemma @x7649 (or $x6723 $x5673))))
  2687 (let ((@x9285 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5673) $x4507)) (unit-resolution @x7699 @x9281 $x5673) $x4507)))
  2688 (let ((@x9287 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x4507) $x4570 (not $x3886))) @x6925 (or (not $x4507) $x4570))))
  2689 (let ((@x7251 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7135 (not $x4569) (not $x4570))) (hypothesis $x4569) (or $x7135 (not $x4570)))))
  2690 (let (($x7151 (not $x7135)))
  2691 (let (($x7157 (or $x3734 $x7049 $x4127 $x7151)))
  2692 (let (($x4516 (>= (+ ?x3104 ?x1912) 0)))
  2693 (let (($x4528 (or $x4516 $x4127 (not (= (+ ?x3104 ?x1912 ?x4435) 0)))))
  2694 (let (($x7317 (or $x3734 $x4528)))
  2695 (let ((@x7137 (monotonicity (rewrite (= (+ ?x3104 ?x1912 ?x4435) (+ ?x1912 ?x3104 ?x4435))) (= (= (+ ?x3104 ?x1912 ?x4435) 0) (= (+ ?x1912 ?x3104 ?x4435) 0)))))
  2696 (let ((@x7149 (trans @x7137 (rewrite (= (= (+ ?x1912 ?x3104 ?x4435) 0) $x7135)) (= (= (+ ?x3104 ?x1912 ?x4435) 0) $x7135))))
  2697 (let ((@x7063 (monotonicity (rewrite (= (+ ?x3104 ?x1912) (+ ?x1912 ?x3104))) (= $x4516 (>= (+ ?x1912 ?x3104) 0)))))
  2698 (let ((@x7144 (trans @x7063 (rewrite (= (>= (+ ?x1912 ?x3104) 0) $x7049)) (= $x4516 $x7049))))
  2699 (let ((@x7156 (monotonicity @x7144 (monotonicity @x7149 (= (not (= (+ ?x3104 ?x1912 ?x4435) 0)) $x7151)) (= $x4528 (or $x7049 $x4127 $x7151)))))
  2700 (let ((@x7313 (trans (monotonicity @x7156 (= $x7317 (or $x3734 (or $x7049 $x4127 $x7151)))) (rewrite (= (or $x3734 (or $x7049 $x4127 $x7151)) $x7157)) (= $x7317 $x7157))))
  2701 (let ((@x7502 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x7317) @x7313 $x7157) (hypothesis $x3729) @x7482 (or $x7049 $x7151))))
  2702 (let ((@x9290 (unit-resolution @x7502 (unit-resolution @x7251 (unit-resolution @x9287 @x9285 $x4570) $x7135) $x7049)))
  2703 (let (($x4382 (>= ?x4381 0)))
  2704 (let (($x6813 (= ?v1!16 v_b_v_G_1$)))
  2705 (let (($x7202 (= v_b_v_G_1$ ?v1!16)))
  2706 (let ((?x6481 (pair$ v_b_v_G_1$ ?v1!16)))
  2707 (let ((?x6374 (b_G$ ?x6481)))
  2708 (let (($x7203 (<= ?x6374 0)))
  2709 (let ((?x1866 (v_b_SP_G_2$ ?v0!17)))
  2710 (let ((?x6890 (+ ?x1866 ?x3105)))
  2711 (let (($x6886 (<= ?x6890 0)))
  2712 (let ((?x4496 (fun_app$c v_b_SP_G_1$ ?v0!17)))
  2713 (let ((?x6307 (* (- 1) ?x4496)))
  2714 (let ((?x5972 (+ ?x257 ?x6307)))
  2715 (let (($x7220 (>= ?x5972 0)))
  2716 (let (($x3187 (fun_app$ v_b_Visited_G_1$ ?v0!17)))
  2717 (let (($x4478 (= ?v0!17 v_b_v_G_1$)))
  2718 (let (($x4499 (or $x4478 $x3187)))
  2719 (let (($x4471 (fun_app$ ?x265 ?v0!17)))
  2720 (let (($x4593 (= $x4471 $x4499)))
  2721 (let (($x4712 (or $x4114 $x4593)))
  2722 (let ((@x4495 (monotonicity (rewrite (= (ite $x4478 true $x3187) $x4499)) (= (= $x4471 (ite $x4478 true $x3187)) $x4593))))
  2723 (let ((@x5371 (monotonicity @x4495 (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712))))
  2724 (let ((@x5958 (trans @x5371 (rewrite (= $x4712 $x4712)) (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712))))
  2725 (let ((@x6125 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!17) (or $x4114 (= $x4471 (ite $x4478 true $x3187)))) @x5958 $x4712)))
  2726 (let ((@x8166 (mp (unit-resolution (def-axiom (or $x2760 $x1862)) (hypothesis $x2765) $x1862) (symm (monotonicity @x5875 (= $x4471 $x1862)) (= $x1862 $x4471)) $x4471)))
  2727 (let ((@x8237 (unit-resolution (def-axiom (or (not $x4593) (not $x4471) $x4499)) @x8166 (unit-resolution @x6125 @x3473 $x4593) $x4499)))
  2728 (let (($x6485 (not $x4478)))
  2729 (let (($x8046 (<= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0)))
  2730 (let (($x6814 (fun_app$ v_b_Visited_G_1$ ?v1!16)))
  2731 (let (($x8334 (or $x6813 $x6814)))
  2732 (let (($x6812 (fun_app$ ?x265 ?v1!16)))
  2733 (let (($x7683 (= $x6812 $x8334)))
  2734 (let (($x6622 (or $x4114 $x7683)))
  2735 (let ((@x6719 (monotonicity (rewrite (= (ite $x6813 true $x6814) $x8334)) (= (= $x6812 (ite $x6813 true $x6814)) $x7683))))
  2736 (let ((@x8777 (monotonicity @x6719 (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622))))
  2737 (let ((@x8650 (trans @x8777 (rewrite (= $x6622 $x6622)) (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622))))
  2738 (let ((@x8651 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x4114 (= $x6812 (ite $x6813 true $x6814)))) @x8650 $x6622)))
  2739 (let ((@x8121 (monotonicity (symm (monotonicity @x5875 (= $x6812 $x1860)) (= $x1860 $x6812)) (= (not $x1860) (not $x6812)))))
  2740 (let (($x1861 (not $x1860)))
  2741 (let ((@x7803 (hypothesis $x2765)))
  2742 (let ((@x8141 (mp (unit-resolution (def-axiom (or $x2760 $x1861)) @x7803 $x1861) @x8121 (not $x6812))))
  2743 (let ((@x8147 (unit-resolution (def-axiom (or (not $x7683) $x6812 (not $x8334))) @x8141 (unit-resolution @x8651 @x3473 $x7683) (not $x8334))))
  2744 (let (($x8156 (or $x6814 $x8046)))
  2745 (let (($x8160 (or $x3665 $x6814 $x8046)))
  2746 (let (($x6666 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) 0)))
  2747 (let (($x6673 (or $x6814 $x6666)))
  2748 (let (($x8163 (or $x3665 $x6673)))
  2749 (let ((@x7990 (rewrite (= (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0) $x8046))))
  2750 (let (($x8213 (= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)))))
  2751 (let ((@x8047 (monotonicity (rewrite $x8213) (= $x6666 (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0)))))
  2752 (let ((@x8089 (monotonicity (monotonicity (trans @x8047 @x7990 (= $x6666 $x8046)) (= $x6673 $x8156)) (= $x8163 (or $x3665 $x8156)))))
  2753 (let ((@x8093 (mp ((_ quant-inst ?v1!16) $x8163) (trans @x8089 (rewrite (= (or $x3665 $x8156) $x8160)) (= $x8163 $x8160)) $x8160)))
  2754 (let ((@x8217 (unit-resolution @x8093 (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) $x8156)))
  2755 (let ((@x8239 (unit-resolution @x8217 (unit-resolution (def-axiom (or $x8334 (not $x6814))) @x8147 (not $x6814)) $x8046)))
  2756 (let (($x3386 (not $x1869)))
  2757 (let ((@x3390 (def-axiom (or $x2760 $x3386))))
  2758 (let ((@x8240 (unit-resolution @x3390 @x7803 $x3386)))
  2759 (let ((?x6009 (pair$ v_b_v_G_1$ ?v0!17)))
  2760 (let ((?x6010 (b_G$ ?x6009)))
  2761 (let ((?x1867 (* (- 1) ?x1866)))
  2762 (let ((?x6187 (+ ?x257 ?x1867 ?x6010)))
  2763 (let ((@x8743 (monotonicity (monotonicity (hypothesis $x4478) (= ?x6009 ?x3130)) (= ?x6010 ?x3096))))
  2764 (let (($x6889 (= ?x1866 ?x3104)))
  2765 (let ((@x6922 (hypothesis $x4478)))
  2766 (let ((@x6921 (unit-resolution (hypothesis (not $x6889)) (monotonicity @x6922 $x6889) false)))
  2767 (let ((@x6939 (lemma @x6921 (or $x6485 $x6889))))
  2768 (let ((@x6214 ((_ th-lemma arith triangle-eq) (or (not $x6889) $x6886))))
  2769 (let (($x7675 (>= ?x6890 0)))
  2770 (let ((@x8362 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6889) $x7675)) (unit-resolution @x6939 @x6922 $x6889) $x7675)))
  2771 (let ((@x7970 ((_ th-lemma arith eq-propagate 1 1 1 1 -1 -1) @x8362 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6019 @x6933 @x6930 @x7839 (= ?x6010 ?x6187))))
  2772 (let ((@x8765 (trans (trans (symm @x7970 (= ?x6187 ?x6010)) @x8743 (= ?x6187 ?x3096)) @x4849 (= ?x6187 0))))
  2773 (let (($x6564 (>= ?x6187 0)))
  2774 (let (($x7274 (not $x6564)))
  2775 (let ((@x7271 (hypothesis $x3386)))
  2776 (let ((?x1865 (v_b_SP_G_2$ ?v1!16)))
  2777 (let ((?x6126 (* (- 1) ?x1865)))
  2778 (let ((?x6400 (+ ?x257 ?x6126 ?x6374)))
  2779 (let (($x6319 (<= ?x6400 0)))
  2780 (let (($x8008 (= ?x6400 0)))
  2781 (let (($x6238 (<= (+ b_Infinity$ (* (- 1) ?x6374)) 0)))
  2782 (let (($x8646 (not $x6238)))
  2783 (let (($x7241 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16)) ?x6374) 0)))
  2784 (let (($x7239 (or $x6238 $x7241)))
  2785 (let (($x4416 (not $x7239)))
  2786 (let ((?x6234 (fun_app$c v_b_SP_G_1$ ?v1!16)))
  2787 (let (($x6378 (= ?x1865 ?x6234)))
  2788 (let (($x8565 (not $x6378)))
  2789 (let (($x8664 (>= (+ ?x1865 (* (- 1) ?x6234)) 0)))
  2790 (let (($x8549 (not $x8664)))
  2791 (let ((@x8517 ((_ th-lemma arith assign-bounds -1 -1 -1 -1 1) (or $x8549 (not $x8046) $x1869 (not $x6886) (not $x4177) (not $x3044)))))
  2792 (let ((@x8321 (unit-resolution @x8517 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6933 @x6930 @x7271 (hypothesis $x8046) $x8549)))
  2793 (let (($x8358 (or $x4416 $x6378)))
  2794 (let (($x8640 (or $x3683 $x4416 $x6378)))
  2795 (let (($x6219 (or (not (or $x6238 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0))) $x6378)))
  2796 (let (($x8252 (or $x3683 $x6219)))
  2797 (let (($x6539 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0)))
  2798 (let ((@x7664 (rewrite (= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) (+ ?x1173 ?x6234 (* (- 1) ?x6374))))))
  2799 (let ((@x7697 (monotonicity @x7664 (= $x6539 (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0)))))
  2800 (let ((@x4371 (trans @x7697 (rewrite (= (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0) $x7241)) (= $x6539 $x7241))))
  2801 (let ((@x8352 (monotonicity (monotonicity @x4371 (= (or $x6238 $x6539) $x7239)) (= (not (or $x6238 $x6539)) $x4416))))
  2802 (let ((@x8173 (monotonicity (monotonicity @x8352 (= $x6219 $x8358)) (= $x8252 (or $x3683 $x8358)))))
  2803 (let ((@x8649 (mp ((_ quant-inst ?v1!16) $x8252) (trans @x8173 (rewrite (= (or $x3683 $x8358) $x8640)) (= $x8252 $x8640)) $x8640)))
  2804 (let ((@x8632 (unit-resolution (unit-resolution @x8649 @x5944 $x8358) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) @x8321 $x8565) $x4416)))
  2805 (let (($x8029 (or $x6238 $x7241 $x8008)))
  2806 (let (($x8118 (or $x3675 $x6238 $x7241 $x8008)))
  2807 (let (($x6399 (or $x6238 $x6539 (= (+ ?x257 ?x6374 ?x6126) 0))))
  2808 (let (($x8113 (or $x3675 $x6399)))
  2809 (let ((@x8010 (monotonicity (rewrite (= (+ ?x257 ?x6374 ?x6126) ?x6400)) (= (= (+ ?x257 ?x6374 ?x6126) 0) $x8008))))
  2810 (let ((@x5909 (monotonicity (monotonicity @x4371 @x8010 (= $x6399 $x8029)) (= $x8113 (or $x3675 $x8029)))))
  2811 (let ((@x7712 (mp ((_ quant-inst ?v1!16) $x8113) (trans @x5909 (rewrite (= (or $x3675 $x8029) $x8118)) (= $x8113 $x8118)) $x8118)))
  2812 (let ((@x8635 (unit-resolution (unit-resolution @x7712 @x6588 $x8029) (unit-resolution (def-axiom (or $x7239 (not $x7241))) @x8632 (not $x7241)) (unit-resolution (def-axiom (or $x7239 $x8646)) @x8632 $x8646) $x8008)))
  2813 (let ((@x7288 (monotonicity (commutativity (= (= v_b_v_G_1$ ?v0!17) $x4478)) (= (not (= v_b_v_G_1$ ?v0!17)) $x6485))))
  2814 (let (($x7176 (= v_b_v_G_1$ ?v0!17)))
  2815 (let (($x7180 (not $x7176)))
  2816 (let (($x7177 (<= ?x6010 0)))
  2817 (let (($x7178 (not $x7177)))
  2818 (let (($x7206 (not $x7203)))
  2819 (let ((@x7267 (monotonicity (symm (commutativity (= $x7202 $x6813)) (= $x6813 $x7202)) (= (not $x6813) (not $x7202)))))
  2820 (let (($x7207 (or $x7202 $x7206)))
  2821 (let ((@x7215 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3480) $x7207)) (rewrite (= (or (not $x3480) $x7207) (or (not $x3480) $x7202 $x7206))) (or (not $x3480) $x7202 $x7206))))
  2822 (let ((@x7270 (unit-resolution (unit-resolution @x7215 @x3485 $x7207) (mp (hypothesis (not $x6813)) @x7267 (not $x7202)) $x7206)))
  2823 (let ((@x7278 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x7178 $x7274 $x1869 $x7203 (not $x6319))) (hypothesis $x6319) (hypothesis $x6564) @x7271 @x7270 $x7178)))
  2824 (let ((@x7282 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6010 0)) $x7177)) @x7278 (not (= ?x6010 0)))))
  2825 (let (($x7181 (= ?x6010 0)))
  2826 (let (($x7188 (or $x7180 $x7181)))
  2827 (let ((@x7196 (mp ((_ quant-inst v_b_v_G_1$ ?v0!17) (or $x3151 $x7188)) (rewrite (= (or $x3151 $x7188) (or $x3151 $x7180 $x7181))) (or $x3151 $x7180 $x7181))))
  2828 (let ((@x7289 (mp (unit-resolution (unit-resolution @x7196 @x3479 $x7188) @x7282 $x7180) @x7288 $x6485)))
  2829 (let ((@x5812 (def-axiom (or (not $x4499) $x4478 $x3187))))
  2830 (let (($x7229 (= (or $x3570 (or $x255 (not $x3187) $x7220)) (or $x3570 $x255 (not $x3187) $x7220))))
  2831 (let ((@x7231 (mp ((_ quant-inst ?v0!17 v_b_v_G_1$) (or $x3570 (or $x255 (not $x3187) $x7220))) (rewrite $x7229) (or $x3570 $x255 (not $x3187) $x7220))))
  2832 (let ((@x7291 (unit-resolution @x7231 @x5748 @x6225 (unit-resolution @x5812 @x7289 (hypothesis $x4499) $x3187) $x7220)))
  2833 (let (($x6327 (<= (+ ?x1866 ?x6307) 0)))
  2834 (let (($x6088 (or $x3691 $x6327)))
  2835 (let ((@x6464 (monotonicity (rewrite (= (+ ?x4496 ?x1867) (+ ?x1867 ?x4496))) (= (>= (+ ?x4496 ?x1867) 0) (>= (+ ?x1867 ?x4496) 0)))))
  2836 (let ((@x5905 (trans @x6464 (rewrite (= (>= (+ ?x1867 ?x4496) 0) $x6327)) (= (>= (+ ?x4496 ?x1867) 0) $x6327))))
  2837 (let ((@x5843 (trans (monotonicity @x5905 (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088)) (rewrite (= $x6088 $x6088)) (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088))))
  2838 (let ((@x7292 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3691 (>= (+ ?x4496 ?x1867) 0))) @x5843 $x6088) @x6892 $x6327)))
  2839 (let ((@x7295 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x7292 @x7271 @x7270 (hypothesis $x6319) @x7291 false) (or (not $x6319) $x1869 (not $x4499) $x7274 $x6813))))
  2840 (let ((@x8734 (unit-resolution @x7295 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) @x8635 $x6319) (hypothesis $x4499) (hypothesis (not $x6813)) @x7271 $x7274)))
  2841 (let ((@x8324 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6187 0)) $x6564)) @x8734 (not (= ?x6187 0)))))
  2842 (let ((@x8494 (lemma (unit-resolution @x8324 @x8765 false) (or $x6485 (not $x4499) $x6813 $x1869 (not $x8046)))))
  2843 (let ((@x8211 (unit-resolution @x8494 @x8237 (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) @x8240 @x8239 $x6485)))
  2844 (let ((@x8909 (unit-resolution @x7231 @x5748 @x6225 (hypothesis $x3187) (hypothesis (not $x7220)) false)))
  2845 (let ((@x8256 (unit-resolution (lemma @x8909 (or (not $x3187) $x7220)) (unit-resolution @x5812 @x8211 @x8237 $x3187) $x7220)))
  2846 (let ((@x8314 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1) (or $x6886 (not $x7220) (not $x6327) $x4315 (not $x4239))) @x7292 @x7839 @x8256 @x6019 $x6886)))
  2847 (let ((@x8385 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) (unit-resolution @x8517 @x8314 @x6933 @x6930 @x8240 @x8239 $x8549) $x8565)))
  2848 (let ((@x8386 (unit-resolution (def-axiom (or $x7239 $x8646)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8646)))
  2849 (let (($x8654 (not $x7241)))
  2850 (let ((@x8390 (unit-resolution (def-axiom (or $x7239 $x8654)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8654)))
  2851 (let ((@x8410 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) (unit-resolution (unit-resolution @x7712 @x6588 $x8029) @x8390 @x8386 $x8008) $x6319)))
  2852 (let ((@x8411 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7203 (not $x6319) $x1869 (not $x6886) (not $x4177) (not $x3044)))))
  2853 (let ((@x8413 (unit-resolution @x7215 @x3485 (unit-resolution @x8411 @x8410 @x6933 @x6930 @x8240 @x8314 $x7203) $x7202)))
  2854 (let ((@x8417 (unit-resolution (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) (symm @x8413 $x6813) false)))
  2855 (let ((@x3365 (def-axiom (or $x3758 $x2765 $x3752))))
  2856 (let ((@x9296 (unit-resolution @x3365 (lemma @x8417 $x2760) (unit-resolution (def-axiom (or $x3761 $x3755)) @x9294 $x3755) $x3752)))
  2857 (let ((@x8225 (rewrite (= (or $x3717 (or $x4278 $x4127 $x4382)) (or $x3717 $x4278 $x4127 $x4382)))))
  2858 (let ((@x8229 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or $x3717 (or $x4278 $x4127 $x4382))) @x8225 (or $x3717 $x4278 $x4127 $x4382))))
  2859 (let ((@x9299 (unit-resolution @x8229 (unit-resolution (def-axiom (or $x3749 $x3712)) @x9296 $x3712) @x7482 (or $x4278 $x4382))))
  2860 (let (($x4508 (>= ?x4487 0)))
  2861 (let ((@x9304 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x4508 (not $x4569) (not $x3886))) @x6925 (or $x4508 (not $x4569)))))
  2862 (let ((@x9306 ((_ th-lemma arith eq-propagate -1 -1 -1 -1 -1 -1 1 1) (unit-resolution @x9304 (hypothesis $x4569) $x4508) @x9285 (unit-resolution @x9299 @x9292 $x4382) @x9290 @x6019 @x6933 @x6930 @x7839 $x5391)))
  2863 (let (($x5388 (not $x5387)))
  2864 (let (($x5389 (or $x5386 $x5388)))
  2865 (let ((@x7598 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or (not $x3480) $x5389)) (rewrite (= (or (not $x3480) $x5389) (or (not $x3480) $x5386 $x5388))) (or (not $x3480) $x5386 $x5388))))
  2866 (let ((@x9311 (unit-resolution (unit-resolution @x7598 @x3485 $x5389) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5391) $x5387)) @x9306 $x5387) $x5386)))
  2867 (let ((@x8045 (unit-resolution (lemma (unit-resolution @x9311 @x9328 false) (or $x4400 $x3734 (not $x4569))) (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x7751 $x4400)))
  2868 (let ((@x8812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4400) $x5977)) @x8045 $x5977)))
  2869 (let ((?x4641 (?v1!7 ?v0!20)))
  2870 (let ((?x4648 (pair$ ?x4641 ?v0!20)))
  2871 (let ((?x4649 (b_G$ ?x4648)))
  2872 (let ((?x4650 (* (- 1) ?x4649)))
  2873 (let ((?x4642 (fun_app$c v_b_SP_G_1$ ?x4641)))
  2874 (let ((?x4643 (* (- 1) ?x4642)))
  2875 (let ((?x4651 (+ ?x4393 ?x4643 ?x4650)))
  2876 (let (($x4391 (>= ?x4651 0)))
  2877 (let (($x4652 (= ?x4651 0)))
  2878 (let (($x4653 (not $x4652)))
  2879 (let (($x4646 (fun_app$ v_b_Visited_G_1$ ?x4641)))
  2880 (let (($x4647 (not $x4646)))
  2881 (let ((?x4644 (+ ?x4393 ?x4643)))
  2882 (let (($x4645 (<= ?x4644 0)))
  2883 (let (($x4654 (or $x4645 $x4647 $x4653)))
  2884 (let (($x4655 (not $x4654)))
  2885 (let (($x4640 (<= (+ b_Infinity$ ?x4418) 0)))
  2886 (let (($x7886 (not $x4640)))
  2887 (let ((@x8816 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x5977) $x1914 $x7886)) @x8812 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) $x7886)))
  2888 (let ((@x7414 (rewrite (= (or $x3586 (or $x1909 $x4640 $x4655)) (or $x3586 $x1909 $x4640 $x4655)))))
  2889 (let ((@x7415 (mp ((_ quant-inst ?v0!20) (or $x3586 (or $x1909 $x4640 $x4655))) @x7414 (or $x3586 $x1909 $x4640 $x4655))))
  2890 (let ((@x8817 (unit-resolution @x7415 @x4545 (unit-resolution (def-axiom (or $x3737 $x1910)) @x8092 $x1910) (or $x4640 $x4655))))
  2891 (let ((@x8826 (unit-resolution @x8817 @x8816 $x4655)))
  2892 (let ((@x6085 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x4391)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x4391)))
  2893 (let (($x7707 (<= ?x4651 0)))
  2894 (let ((@x8177 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x7707)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x7707)))
  2895 (let (($x4689 (fun_app$ v_b_Visited_G_2$ ?x4641)))
  2896 (let ((@x6032 (monotonicity (symm (hypothesis $x266) (= ?x265 v_b_Visited_G_2$)) (= (fun_app$ ?x265 ?x4641) $x4689))))
  2897 (let ((@x6036 (monotonicity (symm @x6032 (= $x4689 (fun_app$ ?x265 ?x4641))) (= (not $x4689) (not (fun_app$ ?x265 ?x4641))))))
  2898 (let (($x5978 (fun_app$ ?x265 ?x4641)))
  2899 (let (($x5985 (= ?x4641 v_b_v_G_1$)))
  2900 (let (($x5988 (or $x5985 $x4646)))
  2901 (let (($x5991 (= $x5978 $x5988)))
  2902 (let (($x5994 (or $x4114 $x5991)))
  2903 (let ((@x5993 (monotonicity (rewrite (= (ite $x5985 true $x4646) $x5988)) (= (= $x5978 (ite $x5985 true $x4646)) $x5991))))
  2904 (let ((@x5998 (monotonicity @x5993 (= (or $x4114 (= $x5978 (ite $x5985 true $x4646))) $x5994))))
  2905 (let ((@x6001 (trans @x5998 (rewrite (= $x5994 $x5994)) (= (or $x4114 (= $x5978 (ite $x5985 true $x4646))) $x5994))))
  2906 (let ((@x6002 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true (?v1!7 ?v0!20)) (or $x4114 (= $x5978 (ite $x5985 true $x4646)))) @x6001 $x5994)))
  2907 (let ((@x6025 (unit-resolution (def-axiom (or (not $x5991) $x5978 (not $x5988))) (unit-resolution (def-axiom (or $x5988 $x4647)) (hypothesis $x4646) $x5988) (or (not $x5991) $x5978))))
  2908 (let ((@x6038 (unit-resolution (unit-resolution @x6025 (unit-resolution @x6002 @x3473 $x5991) $x5978) (mp (hypothesis (not $x4689)) @x6036 (not $x5978)) false)))
  2909 (let ((@x8986 (unit-resolution (lemma @x6038 (or $x4689 $x2935 $x4647)) (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (or $x4689 $x4647))))
  2910 (let ((@x8987 (unit-resolution @x8986 (unit-resolution (def-axiom (or $x4654 $x4646)) @x8826 $x4646) $x4689)))
  2911 (let ((?x4697 (v_b_SP_G_2$ ?x4641)))
  2912 (let ((?x4700 (* (- 1) ?x4697)))
  2913 (let ((?x4868 (+ ?x1911 ?x4700)))
  2914 (let (($x9248 (<= ?x4868 0)))
  2915 (let (($x8507 (not $x9248)))
  2916 (let ((?x4701 (+ ?x4642 ?x4700)))
  2917 (let (($x4708 (>= ?x4701 0)))
  2918 (let ((@x8348 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8507 (not $x4708) $x4645 (not $x5977))) @x8812 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (unit-resolution (def-axiom (or $x4654 (not $x4645))) @x8826 (not $x4645)) $x8507)))
  2919 (let ((?x8311 (+ ?x1911 ?x4650 ?x4700)))
  2920 (let (($x8266 (>= ?x8311 0)))
  2921 (let ((@x10143 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8266 (not $x4391) (not $x4708) (not $x5977))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (hypothesis $x4391) (hypothesis $x5977) $x8266)))
  2922 (let (($x8534 (<= ?x8311 0)))
  2923 (let (($x5038 (<= ?x4701 0)))
  2924 (let (($x5863 (= ?x4642 ?x4697)))
  2925 (let ((@x10149 (symm (commutativity (= $x5863 (= ?x4697 ?x4642))) (= (= ?x4697 ?x4642) $x5863))))
  2926 (let (($x4698 (= ?x4697 ?x4642)))
  2927 (let ((@x7939 (rewrite (= (or $x3700 (or (not $x4689) $x4698)) (or $x3700 (not $x4689) $x4698)))))
  2928 (let ((@x7943 (mp ((_ quant-inst (?v1!7 ?v0!20)) (or $x3700 (or (not $x4689) $x4698))) @x7939 (or $x3700 (not $x4689) $x4698))))
  2929 (let ((@x7980 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5863) $x5038)) (mp (unit-resolution @x7943 @x7616 (hypothesis $x4689) $x4698) @x10149 $x5863) $x5038)))
  2930 (let (($x8014 (<= ?x4419 0)))
  2931 (let (($x8221 (or $x3691 $x8014)))
  2932 (let ((@x8001 (monotonicity (rewrite (= (+ ?x4393 ?x1912) (+ ?x1912 ?x4393))) (= (>= (+ ?x4393 ?x1912) 0) (>= (+ ?x1912 ?x4393) 0)))))
  2933 (let ((@x8035 (trans @x8001 (rewrite (= (>= (+ ?x1912 ?x4393) 0) $x8014)) (= (>= (+ ?x4393 ?x1912) 0) $x8014))))
  2934 (let ((@x8178 (trans (monotonicity @x8035 (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221)) (rewrite (= $x8221 $x8221)) (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221))))
  2935 (let ((@x8659 (unit-resolution (mp ((_ quant-inst ?v0!20) (or $x3691 (>= (+ ?x4393 ?x1912) 0))) @x8178 $x8221) @x6892 $x8014)))
  2936 (let ((@x8083 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8534 (not $x7707) (not $x5038) (not $x8014))) @x8659 (hypothesis $x7707) @x7980 $x8534)))
  2937 (let (($x9251 (= ?x8311 0)))
  2938 (let (($x8749 (not $x9251)))
  2939 (let (($x4690 (not $x4689)))
  2940 (let (($x8567 (or $x3734 $x9248 $x4690 $x8749)))
  2941 (let (($x4857 (>= (+ ?x4697 ?x1912) 0)))
  2942 (let (($x4861 (or $x4857 $x4690 (not (= (+ ?x4697 ?x1912 ?x4649) 0)))))
  2943 (let (($x8927 (or $x3734 $x4861)))
  2944 (let ((@x8955 (monotonicity (rewrite (= (+ ?x4697 ?x1912 ?x4649) (+ ?x1912 ?x4649 ?x4697))) (= (= (+ ?x4697 ?x1912 ?x4649) 0) (= (+ ?x1912 ?x4649 ?x4697) 0)))))
  2945 (let ((@x8627 (trans @x8955 (rewrite (= (= (+ ?x1912 ?x4649 ?x4697) 0) $x9251)) (= (= (+ ?x4697 ?x1912 ?x4649) 0) $x9251))))
  2946 (let ((@x8965 (monotonicity (rewrite (= (+ ?x4697 ?x1912) (+ ?x1912 ?x4697))) (= $x4857 (>= (+ ?x1912 ?x4697) 0)))))
  2947 (let ((@x8985 (trans @x8965 (rewrite (= (>= (+ ?x1912 ?x4697) 0) $x9248)) (= $x4857 $x9248))))
  2948 (let ((@x9087 (monotonicity @x8985 (monotonicity @x8627 (= (not (= (+ ?x4697 ?x1912 ?x4649) 0)) $x8749)) (= $x4861 (or $x9248 $x4690 $x8749)))))
  2949 (let ((@x8874 (trans (monotonicity @x9087 (= $x8927 (or $x3734 (or $x9248 $x4690 $x8749)))) (rewrite (= (or $x3734 (or $x9248 $x4690 $x8749)) $x8567)) (= $x8927 $x8567))))
  2950 (let ((@x8397 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x8927) @x8874 $x8567) (hypothesis $x3729) (hypothesis $x4689) (or $x9248 $x8749))))
  2951 (let ((@x5592 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x9251 (not $x8534) (not $x8266))) (unit-resolution @x8397 (hypothesis $x8507) $x8749) @x8083 @x10143 false)))
  2952 (let ((@x8013 (unit-resolution (lemma @x5592 (or $x9248 $x3734 $x4690 (not $x7707) (not $x4391) (not $x5977))) @x8348 (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x8987 @x8177 @x6085 @x8812 false)))
  2953 (let ((@x3278 (def-axiom (or $x3746 $x2811 $x3740))))
  2954 (let ((@x8433 (unit-resolution @x3278 (unit-resolution (def-axiom (or $x3749 $x3743)) @x9296 $x3743) $x3743)))
  2955 (let (($x3378 (not $x1896)))
  2956 (let ((@x3380 (def-axiom (or $x2806 $x3378))))
  2957 (let ((@x8434 (unit-resolution @x3380 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) $x3378)))
  2958 (let ((?x6619 (fun_app$c v_b_SP_G_1$ ?v1!18)))
  2959 (let (($x6615 (= ?x1892 ?x6619)))
  2960 (let (($x7618 (not $x6615)))
  2961 (let ((@x7591 (hypothesis $x2811)))
  2962 (let ((@x7607 (unit-resolution (def-axiom (or $x2806 $x1883)) @x7591 $x1883)))
  2963 (let ((@x7571 (hypothesis $x3378)))
  2964 (let (($x1889 (not $x1888)))
  2965 (let ((@x7592 (unit-resolution (def-axiom (or $x2806 $x1889)) @x7591 $x1889)))
  2966 (let ((?x7110 (pair$ v_b_v_G_1$ ?v0!19)))
  2967 (let ((?x7111 (b_G$ ?x7110)))
  2968 (let ((?x7100 (* (- 1) ?x7111)))
  2969 (let ((?x7554 (+ ?x1885 ?x7100)))
  2970 (let (($x7556 (>= ?x7554 0)))
  2971 (let (($x7003 (= ?x1885 ?x7111)))
  2972 (let (($x7243 (= ?v1!18 v_b_v_G_1$)))
  2973 (let (($x7246 (fun_app$ v_b_Visited_G_1$ ?v1!18)))
  2974 (let (($x6211 (not $x7246)))
  2975 (let (($x7248 (>= (+ ?x1885 ?x6619 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0)))
  2976 (let (($x7499 (not $x7248)))
  2977 (let ((?x6721 (* (- 1) ?x6619)))
  2978 (let ((?x5600 (+ ?x1892 ?x6721)))
  2979 (let (($x7353 (>= ?x5600 0)))
  2980 (let ((@x8658 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7618 $x7353)) (hypothesis $x6615) $x7353)))
  2981 (let (($x7076 (<= (+ ?x1893 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0)))
  2982 (let (($x7084 (or $x3691 $x7076)))
  2983 (let (($x7081 (= (or $x3691 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0)) $x7084)))
  2984 (let ((@x7078 (rewrite (= (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0) $x7076))))
  2985 (let (($x7048 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0)))
  2986 (let (($x7069 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)))))
  2987 (let ((@x7073 (monotonicity (rewrite $x7069) (= $x7048 (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0)))))
  2988 (let ((@x7090 (trans (monotonicity (trans @x7073 @x7078 (= $x7048 $x7076)) $x7081) (rewrite (= $x7084 $x7084)) $x7081)))
  2989 (let ((@x7496 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3691 $x7048)) @x7090 $x7084) @x6892 $x7076)))
  2990 (let ((@x7501 (lemma ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x7248) @x7571 @x7496 (hypothesis $x7353) false) (or $x7499 $x1896 (not $x7353)))))
  2991 (let ((@x6992 (rewrite (= (or $x3578 (or $x6211 $x1888 $x7248)) (or $x3578 $x6211 $x1888 $x7248)))))
  2992 (let ((@x7051 (mp ((_ quant-inst ?v0!19 ?v1!18) (or $x3578 (or $x6211 $x1888 $x7248))) @x6992 (or $x3578 $x6211 $x1888 $x7248))))
  2993 (let ((@x8673 (unit-resolution (unit-resolution @x7051 @x4223 (hypothesis $x1889) (or $x6211 $x7248)) (unit-resolution @x7501 @x8658 @x7571 $x7499) $x6211)))
  2994 (let (($x7222 (or $x7243 $x7246)))
  2995 (let (($x6667 (fun_app$ ?x265 ?v1!18)))
  2996 (let (($x6740 (= $x6667 $x7222)))
  2997 (let (($x6746 (or $x4114 $x6740)))
  2998 (let ((@x6743 (monotonicity (rewrite (= (ite $x7243 true $x7246) $x7222)) (= (= $x6667 (ite $x7243 true $x7246)) $x6740))))
  2999 (let ((@x6845 (monotonicity @x6743 (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746))))
  3000 (let ((@x4954 (trans @x6845 (rewrite (= $x6746 $x6746)) (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746))))
  3001 (let ((@x6537 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!18) (or $x4114 (= $x6667 (ite $x7243 true $x7246)))) @x4954 $x6746)))
  3002 (let ((@x8675 (mp (hypothesis $x1883) (symm (monotonicity @x5875 (= $x6667 $x1883)) (= $x1883 $x6667)) $x6667)))
  3003 (let ((@x8676 (unit-resolution (def-axiom (or (not $x6740) (not $x6667) $x7222)) @x8675 (unit-resolution @x6537 @x3473 $x6740) $x7222)))
  3004 (let ((@x4955 (def-axiom (or (not $x7222) $x7243 $x7246))))
  3005 (let ((@x7000 (unit-resolution (hypothesis (not $x7003)) (monotonicity (monotonicity (hypothesis $x7243) (= ?x1884 ?x7110)) $x7003) false)))
  3006 (let ((@x7002 (lemma @x7000 (or (not $x7243) $x7003))))
  3007 (let ((@x7011 ((_ th-lemma arith triangle-eq) (or (not $x7003) $x7556))))
  3008 (let ((@x8679 (unit-resolution @x7011 (unit-resolution @x7002 (unit-resolution @x4955 @x8676 @x8673 $x7243) $x7003) $x7556)))
  3009 (let (($x7102 (<= (+ b_Infinity$ ?x7100) 0)))
  3010 (let ((?x7171 (+ ?x257 ?x1894 ?x7111)))
  3011 (let (($x7252 (>= ?x7171 0)))
  3012 (let (($x7576 (not $x7252)))
  3013 (let (($x7366 (<= (+ ?x257 ?x6721) 0)))
  3014 (let (($x8449 (or $x3665 $x7246 $x7366)))
  3015 (let (($x7357 (>= (+ ?x6619 ?x1173) 0)))
  3016 (let (($x7358 (or $x7246 $x7357)))
  3017 (let (($x8450 (or $x3665 $x7358)))
  3018 (let ((@x8441 (monotonicity (rewrite (= (+ ?x6619 ?x1173) (+ ?x1173 ?x6619))) (= $x7357 (>= (+ ?x1173 ?x6619) 0)))))
  3019 (let ((@x8445 (trans @x8441 (rewrite (= (>= (+ ?x1173 ?x6619) 0) $x7366)) (= $x7357 $x7366))))
  3020 (let ((@x8454 (monotonicity (monotonicity @x8445 (= $x7358 (or $x7246 $x7366))) (= $x8450 (or $x3665 (or $x7246 $x7366))))))
  3021 (let ((@x8458 (trans @x8454 (rewrite (= (or $x3665 (or $x7246 $x7366)) $x8449)) (= $x8450 $x8449))))
  3022 (let ((@x8681 (unit-resolution (mp ((_ quant-inst ?v1!18) $x8450) @x8458 $x8449) (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) @x8673 $x7366)))
  3023 (let ((@x8685 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1) (or $x7576 $x1896 (not $x7353) (not $x7366) (not $x7556))) @x8681 @x8679 @x7571 @x8658 $x7576)))
  3024 (let ((@x8686 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x7171 0)) $x7252)) @x8685 (not (= ?x7171 0)))))
  3025 (let (($x7117 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19)) ?x7111) 0)))
  3026 (let (($x7161 (not $x7117)))
  3027 (let ((@x8688 ((_ th-lemma arith assign-bounds -1 -1 1 -1 1) (or $x7161 (not $x7076) $x1896 (not $x7353) (not $x7366) (not $x7556)))))
  3028 (let (($x7174 (= ?x7171 0)))
  3029 (let (($x7184 (or $x7102 $x7117 $x7174)))
  3030 (let (($x7186 (or $x3675 $x7102 $x7117 $x7174)))
  3031 (let (($x7104 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) 0)))
  3032 (let (($x7165 (or $x7102 $x7104 (= (+ ?x257 ?x7111 ?x1894) 0))))
  3033 (let (($x7187 (or $x3675 $x7165)))
  3034 (let ((@x7183 (monotonicity (rewrite (= (+ ?x257 ?x7111 ?x1894) ?x7171)) (= (= (+ ?x257 ?x7111 ?x1894) 0) $x7174))))
  3035 (let ((@x7119 (rewrite (= (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0) $x7117))))
  3036 (let (($x7112 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100))))
  3037 (let ((@x7115 (monotonicity (rewrite $x7112) (= $x7104 (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0)))))
  3038 (let ((@x7205 (monotonicity (monotonicity (trans @x7115 @x7119 (= $x7104 $x7117)) @x7183 (= $x7165 $x7184)) (= $x7187 (or $x3675 $x7184)))))
  3039 (let ((@x7250 (mp ((_ quant-inst ?v0!19) $x7187) (trans @x7205 (rewrite (= (or $x3675 $x7184) $x7186)) (= $x7187 $x7186)) $x7186)))
  3040 (let ((@x8690 (unit-resolution (unit-resolution @x7250 @x6588 $x7184) (unit-resolution @x8688 @x8681 @x8679 @x7571 @x8658 @x7496 $x7161) @x8686 $x7102)))
  3041 (let ((@x8693 (lemma ((_ th-lemma arith farkas -1 1 1) @x8690 @x8679 (hypothesis $x1889) false) (or $x7618 $x1888 $x1896 $x2791))))
  3042 (let ((@x7245 (mp ((_ quant-inst ?v1!18) (or $x3700 (or $x2791 $x6615))) (rewrite (= (or $x3700 (or $x2791 $x6615)) (or $x3700 $x2791 $x6615))) (or $x3700 $x2791 $x6615))))
  3043 (let ((@x8285 (unit-resolution @x7245 @x7616 @x7607 (unit-resolution @x8693 @x7592 @x7571 @x7607 $x7618) false)))
  3044 (unit-resolution (lemma @x8285 (or $x2806 $x1896)) @x8434 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  3045