| author | wenzelm |
| Thu, 15 Mar 2012 11:37:56 +0100 | |
| changeset 46941 | c0f776b661fa |
| parent 39302 | d7728f65b353 |
| child 58878 | f962e42e324d |
| permissions | -rw-r--r-- |
(* Title : NatStar.thy Author : Jacques D. Fleuriot Copyright : 1998 University of Cambridge Converted to Isar and polished by lcp *) header{*Star-transforms for the Hypernaturals*} theory NatStar imports Star begin lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn" by (simp add: hypnat_omega_def starfun_def star_of_def Ifun_star_n) lemma starset_n_Un: "*sn* (%n. (A n) Un (B n)) = *sn* A Un *sn* B" apply (simp add: starset_n_def star_n_eq_starfun_whn Un_def) apply (rule_tac x=whn in spec, transfer, simp) done lemma InternalSets_Un: "[| X \<in> InternalSets; Y \<in> InternalSets |] ==> (X Un Y) \<in> InternalSets" by (auto simp add: InternalSets_def starset_n_Un [symmetric]) lemma starset_n_Int: "*sn* (%n. (A n) Int (B n)) = *sn* A Int *sn* B" apply (simp add: starset_n_def star_n_eq_starfun_whn Int_def) apply (rule_tac x=whn in spec, transfer, simp) done lemma InternalSets_Int: "[| X \<in> InternalSets; Y \<in> InternalSets |] ==> (X Int Y) \<in> InternalSets" by (auto simp add: InternalSets_def starset_n_Int [symmetric]) lemma starset_n_Compl: "*sn* ((%n. - A n)) = -( *sn* A)" apply (simp add: starset_n_def star_n_eq_starfun_whn Compl_eq) apply (rule_tac x=whn in spec, transfer, simp) done lemma InternalSets_Compl: "X \<in> InternalSets ==> -X \<in> InternalSets" by (auto simp add: InternalSets_def starset_n_Compl [symmetric]) lemma starset_n_diff: "*sn* (%n. (A n) - (B n)) = *sn* A - *sn* B" apply (simp add: starset_n_def star_n_eq_starfun_whn set_diff_eq) apply (rule_tac x=whn in spec, transfer, simp) done lemma InternalSets_diff: "[| X \<in> InternalSets; Y \<in> InternalSets |] ==> (X - Y) \<in> InternalSets" by (auto simp add: InternalSets_def starset_n_diff [symmetric]) lemma NatStar_SHNat_subset: "Nats \<le> *s* (UNIV:: nat set)" by simp lemma NatStar_hypreal_of_real_Int: "*s* X Int Nats = hypnat_of_nat ` X" by (auto simp add: SHNat_eq) lemma starset_starset_n_eq: "*s* X = *sn* (%n. X)" by (simp add: starset_n_starset) lemma InternalSets_starset_n [simp]: "( *s* X) \<in> InternalSets" by (auto simp add: InternalSets_def starset_starset_n_eq) lemma InternalSets_UNIV_diff: "X \<in> InternalSets ==> UNIV - X \<in> InternalSets" apply (subgoal_tac "UNIV - X = - X") by (auto intro: InternalSets_Compl) subsection{*Nonstandard Extensions of Functions*} text{* Example of transfer of a property from reals to hyperreals --- used for limit comparison of sequences*} lemma starfun_le_mono: "\<forall>n. N \<le> n --> f n \<le> g n ==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n \<le> ( *f* g) n" by transfer (*****----- and another -----*****) lemma starfun_less_mono: "\<forall>n. N \<le> n --> f n < g n ==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n < ( *f* g) n" by transfer text{*Nonstandard extension when we increment the argument by one*} lemma starfun_shift_one: "!!N. ( *f* (%n. f (Suc n))) N = ( *f* f) (N + (1::hypnat))" by (transfer, simp) text{*Nonstandard extension with absolute value*} lemma starfun_abs: "!!N. ( *f* (%n. abs (f n))) N = abs(( *f* f) N)" by (transfer, rule refl) text{*The hyperpow function as a nonstandard extension of realpow*} lemma starfun_pow: "!!N. ( *f* (%n. r ^ n)) N = (hypreal_of_real r) pow N" by (transfer, rule refl) lemma starfun_pow2: "!!N. ( *f* (%n. (X n) ^ m)) N = ( *f* X) N pow hypnat_of_nat m" by (transfer, rule refl) lemma starfun_pow3: "!!R. ( *f* (%r. r ^ n)) R = (R) pow hypnat_of_nat n" by (transfer, rule refl) text{*The @{term hypreal_of_hypnat} function as a nonstandard extension of @{term real_of_nat} *} lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat" by transfer (simp add: fun_eq_iff real_of_nat_def) lemma starfun_inverse_real_of_nat_eq: "N \<in> HNatInfinite ==> ( *f* (%x::nat. inverse(real x))) N = inverse(hypreal_of_hypnat N)" apply (rule_tac f1 = inverse in starfun_o2 [THEN subst]) apply (subgoal_tac "hypreal_of_hypnat N ~= 0") apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat starfun_inverse_inverse) done text{*Internal functions - some redundancy with *f* now*} lemma starfun_n: "( *fn* f) (star_n X) = star_n (%n. f n (X n))" by (simp add: starfun_n_def Ifun_star_n) text{*Multiplication: @{text "( *fn) x ( *gn) = *(fn x gn)"}*} lemma starfun_n_mult: "( *fn* f) z * ( *fn* g) z = ( *fn* (% i x. f i x * g i x)) z" apply (cases z) apply (simp add: starfun_n star_n_mult) done text{*Addition: @{text "( *fn) + ( *gn) = *(fn + gn)"}*} lemma starfun_n_add: "( *fn* f) z + ( *fn* g) z = ( *fn* (%i x. f i x + g i x)) z" apply (cases z) apply (simp add: starfun_n star_n_add) done text{*Subtraction: @{text "( *fn) - ( *gn) = *(fn + - gn)"}*} lemma starfun_n_add_minus: "( *fn* f) z + -( *fn* g) z = ( *fn* (%i x. f i x + -g i x)) z" apply (cases z) apply (simp add: starfun_n star_n_minus star_n_add) done text{*Composition: @{text "( *fn) o ( *gn) = *(fn o gn)"}*} lemma starfun_n_const_fun [simp]: "( *fn* (%i x. k)) z = star_of k" apply (cases z) apply (simp add: starfun_n star_of_def) done lemma starfun_n_minus: "- ( *fn* f) x = ( *fn* (%i x. - (f i) x)) x" apply (cases x) apply (simp add: starfun_n star_n_minus) done lemma starfun_n_eq [simp]: "( *fn* f) (star_of n) = star_n (%i. f i n)" by (simp add: starfun_n star_of_def) lemma starfun_eq_iff: "(( *f* f) = ( *f* g)) = (f = g)" by (transfer, rule refl) lemma starfunNat_inverse_real_of_nat_Infinitesimal [simp]: "N \<in> HNatInfinite ==> ( *f* (%x. inverse (real x))) N \<in> Infinitesimal" apply (rule_tac f1 = inverse in starfun_o2 [THEN subst]) apply (subgoal_tac "hypreal_of_hypnat N ~= 0") apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat) done subsection{*Nonstandard Characterization of Induction*} lemma hypnat_induct_obj: "!!n. (( *p* P) (0::hypnat) & (\<forall>n. ( *p* P)(n) --> ( *p* P)(n + 1))) --> ( *p* P)(n)" by (transfer, induct_tac n, auto) lemma hypnat_induct: "!!n. [| ( *p* P) (0::hypnat); !!n. ( *p* P)(n) ==> ( *p* P)(n + 1)|] ==> ( *p* P)(n)" by (transfer, induct_tac n, auto) lemma starP2_eq_iff: "( *p2* (op =)) = (op =)" by transfer (rule refl) lemma starP2_eq_iff2: "( *p2* (%x y. x = y)) X Y = (X = Y)" by (simp add: starP2_eq_iff) lemma nonempty_nat_set_Least_mem: "c \<in> (S :: nat set) ==> (LEAST n. n \<in> S) \<in> S" by (erule LeastI) lemma nonempty_set_star_has_least: "!!S::nat set star. Iset S \<noteq> {} ==> \<exists>n \<in> Iset S. \<forall>m \<in> Iset S. n \<le> m" apply (transfer empty_def) apply (rule_tac x="LEAST n. n \<in> S" in bexI) apply (simp add: Least_le) apply (rule LeastI_ex, auto) done lemma nonempty_InternalNatSet_has_least: "[| (S::hypnat set) \<in> InternalSets; S \<noteq> {} |] ==> \<exists>n \<in> S. \<forall>m \<in> S. n \<le> m" apply (clarsimp simp add: InternalSets_def starset_n_def) apply (erule nonempty_set_star_has_least) done text{* Goldblatt page 129 Thm 11.3.2*} lemma internal_induct_lemma: "!!X::nat set star. [| (0::hypnat) \<in> Iset X; \<forall>n. n \<in> Iset X --> n + 1 \<in> Iset X |] ==> Iset X = (UNIV:: hypnat set)" apply (transfer UNIV_def) apply (rule equalityI [OF subset_UNIV subsetI]) apply (induct_tac x, auto) done lemma internal_induct: "[| X \<in> InternalSets; (0::hypnat) \<in> X; \<forall>n. n \<in> X --> n + 1 \<in> X |] ==> X = (UNIV:: hypnat set)" apply (clarsimp simp add: InternalSets_def starset_n_def) apply (erule (1) internal_induct_lemma) done end