1 (* Title: HOL/HOLCF/Tools/Domain/domain_isomorphism.ML
4 Defines new types satisfying the given domain equations.
7 signature DOMAIN_ISOMORPHISM =
9 val domain_isomorphism :
10 (string list * binding * mixfix * typ
11 * (binding * binding) option) list ->
13 (Domain_Take_Proofs.iso_info list
14 * Domain_Take_Proofs.take_induct_info) * theory
16 val define_map_functions :
17 (binding * Domain_Take_Proofs.iso_info) list ->
20 map_consts : term list,
21 map_apply_thms : thm list,
22 map_unfold_thms : thm list,
24 deflation_map_thms : thm list
28 val domain_isomorphism_cmd :
29 (string list * binding * mixfix * string * (binding * binding) option) list
33 structure Domain_Isomorphism : DOMAIN_ISOMORPHISM =
37 simpset_of (put_simpset HOL_basic_ss @{context}
38 addsimps @{thms simp_thms} addsimprocs [@{simproc beta_cfun_proc}])
40 fun is_cpo thy T = Sign.of_sort thy (T, @{sort cpo})
43 (******************************************************************************)
44 (************************** building types and terms **************************)
45 (******************************************************************************)
52 val udomT = @{typ udom}
53 val deflT = @{typ "udom defl"}
54 val udeflT = @{typ "udom u defl"}
57 Const (@{const_name defl}, Term.itselfT T --> deflT) $ Logic.mk_type T
59 fun dest_DEFL (Const (@{const_name defl}, _) $ t) = Logic.dest_type t
60 | dest_DEFL t = raise TERM ("dest_DEFL", [t])
63 Const (@{const_name liftdefl}, Term.itselfT T --> udeflT) $ Logic.mk_type T
65 fun dest_LIFTDEFL (Const (@{const_name liftdefl}, _) $ t) = Logic.dest_type t
66 | dest_LIFTDEFL t = raise TERM ("dest_LIFTDEFL", [t])
68 fun mk_u_defl t = mk_capply (@{const "u_defl"}, t)
70 fun emb_const T = Const (@{const_name emb}, T ->> udomT)
71 fun prj_const T = Const (@{const_name prj}, udomT ->> T)
72 fun coerce_const (T, U) = mk_cfcomp (prj_const U, emb_const T)
75 Const (@{const_name isodefl}, (T ->> T) --> deflT --> HOLogic.boolT)
77 fun isodefl'_const T =
78 Const (@{const_name isodefl'}, (T ->> T) --> udeflT --> HOLogic.boolT)
81 Const (@{const_name deflation}, Term.fastype_of t --> boolT) $ t
83 (* splits a cterm into the right and lefthand sides of equality *)
84 fun dest_eqs t = HOLogic.dest_eq (HOLogic.dest_Trueprop t)
86 fun mk_eqs (t, u) = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u))
88 (******************************************************************************)
89 (****************************** isomorphism info ******************************)
90 (******************************************************************************)
92 fun deflation_abs_rep (info : Domain_Take_Proofs.iso_info) : thm =
94 val abs_iso = #abs_inverse info
95 val rep_iso = #rep_inverse info
96 val thm = @{thm deflation_abs_rep} OF [abs_iso, rep_iso]
98 Drule.zero_var_indexes thm
101 (******************************************************************************)
102 (*************** fixed-point definitions and unfolding theorems ***************)
103 (******************************************************************************)
105 fun mk_projs [] _ = []
106 | mk_projs (x::[]) t = [(x, t)]
107 | mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t)
110 (spec : (binding * term) list)
111 (thy : theory) : (thm list * thm list * thm) * theory =
113 val binds = map fst spec
114 val (lhss, rhss) = ListPair.unzip (map (dest_eqs o snd) spec)
115 val functional = lambda_tuple lhss (mk_tuple rhss)
116 val fixpoint = mk_fix (mk_cabs functional)
118 (* project components of fixpoint *)
119 val projs = mk_projs lhss fixpoint
121 (* convert parameters to lambda abstractions *)
122 fun mk_eqn (lhs, rhs) =
124 Const (@{const_name Rep_cfun}, _) $ f $ (x as Free _) =>
125 mk_eqn (f, big_lambda x rhs)
126 | f $ Const (@{const_name Pure.type}, T) =>
127 mk_eqn (f, Abs ("t", T, rhs))
128 | Const _ => Logic.mk_equals (lhs, rhs)
129 | _ => raise TERM ("lhs not of correct form", [lhs, rhs])
130 val eqns = map mk_eqn projs
132 (* register constant definitions *)
133 val (fixdef_thms, thy) =
134 (Global_Theory.add_defs false o map Thm.no_attributes)
135 (map Thm.def_binding binds ~~ eqns) thy
137 (* prove applied version of definitions *)
138 fun prove_proj (lhs, rhs) =
140 fun tac ctxt = rewrite_goals_tac ctxt fixdef_thms THEN
141 (simp_tac (put_simpset beta_ss ctxt)) 1
142 val goal = Logic.mk_equals (lhs, rhs)
143 in Goal.prove_global thy [] [] goal (tac o #context) end
144 val proj_thms = map prove_proj projs
146 (* mk_tuple lhss == fixpoint *)
147 fun pair_equalI (thm1, thm2) = @{thm Pair_equalI} OF [thm1, thm2]
148 val tuple_fixdef_thm = foldr1 pair_equalI proj_thms
152 val prop = mk_trp (mk_cont functional)
153 val rules = Named_Theorems.get (Proof_Context.init_global thy) @{named_theorems cont2cont}
154 fun tac ctxt = REPEAT_ALL_NEW (match_tac ctxt (rev rules)) 1
156 Goal.prove_global thy [] [] prop (tac o #context)
159 val tuple_unfold_thm =
160 (@{thm def_cont_fix_eq} OF [tuple_fixdef_thm, cont_thm])
161 |> Local_Defs.unfold (Proof_Context.init_global thy) @{thms split_conv}
163 fun mk_unfold_thms [] _ = []
164 | mk_unfold_thms (n::[]) thm = [(n, thm)]
165 | mk_unfold_thms (n::ns) thm = let
166 val thmL = thm RS @{thm Pair_eqD1}
167 val thmR = thm RS @{thm Pair_eqD2}
168 in (n, thmL) :: mk_unfold_thms ns thmR end
169 val unfold_binds = map (Binding.suffix_name "_unfold") binds
171 (* register unfold theorems *)
172 val (unfold_thms, thy) =
173 (Global_Theory.add_thms o map (Thm.no_attributes o apsnd Drule.zero_var_indexes))
174 (mk_unfold_thms unfold_binds tuple_unfold_thm) thy
176 ((proj_thms, unfold_thms, cont_thm), thy)
180 (******************************************************************************)
181 (****************** deflation combinators and map functions *******************)
182 (******************************************************************************)
186 (tab1 : (typ * term) list)
187 (tab2 : (typ * term) list)
191 Named_Theorems.get (Proof_Context.init_global thy) @{named_theorems domain_defl_simps}
192 val rules = map (Thm.concl_of #> HOLogic.dest_Trueprop #> HOLogic.dest_eq) (rev defl_simps)
193 val rules' = map (apfst mk_DEFL) tab1 @ map (apfst mk_LIFTDEFL) tab2
196 TFree (a, _) => SOME (Free ("d" ^ Library.unprefix "'" a, deflT))
197 | _ => NONE) handle TERM _ => NONE
199 (case dest_LIFTDEFL t of
200 TFree (a, _) => SOME (Free ("p" ^ Library.unprefix "'" a, udeflT))
201 | _ => NONE) handle TERM _ => NONE
203 Pattern.rewrite_term thy (rules @ rules') [proc1, proc2] (mk_DEFL T)
206 (******************************************************************************)
207 (********************* declaring definitions and theorems *********************)
208 (******************************************************************************)
211 (bind : binding, rhs : term)
213 : (term * thm) * theory =
215 val typ = Term.fastype_of rhs
216 val (const, thy) = Sign.declare_const_global ((bind, typ), NoSyn) thy
217 val eqn = Logic.mk_equals (const, rhs)
218 val def = Thm.no_attributes (Thm.def_binding bind, eqn)
219 val (def_thm, thy) = yield_singleton (Global_Theory.add_defs false) def thy
221 ((const, def_thm), thy)
224 fun add_qualified_thm name (dbind, thm) =
225 yield_singleton Global_Theory.add_thms
226 ((Binding.qualified true name dbind, thm), [])
228 (******************************************************************************)
229 (*************************** defining map functions ***************************)
230 (******************************************************************************)
232 fun define_map_functions
233 (spec : (binding * Domain_Take_Proofs.iso_info) list)
237 (* retrieve components of spec *)
238 val dbinds = map fst spec
239 val iso_infos = map snd spec
240 val dom_eqns = map (fn x => (#absT x, #repT x)) iso_infos
241 val rep_abs_consts = map (fn x => (#rep_const x, #abs_const x)) iso_infos
243 fun mapT (T as Type (_, Ts)) =
244 (map (fn T => T ->> T) (filter (is_cpo thy) Ts)) -->> (T ->> T)
247 (* declare map functions *)
248 fun declare_map_const (tbind, (lhsT, _)) thy =
250 val map_type = mapT lhsT
251 val map_bind = Binding.suffix_name "_map" tbind
253 Sign.declare_const_global ((map_bind, map_type), NoSyn) thy
255 val (map_consts, thy) = thy |>
256 fold_map declare_map_const (dbinds ~~ dom_eqns)
258 (* defining equations for map functions *)
260 fun unprime a = Library.unprefix "'" a
261 fun mapvar T = Free (unprime (fst (dest_TFree T)), T ->> T)
262 fun map_lhs (map_const, lhsT) =
263 (lhsT, list_ccomb (map_const, map mapvar (filter (is_cpo thy) (snd (dest_Type lhsT)))))
264 val tab1 = map map_lhs (map_consts ~~ map fst dom_eqns)
265 val Ts = (snd o dest_Type o fst o hd) dom_eqns
266 val tab = (Ts ~~ map mapvar Ts) @ tab1
267 fun mk_map_spec (((rep_const, abs_const), _), (lhsT, rhsT)) =
269 val lhs = Domain_Take_Proofs.map_of_typ thy tab lhsT
270 val body = Domain_Take_Proofs.map_of_typ thy tab rhsT
271 val rhs = mk_cfcomp (abs_const, mk_cfcomp (body, rep_const))
272 in mk_eqs (lhs, rhs) end
275 map mk_map_spec (rep_abs_consts ~~ map_consts ~~ dom_eqns)
278 (* register recursive definition of map functions *)
279 val map_binds = map (Binding.suffix_name "_map") dbinds
280 val ((map_apply_thms, map_unfold_thms, map_cont_thm), thy) =
281 add_fixdefs (map_binds ~~ map_specs) thy
283 (* prove deflation theorems for map functions *)
284 val deflation_abs_rep_thms = map deflation_abs_rep iso_infos
285 val deflation_map_thm =
287 fun unprime a = Library.unprefix "'" a
288 fun mk_f T = Free (unprime (fst (dest_TFree T)), T ->> T)
289 fun mk_assm T = mk_trp (mk_deflation (mk_f T))
290 fun mk_goal (map_const, (lhsT, _)) =
292 val (_, Ts) = dest_Type lhsT
293 val map_term = list_ccomb (map_const, map mk_f (filter (is_cpo thy) Ts))
294 in mk_deflation map_term end
295 val assms = (map mk_assm o filter (is_cpo thy) o snd o dest_Type o fst o hd) dom_eqns
296 val goals = map mk_goal (map_consts ~~ dom_eqns)
297 val goal = mk_trp (foldr1 HOLogic.mk_conj goals)
299 @{thms adm_conj adm_subst [OF _ adm_deflation]
300 cont2cont_fst cont2cont_snd cont_id}
302 @{thms fst_strict snd_strict deflation_bottom simp_thms}
304 @{thms split_def fst_conv snd_conv}
305 val deflation_rules =
306 @{thms conjI deflation_ID}
307 @ deflation_abs_rep_thms
308 @ Domain_Take_Proofs.get_deflation_thms thy
310 Goal.prove_global thy [] assms goal (fn {prems, context = ctxt} =>
312 [rewrite_goals_tac ctxt map_apply_thms,
313 resolve_tac ctxt [map_cont_thm RS @{thm cont_fix_ind}] 1,
314 REPEAT (resolve_tac ctxt adm_rules 1),
315 simp_tac (put_simpset HOL_basic_ss ctxt addsimps bottom_rules) 1,
316 simp_tac (put_simpset HOL_basic_ss ctxt addsimps tuple_rules) 1,
317 REPEAT (eresolve_tac ctxt @{thms conjE} 1),
318 REPEAT (resolve_tac ctxt (deflation_rules @ prems) 1 ORELSE assume_tac ctxt 1)])
320 fun conjuncts [] _ = []
321 | conjuncts (n::[]) thm = [(n, thm)]
322 | conjuncts (n::ns) thm = let
323 val thmL = thm RS @{thm conjunct1}
324 val thmR = thm RS @{thm conjunct2}
325 in (n, thmL):: conjuncts ns thmR end
326 val deflation_map_binds = dbinds |>
327 map (Binding.prefix_name "deflation_" o Binding.suffix_name "_map")
328 val (deflation_map_thms, thy) = thy |>
329 (Global_Theory.add_thms o map (Thm.no_attributes o apsnd Drule.zero_var_indexes))
330 (conjuncts deflation_map_binds deflation_map_thm)
332 (* register indirect recursion in theory data *)
334 fun register_map (dname, args) =
335 Domain_Take_Proofs.add_rec_type (dname, args)
336 val dnames = map (fst o dest_Type o fst) dom_eqns
337 fun args (T, _) = case T of Type (_, Ts) => map (is_cpo thy) Ts | _ => []
338 val argss = map args dom_eqns
341 fold register_map (dnames ~~ argss) thy
344 (* register deflation theorems *)
345 val thy = fold Domain_Take_Proofs.add_deflation_thm deflation_map_thms thy
349 map_consts = map_consts,
350 map_apply_thms = map_apply_thms,
351 map_unfold_thms = map_unfold_thms,
352 map_cont_thm = map_cont_thm,
353 deflation_map_thms = deflation_map_thms
359 (******************************************************************************)
360 (******************************* main function ********************************)
361 (******************************************************************************)
363 fun read_typ thy str sorts =
365 val ctxt = Proof_Context.init_global thy
366 |> fold (Variable.declare_typ o TFree) sorts
367 val T = Syntax.read_typ ctxt str
368 in (T, Term.add_tfreesT T sorts) end
370 fun cert_typ sign raw_T sorts =
372 val T = Type.no_tvars (Sign.certify_typ sign raw_T)
373 handle TYPE (msg, _, _) => error msg
374 val sorts' = Term.add_tfreesT T sorts
376 case duplicates (op =) (map fst sorts') of
378 | dups => error ("Inconsistent sort constraints for " ^ commas dups)
381 fun gen_domain_isomorphism
382 (prep_typ: theory -> 'a -> (string * sort) list -> typ * (string * sort) list)
383 (doms_raw: (string list * binding * mixfix * 'a * (binding * binding) option) list)
385 : (Domain_Take_Proofs.iso_info list
386 * Domain_Take_Proofs.take_induct_info) * theory =
388 (* this theory is used just for parsing *)
390 Sign.add_types_global (map (fn (tvs, tbind, mx, _, _) =>
391 (tbind, length tvs, mx)) doms_raw)
393 fun prep_dom thy (vs, t, mx, typ_raw, morphs) sorts =
394 let val (typ, sorts') = prep_typ thy typ_raw sorts
395 in ((vs, t, mx, typ, morphs), sorts') end
397 val (doms : (string list * binding * mixfix * typ * (binding * binding) option) list,
398 sorts : (string * sort) list) =
399 fold_map (prep_dom tmp_thy) doms_raw []
401 (* lookup function for sorts of type variables *)
402 fun the_sort v = the (AList.lookup (op =) sorts v)
404 (* declare arities in temporary theory *)
407 fun arity (vs, tbind, _, _, _) =
408 (Sign.full_name thy tbind, map the_sort vs, @{sort "domain"})
410 fold Axclass.arity_axiomatization (map arity doms) tmp_thy
413 (* check bifiniteness of right-hand sides *)
414 fun check_rhs (_, _, _, rhs, _) =
415 if Sign.of_sort tmp_thy (rhs, @{sort "domain"}) then ()
416 else error ("Type not of sort domain: " ^
417 quote (Syntax.string_of_typ_global tmp_thy rhs))
418 val _ = map check_rhs doms
420 (* domain equations *)
421 fun mk_dom_eqn (vs, tbind, _, rhs, _) =
422 let fun arg v = TFree (v, the_sort v)
423 in (Type (Sign.full_name tmp_thy tbind, map arg vs), rhs) end
424 val dom_eqns = map mk_dom_eqn doms
426 (* check for valid type parameters *)
427 val (tyvars, _, _, _, _) = hd doms
428 val _ = map (fn (tvs, tname, _, _, _) =>
429 let val full_tname = Sign.full_name tmp_thy tname
431 (case duplicates (op =) tvs of
433 if eq_set (op =) (tyvars, tvs) then (full_tname, tvs)
434 else error ("Mutually recursive domains must have same type parameters")
435 | dups => error ("Duplicate parameter(s) for domain " ^ Binding.print tname ^
436 " : " ^ commas dups))
438 val dbinds = map (fn (_, dbind, _, _, _) => dbind) doms
439 val morphs = map (fn (_, _, _, _, morphs) => morphs) doms
441 (* determine deflation combinator arguments *)
442 val lhsTs : typ list = map fst dom_eqns
443 val defl_rec = Free ("t", mk_tupleT (map (K deflT) lhsTs))
444 val defl_recs = mk_projs lhsTs defl_rec
445 val defl_recs' = map (apsnd mk_u_defl) defl_recs
446 fun defl_body (_, _, _, rhsT, _) =
447 defl_of_typ tmp_thy defl_recs defl_recs' rhsT
448 val functional = Term.lambda defl_rec (mk_tuple (map defl_body doms))
450 val tfrees = map fst (Term.add_tfrees functional [])
451 val frees = map fst (Term.add_frees functional [])
452 fun get_defl_flags (vs, _, _, _, _) =
454 fun argT v = TFree (v, the_sort v)
455 fun mk_d v = "d" ^ Library.unprefix "'" v
456 fun mk_p v = "p" ^ Library.unprefix "'" v
457 val args = maps (fn v => [(mk_d v, mk_DEFL (argT v)), (mk_p v, mk_LIFTDEFL (argT v))]) vs
458 val typeTs = map argT (filter (member (op =) tfrees) vs)
459 val defl_args = map snd (filter (member (op =) frees o fst) args)
463 val defl_flagss = map get_defl_flags doms
465 (* declare deflation combinator constants *)
466 fun declare_defl_const ((typeTs, defl_args), (_, tbind, _, _, _)) thy =
468 val defl_bind = Binding.suffix_name "_defl" tbind
470 map Term.itselfT typeTs ---> map fastype_of defl_args -->> deflT
472 Sign.declare_const_global ((defl_bind, defl_type), NoSyn) thy
474 val (defl_consts, thy) =
475 fold_map declare_defl_const (defl_flagss ~~ doms) thy
477 (* defining equations for type combinators *)
478 fun mk_defl_term (defl_const, (typeTs, defl_args)) =
480 val type_args = map Logic.mk_type typeTs
482 list_ccomb (list_comb (defl_const, type_args), defl_args)
484 val defl_terms = map mk_defl_term (defl_consts ~~ defl_flagss)
485 val defl_tab = map fst dom_eqns ~~ defl_terms
486 val defl_tab' = map fst dom_eqns ~~ map mk_u_defl defl_terms
487 fun mk_defl_spec (lhsT, rhsT) =
488 mk_eqs (defl_of_typ tmp_thy defl_tab defl_tab' lhsT,
489 defl_of_typ tmp_thy defl_tab defl_tab' rhsT)
490 val defl_specs = map mk_defl_spec dom_eqns
492 (* register recursive definition of deflation combinators *)
493 val defl_binds = map (Binding.suffix_name "_defl") dbinds
494 val ((defl_apply_thms, defl_unfold_thms, defl_cont_thm), thy) =
495 add_fixdefs (defl_binds ~~ defl_specs) thy
497 (* define types using deflation combinators *)
498 fun make_repdef ((vs, tbind, mx, _, _), defl) thy =
500 val spec = (tbind, map (rpair dummyS) vs, mx)
501 val ((_, _, _, {DEFL, ...}), thy) =
502 Domaindef.add_domaindef spec defl NONE thy
503 (* declare domain_defl_simps rules *)
505 Context.theory_map (Named_Theorems.add_thm @{named_theorems domain_defl_simps} DEFL) thy
509 val (DEFL_thms, thy) = fold_map make_repdef (doms ~~ defl_terms) thy
511 (* prove DEFL equations *)
512 fun mk_DEFL_eq_thm (lhsT, rhsT) =
514 val goal = mk_eqs (mk_DEFL lhsT, mk_DEFL rhsT)
516 Named_Theorems.get (Proof_Context.init_global thy) @{named_theorems domain_defl_simps}
518 rewrite_goals_tac ctxt (map mk_meta_eq (rev DEFL_simps))
519 THEN TRY (resolve_tac ctxt defl_unfold_thms 1)
521 Goal.prove_global thy [] [] goal (tac o #context)
523 val DEFL_eq_thms = map mk_DEFL_eq_thm dom_eqns
525 (* register DEFL equations *)
526 val DEFL_eq_binds = map (Binding.prefix_name "DEFL_eq_") dbinds
527 val (_, thy) = thy |>
528 (Global_Theory.add_thms o map Thm.no_attributes)
529 (DEFL_eq_binds ~~ DEFL_eq_thms)
531 (* define rep/abs functions *)
532 fun mk_rep_abs ((tbind, _), (lhsT, rhsT)) thy =
534 val rep_bind = Binding.suffix_name "_rep" tbind
535 val abs_bind = Binding.suffix_name "_abs" tbind
536 val ((rep_const, rep_def), thy) =
537 define_const (rep_bind, coerce_const (lhsT, rhsT)) thy
538 val ((abs_const, abs_def), thy) =
539 define_const (abs_bind, coerce_const (rhsT, lhsT)) thy
541 (((rep_const, abs_const), (rep_def, abs_def)), thy)
543 val ((rep_abs_consts, rep_abs_defs), thy) = thy
544 |> fold_map mk_rep_abs (dbinds ~~ morphs ~~ dom_eqns)
547 (* prove isomorphism and isodefl rules *)
548 fun mk_iso_thms ((tbind, DEFL_eq), (rep_def, abs_def)) thy =
551 Drule.zero_var_indexes (thm OF [DEFL_eq, abs_def, rep_def])
552 val rep_iso_thm = make @{thm domain_rep_iso}
553 val abs_iso_thm = make @{thm domain_abs_iso}
554 val isodefl_thm = make @{thm isodefl_abs_rep}
556 |> snd o add_qualified_thm "rep_iso" (tbind, rep_iso_thm)
557 |> snd o add_qualified_thm "abs_iso" (tbind, abs_iso_thm)
558 |> snd o add_qualified_thm "isodefl_abs_rep" (tbind, isodefl_thm)
560 (((rep_iso_thm, abs_iso_thm), isodefl_thm), thy)
562 val ((iso_thms, isodefl_abs_rep_thms), thy) =
564 |> fold_map mk_iso_thms (dbinds ~~ DEFL_eq_thms ~~ rep_abs_defs)
567 (* collect info about rep/abs *)
568 val iso_infos : Domain_Take_Proofs.iso_info list =
570 fun mk_info (((lhsT, rhsT), (repC, absC)), (rep_iso, abs_iso)) =
576 rep_inverse = rep_iso,
577 abs_inverse = abs_iso
580 map mk_info (dom_eqns ~~ rep_abs_consts ~~ iso_thms)
583 (* definitions and proofs related to map functions *)
584 val (map_info, thy) =
585 define_map_functions (dbinds ~~ iso_infos) thy
586 val { map_consts, map_apply_thms, map_cont_thm, ...} = map_info
588 (* prove isodefl rules for map functions *)
591 fun unprime a = Library.unprefix "'" a
592 fun mk_d T = Free ("d" ^ unprime (fst (dest_TFree T)), deflT)
593 fun mk_p T = Free ("p" ^ unprime (fst (dest_TFree T)), udeflT)
594 fun mk_f T = Free ("f" ^ unprime (fst (dest_TFree T)), T ->> T)
596 case try dest_LIFTDEFL t of
597 SOME T => mk_trp (isodefl'_const T $ mk_f T $ mk_p T)
599 let val T = dest_DEFL t
600 in mk_trp (isodefl_const T $ mk_f T $ mk_d T) end
601 fun mk_goal (map_const, (T, _)) =
603 val (_, Ts) = dest_Type T
604 val map_term = list_ccomb (map_const, map mk_f (filter (is_cpo thy) Ts))
605 val defl_term = defl_of_typ thy (Ts ~~ map mk_d Ts) (Ts ~~ map mk_p Ts) T
606 in isodefl_const T $ map_term $ defl_term end
607 val assms = (map mk_assm o snd o hd) defl_flagss
608 val goals = map mk_goal (map_consts ~~ dom_eqns)
609 val goal = mk_trp (foldr1 HOLogic.mk_conj goals)
611 @{thms adm_conj adm_isodefl cont2cont_fst cont2cont_snd cont_id}
613 @{thms fst_strict snd_strict isodefl_bottom simp_thms}
615 @{thms split_def fst_conv snd_conv}
616 val map_ID_thms = Domain_Take_Proofs.get_map_ID_thms thy
617 val map_ID_simps = map (fn th => th RS sym) map_ID_thms
619 @{thms conjI isodefl_ID_DEFL isodefl_LIFTDEFL}
620 @ isodefl_abs_rep_thms
621 @ rev (Named_Theorems.get (Proof_Context.init_global thy) @{named_theorems domain_isodefl})
623 Goal.prove_global thy [] assms goal (fn {prems, context = ctxt} =>
625 [rewrite_goals_tac ctxt (defl_apply_thms @ map_apply_thms),
626 resolve_tac ctxt [@{thm cont_parallel_fix_ind} OF [defl_cont_thm, map_cont_thm]] 1,
627 REPEAT (resolve_tac ctxt adm_rules 1),
628 simp_tac (put_simpset HOL_basic_ss ctxt addsimps bottom_rules) 1,
629 simp_tac (put_simpset HOL_basic_ss ctxt addsimps tuple_rules) 1,
630 simp_tac (put_simpset HOL_basic_ss ctxt addsimps map_ID_simps) 1,
631 REPEAT (eresolve_tac ctxt @{thms conjE} 1),
632 REPEAT (resolve_tac ctxt (isodefl_rules @ prems) 1 ORELSE assume_tac ctxt 1)])
634 val isodefl_binds = map (Binding.prefix_name "isodefl_") dbinds
635 fun conjuncts [] _ = []
636 | conjuncts (n::[]) thm = [(n, thm)]
637 | conjuncts (n::ns) thm = let
638 val thmL = thm RS @{thm conjunct1}
639 val thmR = thm RS @{thm conjunct2}
640 in (n, thmL):: conjuncts ns thmR end
641 val (isodefl_thms, thy) = thy |>
642 (Global_Theory.add_thms o map (Thm.no_attributes o apsnd Drule.zero_var_indexes))
643 (conjuncts isodefl_binds isodefl_thm)
645 fold (Context.theory_map o Named_Theorems.add_thm @{named_theorems domain_isodefl})
648 (* prove map_ID theorems *)
650 (((map_const, (lhsT, _)), DEFL_thm), isodefl_thm) =
652 val Ts = snd (dest_Type lhsT)
653 fun is_cpo T = Sign.of_sort thy (T, @{sort cpo})
654 val lhs = list_ccomb (map_const, map mk_ID (filter is_cpo Ts))
655 val goal = mk_eqs (lhs, mk_ID lhsT)
657 [resolve_tac ctxt @{thms isodefl_DEFL_imp_ID} 1,
658 stac ctxt DEFL_thm 1,
659 resolve_tac ctxt [isodefl_thm] 1,
660 REPEAT (resolve_tac ctxt @{thms isodefl_ID_DEFL isodefl_LIFTDEFL} 1)]
662 Goal.prove_global thy [] [] goal (tac o #context)
664 val map_ID_binds = map (Binding.suffix_name "_map_ID") dbinds
667 (map_consts ~~ dom_eqns ~~ DEFL_thms ~~ isodefl_thms)
668 val (_, thy) = thy |>
669 (Global_Theory.add_thms o map (rpair [Domain_Take_Proofs.map_ID_add]))
670 (map_ID_binds ~~ map_ID_thms)
672 (* definitions and proofs related to take functions *)
673 val (take_info, thy) =
674 Domain_Take_Proofs.define_take_functions
675 (dbinds ~~ iso_infos) thy
676 val { take_consts, chain_take_thms, take_0_thms, take_Suc_thms, ...} =
679 (* least-upper-bound lemma for take functions *)
682 val lhs = mk_tuple (map mk_lub take_consts)
683 fun is_cpo T = Sign.of_sort thy (T, @{sort cpo})
684 fun mk_map_ID (map_const, (lhsT, _)) =
685 list_ccomb (map_const, map mk_ID (filter is_cpo (snd (dest_Type lhsT))))
686 val rhs = mk_tuple (map mk_map_ID (map_consts ~~ dom_eqns))
687 val goal = mk_trp (mk_eq (lhs, rhs))
688 val map_ID_thms = Domain_Take_Proofs.get_map_ID_thms thy
690 @{thms lub_Pair [symmetric] ch2ch_Pair} @ chain_take_thms
691 @ @{thms prod.collapse split_def}
692 @ map_apply_thms @ map_ID_thms
694 @{thms iterate_0 Pair_strict} @ take_0_thms
696 @{thms iterate_Suc prod_eq_iff fst_conv snd_conv}
700 [simp_tac (put_simpset HOL_basic_ss ctxt addsimps start_rules) 1,
701 simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms fix_def2}) 1,
702 resolve_tac ctxt @{thms lub_eq} 1,
703 resolve_tac ctxt @{thms nat.induct} 1,
704 simp_tac (put_simpset HOL_basic_ss ctxt addsimps rules0) 1,
705 asm_full_simp_tac (put_simpset beta_ss ctxt addsimps rules1) 1]
707 Goal.prove_global thy [] [] goal (tac o #context)
710 (* prove lub of take equals ID *)
711 fun prove_lub_take (((dbind, take_const), map_ID_thm), (lhsT, _)) thy =
713 val n = Free ("n", natT)
714 val goal = mk_eqs (mk_lub (lambda n (take_const $ n)), mk_ID lhsT)
717 [resolve_tac ctxt @{thms trans} 1,
718 resolve_tac ctxt [map_ID_thm] 2,
719 cut_tac lub_take_lemma 1,
720 REPEAT (eresolve_tac ctxt @{thms Pair_inject} 1), assume_tac ctxt 1]
721 val lub_take_thm = Goal.prove_global thy [] [] goal (tac o #context)
723 add_qualified_thm "lub_take" (dbind, lub_take_thm) thy
725 val (lub_take_thms, thy) =
726 fold_map prove_lub_take
727 (dbinds ~~ take_consts ~~ map_ID_thms ~~ dom_eqns) thy
729 (* prove additional take theorems *)
730 val (take_info2, thy) =
731 Domain_Take_Proofs.add_lub_take_theorems
732 (dbinds ~~ iso_infos) take_info lub_take_thms thy
734 ((iso_infos, take_info2), thy)
737 val domain_isomorphism = gen_domain_isomorphism cert_typ
738 val domain_isomorphism_cmd = snd oo gen_domain_isomorphism read_typ
740 (******************************************************************************)
741 (******************************** outer syntax ********************************)
742 (******************************************************************************)
746 val parse_domain_iso :
747 (string list * binding * mixfix * string * (binding * binding) option)
749 (Parse.type_args -- Parse.binding -- Parse.opt_mixfix -- (@{keyword "="} |-- Parse.typ) --
750 Scan.option (@{keyword "morphisms"} |-- Parse.!!! (Parse.binding -- Parse.binding)))
751 >> (fn ((((vs, t), mx), rhs), morphs) => (vs, t, mx, rhs, morphs))
753 val parse_domain_isos = Parse.and_list1 parse_domain_iso
758 Outer_Syntax.command @{command_keyword domain_isomorphism} "define domain isomorphisms (HOLCF)"
759 (parse_domain_isos >> (Toplevel.theory o domain_isomorphism_cmd))