1 (* Title: HOL/Probability/Borel_Space.thy
2 Author: Johannes Hölzl, TU München
3 Author: Armin Heller, TU München
6 section {*Borel spaces*}
11 "~~/src/HOL/Multivariate_Analysis/Multivariate_Analysis"
14 lemma topological_basis_trivial: "topological_basis {A. open A}"
15 by (auto simp: topological_basis_def)
17 lemma open_prod_generated: "open = generate_topology {A \<times> B | A B. open A \<and> open B}"
19 have "{A \<times> B :: ('a \<times> 'b) set | A B. open A \<and> open B} = ((\<lambda>(a, b). a \<times> b) ` ({A. open A} \<times> {A. open A}))"
22 by (auto intro: topological_basis_prod topological_basis_trivial topological_basis_imp_subbasis)
25 subsection {* Generic Borel spaces *}
27 definition borel :: "'a::topological_space measure" where
28 "borel = sigma UNIV {S. open S}"
30 abbreviation "borel_measurable M \<equiv> measurable M borel"
32 lemma in_borel_measurable:
33 "f \<in> borel_measurable M \<longleftrightarrow>
34 (\<forall>S \<in> sigma_sets UNIV {S. open S}. f -` S \<inter> space M \<in> sets M)"
35 by (auto simp add: measurable_def borel_def)
37 lemma in_borel_measurable_borel:
38 "f \<in> borel_measurable M \<longleftrightarrow>
39 (\<forall>S \<in> sets borel.
40 f -` S \<inter> space M \<in> sets M)"
41 by (auto simp add: measurable_def borel_def)
43 lemma space_borel[simp]: "space borel = UNIV"
44 unfolding borel_def by auto
46 lemma space_in_borel[measurable]: "UNIV \<in> sets borel"
47 unfolding borel_def by auto
49 lemma sets_borel: "sets borel = sigma_sets UNIV {S. open S}"
50 unfolding borel_def by (rule sets_measure_of) simp
52 lemma pred_Collect_borel[measurable (raw)]: "Measurable.pred borel P \<Longrightarrow> {x. P x} \<in> sets borel"
53 unfolding borel_def pred_def by auto
55 lemma borel_open[measurable (raw generic)]:
56 assumes "open A" shows "A \<in> sets borel"
58 have "A \<in> {S. open S}" unfolding mem_Collect_eq using assms .
59 thus ?thesis unfolding borel_def by auto
62 lemma borel_closed[measurable (raw generic)]:
63 assumes "closed A" shows "A \<in> sets borel"
65 have "space borel - (- A) \<in> sets borel"
66 using assms unfolding closed_def by (blast intro: borel_open)
70 lemma borel_singleton[measurable]:
71 "A \<in> sets borel \<Longrightarrow> insert x A \<in> sets (borel :: 'a::t1_space measure)"
72 unfolding insert_def by (rule sets.Un) auto
74 lemma borel_comp[measurable]: "A \<in> sets borel \<Longrightarrow> - A \<in> sets borel"
75 unfolding Compl_eq_Diff_UNIV by simp
77 lemma borel_measurable_vimage:
78 fixes f :: "'a \<Rightarrow> 'x::t2_space"
79 assumes borel[measurable]: "f \<in> borel_measurable M"
80 shows "f -` {x} \<inter> space M \<in> sets M"
83 lemma borel_measurableI:
84 fixes f :: "'a \<Rightarrow> 'x::topological_space"
85 assumes "\<And>S. open S \<Longrightarrow> f -` S \<inter> space M \<in> sets M"
86 shows "f \<in> borel_measurable M"
88 proof (rule measurable_measure_of, simp_all)
89 fix S :: "'x set" assume "open S" thus "f -` S \<inter> space M \<in> sets M"
90 using assms[of S] by simp
93 lemma borel_measurable_const:
94 "(\<lambda>x. c) \<in> borel_measurable M"
97 lemma borel_measurable_indicator:
98 assumes A: "A \<in> sets M"
99 shows "indicator A \<in> borel_measurable M"
100 unfolding indicator_def [abs_def] using A
101 by (auto intro!: measurable_If_set)
103 lemma borel_measurable_count_space[measurable (raw)]:
104 "f \<in> borel_measurable (count_space S)"
105 unfolding measurable_def by auto
107 lemma borel_measurable_indicator'[measurable (raw)]:
108 assumes [measurable]: "{x\<in>space M. f x \<in> A x} \<in> sets M"
109 shows "(\<lambda>x. indicator (A x) (f x)) \<in> borel_measurable M"
110 unfolding indicator_def[abs_def]
111 by (auto intro!: measurable_If)
113 lemma borel_measurable_indicator_iff:
114 "(indicator A :: 'a \<Rightarrow> 'x::{t1_space, zero_neq_one}) \<in> borel_measurable M \<longleftrightarrow> A \<inter> space M \<in> sets M"
115 (is "?I \<in> borel_measurable M \<longleftrightarrow> _")
117 assume "?I \<in> borel_measurable M"
118 then have "?I -` {1} \<inter> space M \<in> sets M"
119 unfolding measurable_def by auto
120 also have "?I -` {1} \<inter> space M = A \<inter> space M"
121 unfolding indicator_def [abs_def] by auto
122 finally show "A \<inter> space M \<in> sets M" .
124 assume "A \<inter> space M \<in> sets M"
125 moreover have "?I \<in> borel_measurable M \<longleftrightarrow>
126 (indicator (A \<inter> space M) :: 'a \<Rightarrow> 'x) \<in> borel_measurable M"
127 by (intro measurable_cong) (auto simp: indicator_def)
128 ultimately show "?I \<in> borel_measurable M" by auto
131 lemma borel_measurable_subalgebra:
132 assumes "sets N \<subseteq> sets M" "space N = space M" "f \<in> borel_measurable N"
133 shows "f \<in> borel_measurable M"
134 using assms unfolding measurable_def by auto
136 lemma borel_measurable_restrict_space_iff_ereal:
137 fixes f :: "'a \<Rightarrow> ereal"
138 assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
139 shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
140 (\<lambda>x. f x * indicator \<Omega> x) \<in> borel_measurable M"
141 by (subst measurable_restrict_space_iff)
142 (auto simp: indicator_def if_distrib[where f="\<lambda>x. a * x" for a] cong del: if_cong)
144 lemma borel_measurable_restrict_space_iff:
145 fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
146 assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
147 shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
148 (\<lambda>x. indicator \<Omega> x *\<^sub>R f x) \<in> borel_measurable M"
149 by (subst measurable_restrict_space_iff)
150 (auto simp: indicator_def if_distrib[where f="\<lambda>x. x *\<^sub>R a" for a] ac_simps cong del: if_cong)
152 lemma cbox_borel[measurable]: "cbox a b \<in> sets borel"
153 by (auto intro: borel_closed)
155 lemma box_borel[measurable]: "box a b \<in> sets borel"
156 by (auto intro: borel_open)
158 lemma borel_compact: "compact (A::'a::t2_space set) \<Longrightarrow> A \<in> sets borel"
159 by (auto intro: borel_closed dest!: compact_imp_closed)
161 lemma second_countable_borel_measurable:
162 fixes X :: "'a::second_countable_topology set set"
163 assumes eq: "open = generate_topology X"
164 shows "borel = sigma UNIV X"
166 proof (intro sigma_eqI sigma_sets_eqI)
167 interpret X: sigma_algebra UNIV "sigma_sets UNIV X"
168 by (rule sigma_algebra_sigma_sets) simp
170 fix S :: "'a set" assume "S \<in> Collect open"
171 then have "generate_topology X S"
173 then show "S \<in> sigma_sets UNIV X"
176 then have K: "\<And>k. k \<in> K \<Longrightarrow> open k"
178 from ex_countable_basis obtain B :: "'a set set" where
179 B: "\<And>b. b \<in> B \<Longrightarrow> open b" "\<And>X. open X \<Longrightarrow> \<exists>b\<subseteq>B. (\<Union>b) = X" and "countable B"
180 by (auto simp: topological_basis_def)
181 from B(2)[OF K] obtain m where m: "\<And>k. k \<in> K \<Longrightarrow> m k \<subseteq> B" "\<And>k. k \<in> K \<Longrightarrow> (\<Union>m k) = k"
183 def U \<equiv> "(\<Union>k\<in>K. m k)"
184 with m have "countable U"
185 by (intro countable_subset[OF _ `countable B`]) auto
186 have "\<Union>U = (\<Union>A\<in>U. A)" by simp
187 also have "\<dots> = \<Union>K"
188 unfolding U_def UN_simps by (simp add: m)
189 finally have "\<Union>U = \<Union>K" .
191 have "\<forall>b\<in>U. \<exists>k\<in>K. b \<subseteq> k"
192 using m by (auto simp: U_def)
193 then obtain u where u: "\<And>b. b \<in> U \<Longrightarrow> u b \<in> K" and "\<And>b. b \<in> U \<Longrightarrow> b \<subseteq> u b"
195 then have "(\<Union>b\<in>U. u b) \<subseteq> \<Union>K" "\<Union>U \<subseteq> (\<Union>b\<in>U. u b)"
197 then have "\<Union>K = (\<Union>b\<in>U. u b)"
198 unfolding `\<Union>U = \<Union>K` by auto
199 also have "\<dots> \<in> sigma_sets UNIV X"
200 using u UN by (intro X.countable_UN' `countable U`) auto
201 finally show "\<Union>K \<in> sigma_sets UNIV X" .
203 qed (auto simp: eq intro: generate_topology.Basis)
205 lemma borel_measurable_continuous_on_restrict:
206 fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
207 assumes f: "continuous_on A f"
208 shows "f \<in> borel_measurable (restrict_space borel A)"
209 proof (rule borel_measurableI)
210 fix S :: "'b set" assume "open S"
211 with f obtain T where "f -` S \<inter> A = T \<inter> A" "open T"
212 by (metis continuous_on_open_invariant)
213 then show "f -` S \<inter> space (restrict_space borel A) \<in> sets (restrict_space borel A)"
214 by (force simp add: sets_restrict_space space_restrict_space)
217 lemma borel_measurable_continuous_on1: "continuous_on UNIV f \<Longrightarrow> f \<in> borel_measurable borel"
218 by (drule borel_measurable_continuous_on_restrict) simp
220 lemma borel_measurable_continuous_on_if:
221 "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> continuous_on (- A) g \<Longrightarrow>
222 (\<lambda>x. if x \<in> A then f x else g x) \<in> borel_measurable borel"
223 by (auto simp add: measurable_If_restrict_space_iff Collect_neg_eq
224 intro!: borel_measurable_continuous_on_restrict)
226 lemma borel_measurable_continuous_countable_exceptions:
227 fixes f :: "'a::t1_space \<Rightarrow> 'b::topological_space"
228 assumes X: "countable X"
229 assumes "continuous_on (- X) f"
230 shows "f \<in> borel_measurable borel"
231 proof (rule measurable_discrete_difference[OF _ X])
232 have "X \<in> sets borel"
233 by (rule sets.countable[OF _ X]) auto
234 then show "(\<lambda>x. if x \<in> X then undefined else f x) \<in> borel_measurable borel"
235 by (intro borel_measurable_continuous_on_if assms continuous_intros)
238 lemma borel_measurable_continuous_on:
239 assumes f: "continuous_on UNIV f" and g: "g \<in> borel_measurable M"
240 shows "(\<lambda>x. f (g x)) \<in> borel_measurable M"
241 using measurable_comp[OF g borel_measurable_continuous_on1[OF f]] by (simp add: comp_def)
243 lemma borel_measurable_continuous_on_indicator:
244 fixes f g :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
245 shows "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable borel"
246 by (subst borel_measurable_restrict_space_iff[symmetric])
247 (auto intro: borel_measurable_continuous_on_restrict)
249 lemma borel_eq_countable_basis:
250 fixes B::"'a::topological_space set set"
251 assumes "countable B"
252 assumes "topological_basis B"
253 shows "borel = sigma UNIV B"
255 proof (intro sigma_eqI sigma_sets_eqI, safe)
256 interpret countable_basis using assms by unfold_locales
257 fix X::"'a set" assume "open X"
258 from open_countable_basisE[OF this] guess B' . note B' = this
259 then show "X \<in> sigma_sets UNIV B"
260 by (blast intro: sigma_sets_UNION `countable B` countable_subset)
262 fix b assume "b \<in> B"
263 hence "open b" by (rule topological_basis_open[OF assms(2)])
264 thus "b \<in> sigma_sets UNIV (Collect open)" by auto
267 lemma borel_measurable_Pair[measurable (raw)]:
268 fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
269 assumes f[measurable]: "f \<in> borel_measurable M"
270 assumes g[measurable]: "g \<in> borel_measurable M"
271 shows "(\<lambda>x. (f x, g x)) \<in> borel_measurable M"
272 proof (subst borel_eq_countable_basis)
273 let ?B = "SOME B::'b set set. countable B \<and> topological_basis B"
274 let ?C = "SOME B::'c set set. countable B \<and> topological_basis B"
275 let ?P = "(\<lambda>(b, c). b \<times> c) ` (?B \<times> ?C)"
276 show "countable ?P" "topological_basis ?P"
277 by (auto intro!: countable_basis topological_basis_prod is_basis)
279 show "(\<lambda>x. (f x, g x)) \<in> measurable M (sigma UNIV ?P)"
280 proof (rule measurable_measure_of)
281 fix S assume "S \<in> ?P"
282 then obtain b c where "b \<in> ?B" "c \<in> ?C" and S: "S = b \<times> c" by auto
283 then have borel: "open b" "open c"
284 by (auto intro: is_basis topological_basis_open)
285 have "(\<lambda>x. (f x, g x)) -` S \<inter> space M = (f -` b \<inter> space M) \<inter> (g -` c \<inter> space M)"
287 also have "\<dots> \<in> sets M"
289 finally show "(\<lambda>x. (f x, g x)) -` S \<inter> space M \<in> sets M" .
293 lemma borel_measurable_continuous_Pair:
294 fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
295 assumes [measurable]: "f \<in> borel_measurable M"
296 assumes [measurable]: "g \<in> borel_measurable M"
297 assumes H: "continuous_on UNIV (\<lambda>x. H (fst x) (snd x))"
298 shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
300 have eq: "(\<lambda>x. H (f x) (g x)) = (\<lambda>x. (\<lambda>x. H (fst x) (snd x)) (f x, g x))" by auto
302 unfolding eq by (rule borel_measurable_continuous_on[OF H]) auto
305 subsection {* Borel spaces on order topologies *}
309 "borel = sigma UNIV (range lessThan :: 'a::{linorder_topology, second_countable_topology} set set)"
310 unfolding second_countable_borel_measurable[OF open_generated_order]
311 proof (intro sigma_eqI sigma_sets_eqI)
312 from countable_dense_setE guess D :: "'a set" . note D = this
314 interpret L: sigma_algebra UNIV "sigma_sets UNIV (range lessThan)"
315 by (rule sigma_algebra_sigma_sets) simp
317 fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
318 then obtain y where "A = {y <..} \<or> A = {..< y}"
320 then show "A \<in> sigma_sets UNIV (range lessThan)"
322 assume A: "A = {y <..}"
325 assume "\<forall>x>y. \<exists>d. y < d \<and> d < x"
326 with D(2)[of "{y <..< x}" for x] have "\<forall>x>y. \<exists>d\<in>D. y < d \<and> d < x"
327 by (auto simp: set_eq_iff)
328 then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. y < d}. {..< d})"
329 by (auto simp: A) (metis less_asym)
330 also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
331 using D(1) by (intro L.Diff L.top L.countable_INT'') auto
332 finally show ?thesis .
334 assume "\<not> (\<forall>x>y. \<exists>d. y < d \<and> d < x)"
335 then obtain x where "y < x" "\<And>d. y < d \<Longrightarrow> \<not> d < x"
337 then have "A = UNIV - {..< x}"
338 unfolding A by (auto simp: not_less[symmetric])
339 also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
341 finally show ?thesis .
347 "borel = sigma UNIV (range greaterThan :: 'a::{linorder_topology, second_countable_topology} set set)"
348 unfolding second_countable_borel_measurable[OF open_generated_order]
349 proof (intro sigma_eqI sigma_sets_eqI)
350 from countable_dense_setE guess D :: "'a set" . note D = this
352 interpret L: sigma_algebra UNIV "sigma_sets UNIV (range greaterThan)"
353 by (rule sigma_algebra_sigma_sets) simp
355 fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
356 then obtain y where "A = {y <..} \<or> A = {..< y}"
358 then show "A \<in> sigma_sets UNIV (range greaterThan)"
360 assume A: "A = {..< y}"
363 assume "\<forall>x<y. \<exists>d. x < d \<and> d < y"
364 with D(2)[of "{x <..< y}" for x] have "\<forall>x<y. \<exists>d\<in>D. x < d \<and> d < y"
365 by (auto simp: set_eq_iff)
366 then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. d < y}. {d <..})"
367 by (auto simp: A) (metis less_asym)
368 also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
369 using D(1) by (intro L.Diff L.top L.countable_INT'') auto
370 finally show ?thesis .
372 assume "\<not> (\<forall>x<y. \<exists>d. x < d \<and> d < y)"
373 then obtain x where "x < y" "\<And>d. y > d \<Longrightarrow> x \<ge> d"
374 by (auto simp: not_less[symmetric])
375 then have "A = UNIV - {x <..}"
376 unfolding A Compl_eq_Diff_UNIV[symmetric] by auto
377 also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
379 finally show ?thesis .
384 lemma borel_measurableI_less:
385 fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
386 shows "(\<And>y. {x\<in>space M. f x < y} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
388 by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
390 lemma borel_measurableI_greater:
391 fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
392 shows "(\<And>y. {x\<in>space M. y < f x} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
394 by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
396 lemma borel_measurable_SUP[measurable (raw)]:
397 fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
398 assumes [simp]: "countable I"
399 assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
400 shows "(\<lambda>x. SUP i:I. F i x) \<in> borel_measurable M"
401 by (rule borel_measurableI_greater) (simp add: less_SUP_iff)
403 lemma borel_measurable_INF[measurable (raw)]:
404 fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
405 assumes [simp]: "countable I"
406 assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
407 shows "(\<lambda>x. INF i:I. F i x) \<in> borel_measurable M"
408 by (rule borel_measurableI_less) (simp add: INF_less_iff)
410 lemma borel_measurable_lfp[consumes 1, case_names continuity step]:
411 fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
412 assumes "sup_continuous F"
413 assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
414 shows "lfp F \<in> borel_measurable M"
416 { fix i have "((F ^^ i) bot) \<in> borel_measurable M"
417 by (induct i) (auto intro!: *) }
418 then have "(\<lambda>x. SUP i. (F ^^ i) bot x) \<in> borel_measurable M"
420 also have "(\<lambda>x. SUP i. (F ^^ i) bot x) = (SUP i. (F ^^ i) bot)"
422 also have "(SUP i. (F ^^ i) bot) = lfp F"
423 by (rule sup_continuous_lfp[symmetric]) fact
424 finally show ?thesis .
427 lemma borel_measurable_gfp[consumes 1, case_names continuity step]:
428 fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
429 assumes "inf_continuous F"
430 assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
431 shows "gfp F \<in> borel_measurable M"
433 { fix i have "((F ^^ i) top) \<in> borel_measurable M"
434 by (induct i) (auto intro!: * simp: bot_fun_def) }
435 then have "(\<lambda>x. INF i. (F ^^ i) top x) \<in> borel_measurable M"
437 also have "(\<lambda>x. INF i. (F ^^ i) top x) = (INF i. (F ^^ i) top)"
439 also have "\<dots> = gfp F"
440 by (rule inf_continuous_gfp[symmetric]) fact
441 finally show ?thesis .
444 subsection {* Borel spaces on euclidean spaces *}
446 lemma borel_measurable_inner[measurable (raw)]:
447 fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_inner}"
448 assumes "f \<in> borel_measurable M"
449 assumes "g \<in> borel_measurable M"
450 shows "(\<lambda>x. f x \<bullet> g x) \<in> borel_measurable M"
452 by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
455 fixes a b :: "'a::linorder_topology"
456 shows lessThan_borel: "{..< a} \<in> sets borel"
457 and greaterThan_borel: "{a <..} \<in> sets borel"
458 and greaterThanLessThan_borel: "{a<..<b} \<in> sets borel"
459 and atMost_borel: "{..a} \<in> sets borel"
460 and atLeast_borel: "{a..} \<in> sets borel"
461 and atLeastAtMost_borel: "{a..b} \<in> sets borel"
462 and greaterThanAtMost_borel: "{a<..b} \<in> sets borel"
463 and atLeastLessThan_borel: "{a..<b} \<in> sets borel"
464 unfolding greaterThanAtMost_def atLeastLessThan_def
465 by (blast intro: borel_open borel_closed open_lessThan open_greaterThan open_greaterThanLessThan
466 closed_atMost closed_atLeast closed_atLeastAtMost)+
469 eucl_less (infix "<e" 50)
471 lemma box_oc: "{x. a <e x \<and> x \<le> b} = {x. a <e x} \<inter> {..b}"
472 and box_co: "{x. a \<le> x \<and> x <e b} = {a..} \<inter> {x. x <e b}"
475 lemma eucl_ivals[measurable]:
476 fixes a b :: "'a::ordered_euclidean_space"
477 shows "{x. x <e a} \<in> sets borel"
478 and "{x. a <e x} \<in> sets borel"
479 and "{..a} \<in> sets borel"
480 and "{a..} \<in> sets borel"
481 and "{a..b} \<in> sets borel"
482 and "{x. a <e x \<and> x \<le> b} \<in> sets borel"
483 and "{x. a \<le> x \<and> x <e b} \<in> sets borel"
484 unfolding box_oc box_co
485 by (auto intro: borel_open borel_closed)
487 lemma open_Collect_less:
488 fixes f g :: "'i::topological_space \<Rightarrow> 'a :: {dense_linorder, linorder_topology}"
489 assumes "continuous_on UNIV f"
490 assumes "continuous_on UNIV g"
491 shows "open {x. f x < g x}"
493 have "open (\<Union>y. {x \<in> UNIV. f x \<in> {..< y}} \<inter> {x \<in> UNIV. g x \<in> {y <..}})" (is "open ?X")
494 by (intro open_UN ballI open_Int continuous_open_preimage assms) auto
495 also have "?X = {x. f x < g x}"
496 by (auto intro: dense)
497 finally show ?thesis .
500 lemma closed_Collect_le:
501 fixes f g :: "'i::topological_space \<Rightarrow> 'a :: {dense_linorder, linorder_topology}"
502 assumes f: "continuous_on UNIV f"
503 assumes g: "continuous_on UNIV g"
504 shows "closed {x. f x \<le> g x}"
505 using open_Collect_less[OF g f] unfolding not_less[symmetric] Collect_neg_eq open_closed .
507 lemma borel_measurable_less[measurable]:
508 fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, dense_linorder, linorder_topology}"
509 assumes "f \<in> borel_measurable M"
510 assumes "g \<in> borel_measurable M"
511 shows "{w \<in> space M. f w < g w} \<in> sets M"
513 have "{w \<in> space M. f w < g w} = (\<lambda>x. (f x, g x)) -` {x. fst x < snd x} \<inter> space M"
515 also have "\<dots> \<in> sets M"
516 by (intro measurable_sets[OF borel_measurable_Pair borel_open, OF assms open_Collect_less]
518 finally show ?thesis .
522 fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, dense_linorder, linorder_topology}"
523 assumes f[measurable]: "f \<in> borel_measurable M"
524 assumes g[measurable]: "g \<in> borel_measurable M"
525 shows borel_measurable_le[measurable]: "{w \<in> space M. f w \<le> g w} \<in> sets M"
526 and borel_measurable_eq[measurable]: "{w \<in> space M. f w = g w} \<in> sets M"
527 and borel_measurable_neq: "{w \<in> space M. f w \<noteq> g w} \<in> sets M"
528 unfolding eq_iff not_less[symmetric]
532 fixes i :: "'a::{second_countable_topology, real_inner}"
533 shows hafspace_less_borel: "{x. a < x \<bullet> i} \<in> sets borel"
534 and hafspace_greater_borel: "{x. x \<bullet> i < a} \<in> sets borel"
535 and hafspace_less_eq_borel: "{x. a \<le> x \<bullet> i} \<in> sets borel"
536 and hafspace_greater_eq_borel: "{x. x \<bullet> i \<le> a} \<in> sets borel"
539 subsection "Borel space equals sigma algebras over intervals"
541 lemma borel_sigma_sets_subset:
542 "A \<subseteq> sets borel \<Longrightarrow> sigma_sets UNIV A \<subseteq> sets borel"
543 using sets.sigma_sets_subset[of A borel] by simp
545 lemma borel_eq_sigmaI1:
546 fixes F :: "'i \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
547 assumes borel_eq: "borel = sigma UNIV X"
548 assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV (F ` A))"
549 assumes F: "\<And>i. i \<in> A \<Longrightarrow> F i \<in> sets borel"
550 shows "borel = sigma UNIV (F ` A)"
552 proof (intro sigma_eqI antisym)
553 have borel_rev_eq: "sigma_sets UNIV {S::'a set. open S} = sets borel"
554 unfolding borel_def by simp
555 also have "\<dots> = sigma_sets UNIV X"
556 unfolding borel_eq by simp
557 also have "\<dots> \<subseteq> sigma_sets UNIV (F`A)"
558 using X by (intro sigma_algebra.sigma_sets_subset[OF sigma_algebra_sigma_sets]) auto
559 finally show "sigma_sets UNIV {S. open S} \<subseteq> sigma_sets UNIV (F`A)" .
560 show "sigma_sets UNIV (F`A) \<subseteq> sigma_sets UNIV {S. open S}"
561 unfolding borel_rev_eq using F by (intro borel_sigma_sets_subset) auto
564 lemma borel_eq_sigmaI2:
565 fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set"
566 and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
567 assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`B)"
568 assumes X: "\<And>i j. (i, j) \<in> B \<Longrightarrow> G i j \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
569 assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
570 shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
572 by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` B" and F="(\<lambda>(i, j). F i j)"]) auto
574 lemma borel_eq_sigmaI3:
575 fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
576 assumes borel_eq: "borel = sigma UNIV X"
577 assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
578 assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
579 shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
580 using assms by (intro borel_eq_sigmaI1[where X=X and F="(\<lambda>(i, j). F i j)"]) auto
582 lemma borel_eq_sigmaI4:
583 fixes F :: "'i \<Rightarrow> 'a::topological_space set"
584 and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
585 assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`A)"
586 assumes X: "\<And>i j. (i, j) \<in> A \<Longrightarrow> G i j \<in> sets (sigma UNIV (range F))"
587 assumes F: "\<And>i. F i \<in> sets borel"
588 shows "borel = sigma UNIV (range F)"
589 using assms by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` A" and F=F]) auto
591 lemma borel_eq_sigmaI5:
592 fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and G :: "'l \<Rightarrow> 'a::topological_space set"
593 assumes borel_eq: "borel = sigma UNIV (range G)"
594 assumes X: "\<And>i. G i \<in> sets (sigma UNIV (range (\<lambda>(i, j). F i j)))"
595 assumes F: "\<And>i j. F i j \<in> sets borel"
596 shows "borel = sigma UNIV (range (\<lambda>(i, j). F i j))"
597 using assms by (intro borel_eq_sigmaI1[where X="range G" and F="(\<lambda>(i, j). F i j)"]) auto
600 "borel = sigma UNIV (range (\<lambda> (a, b). box a b :: 'a :: euclidean_space set))"
602 proof (rule borel_eq_sigmaI1[OF borel_def])
603 fix M :: "'a set" assume "M \<in> {S. open S}"
604 then have "open M" by simp
605 show "M \<in> ?SIGMA"
606 apply (subst open_UNION_box[OF `open M`])
607 apply (safe intro!: sets.countable_UN' countable_PiE countable_Collect)
608 apply (auto intro: countable_rat)
610 qed (auto simp: box_def)
612 lemma halfspace_gt_in_halfspace:
613 assumes i: "i \<in> A"
614 shows "{x::'a. a < x \<bullet> i} \<in>
615 sigma_sets UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> A))"
616 (is "?set \<in> ?SIGMA")
618 interpret sigma_algebra UNIV ?SIGMA
619 by (intro sigma_algebra_sigma_sets) simp_all
620 have *: "?set = (\<Union>n. UNIV - {x::'a. x \<bullet> i < a + 1 / real (Suc n)})"
621 proof (safe, simp_all add: not_less del: real_of_nat_Suc)
622 fix x :: 'a assume "a < x \<bullet> i"
623 with reals_Archimedean[of "x \<bullet> i - a"]
624 obtain n where "a + 1 / real (Suc n) < x \<bullet> i"
625 by (auto simp: field_simps)
626 then show "\<exists>n. a + 1 / real (Suc n) \<le> x \<bullet> i"
627 by (blast intro: less_imp_le)
630 have "a < a + 1 / real (Suc n)" by auto
631 also assume "\<dots> \<le> x"
632 finally show "a < x" .
634 show "?set \<in> ?SIGMA" unfolding *
635 by (auto intro!: Diff sigma_sets_Inter i)
638 lemma borel_eq_halfspace_less:
639 "borel = sigma UNIV ((\<lambda>(a, i). {x::'a::euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> Basis))"
641 proof (rule borel_eq_sigmaI2[OF borel_eq_box])
643 have "box a b = {x\<in>space ?SIGMA. \<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i}"
644 by (auto simp: box_def)
645 also have "\<dots> \<in> sets ?SIGMA"
646 by (intro sets.sets_Collect_conj sets.sets_Collect_finite_All sets.sets_Collect_const)
647 (auto intro!: halfspace_gt_in_halfspace countable_PiE countable_rat)
648 finally show "box a b \<in> sets ?SIGMA" .
651 lemma borel_eq_halfspace_le:
652 "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. x \<bullet> i \<le> a}) ` (UNIV \<times> Basis))"
654 proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
655 fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
656 then have i: "i \<in> Basis" by auto
657 have *: "{x::'a. x\<bullet>i < a} = (\<Union>n. {x. x\<bullet>i \<le> a - 1/real (Suc n)})"
658 proof (safe, simp_all del: real_of_nat_Suc)
659 fix x::'a assume *: "x\<bullet>i < a"
660 with reals_Archimedean[of "a - x\<bullet>i"]
661 obtain n where "x \<bullet> i < a - 1 / (real (Suc n))"
662 by (auto simp: field_simps)
663 then show "\<exists>n. x \<bullet> i \<le> a - 1 / (real (Suc n))"
664 by (blast intro: less_imp_le)
667 assume "x\<bullet>i \<le> a - 1 / real (Suc n)"
668 also have "\<dots> < a" by auto
669 finally show "x\<bullet>i < a" .
671 show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
672 by (intro sets.countable_UN) (auto intro: i)
675 lemma borel_eq_halfspace_ge:
676 "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. a \<le> x \<bullet> i}) ` (UNIV \<times> Basis))"
678 proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
679 fix a :: real and i :: 'a assume i: "(a, i) \<in> UNIV \<times> Basis"
680 have *: "{x::'a. x\<bullet>i < a} = space ?SIGMA - {x::'a. a \<le> x\<bullet>i}" by auto
681 show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
682 using i by (intro sets.compl_sets) auto
685 lemma borel_eq_halfspace_greater:
686 "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. a < x \<bullet> i}) ` (UNIV \<times> Basis))"
688 proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_le])
689 fix a :: real and i :: 'a assume "(a, i) \<in> (UNIV \<times> Basis)"
690 then have i: "i \<in> Basis" by auto
691 have *: "{x::'a. x\<bullet>i \<le> a} = space ?SIGMA - {x::'a. a < x\<bullet>i}" by auto
692 show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
693 by (intro sets.compl_sets) (auto intro: i)
696 lemma borel_eq_atMost:
697 "borel = sigma UNIV (range (\<lambda>a. {..a::'a::ordered_euclidean_space}))"
699 proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
700 fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
701 then have "i \<in> Basis" by auto
702 then have *: "{x::'a. x\<bullet>i \<le> a} = (\<Union>k::nat. {.. (\<Sum>n\<in>Basis. (if n = i then a else real k)*\<^sub>R n)})"
703 proof (safe, simp_all add: eucl_le[where 'a='a] split: split_if_asm)
705 from real_arch_simple[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"] guess k::nat ..
706 then have "\<And>i. i \<in> Basis \<Longrightarrow> x\<bullet>i \<le> real k"
707 by (subst (asm) Max_le_iff) auto
708 then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia \<le> real k"
709 by (auto intro!: exI[of _ k])
711 show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
712 by (intro sets.countable_UN) auto
715 lemma borel_eq_greaterThan:
716 "borel = sigma UNIV (range (\<lambda>a::'a::ordered_euclidean_space. {x. a <e x}))"
718 proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
719 fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
720 then have i: "i \<in> Basis" by auto
721 have "{x::'a. x\<bullet>i \<le> a} = UNIV - {x::'a. a < x\<bullet>i}" by auto
722 also have *: "{x::'a. a < x\<bullet>i} =
723 (\<Union>k::nat. {x. (\<Sum>n\<in>Basis. (if n = i then a else -real k) *\<^sub>R n) <e x})" using i
724 proof (safe, simp_all add: eucl_less_def split: split_if_asm)
726 from reals_Archimedean2[of "Max ((\<lambda>i. -x\<bullet>i)`Basis)"]
727 guess k::nat .. note k = this
728 { fix i :: 'a assume "i \<in> Basis"
729 then have "-x\<bullet>i < real k"
730 using k by (subst (asm) Max_less_iff) auto
731 then have "- real k < x\<bullet>i" by simp }
732 then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> -real k < x \<bullet> ia"
733 by (auto intro!: exI[of _ k])
735 finally show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA"
737 apply (intro sets.countable_UN sets.Diff)
738 apply (auto intro: sigma_sets_top)
742 lemma borel_eq_lessThan:
743 "borel = sigma UNIV (range (\<lambda>a::'a::ordered_euclidean_space. {x. x <e a}))"
745 proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_ge])
746 fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
747 then have i: "i \<in> Basis" by auto
748 have "{x::'a. a \<le> x\<bullet>i} = UNIV - {x::'a. x\<bullet>i < a}" by auto
749 also have *: "{x::'a. x\<bullet>i < a} = (\<Union>k::nat. {x. x <e (\<Sum>n\<in>Basis. (if n = i then a else real k) *\<^sub>R n)})" using `i\<in> Basis`
750 proof (safe, simp_all add: eucl_less_def split: split_if_asm)
752 from reals_Archimedean2[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"]
753 guess k::nat .. note k = this
754 { fix i :: 'a assume "i \<in> Basis"
755 then have "x\<bullet>i < real k"
756 using k by (subst (asm) Max_less_iff) auto
757 then have "x\<bullet>i < real k" by simp }
758 then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia < real k"
759 by (auto intro!: exI[of _ k])
761 finally show "{x. a \<le> x\<bullet>i} \<in> ?SIGMA"
763 apply (intro sets.countable_UN sets.Diff)
764 apply (auto intro: sigma_sets_top )
768 lemma borel_eq_atLeastAtMost:
769 "borel = sigma UNIV (range (\<lambda>(a,b). {a..b} ::'a::ordered_euclidean_space set))"
771 proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
773 have *: "{..a} = (\<Union>n::nat. {- real n *\<^sub>R One .. a})"
774 proof (safe, simp_all add: eucl_le[where 'a='a])
776 from real_arch_simple[of "Max ((\<lambda>i. - x\<bullet>i)`Basis)"]
777 guess k::nat .. note k = this
778 { fix i :: 'a assume "i \<in> Basis"
779 with k have "- x\<bullet>i \<le> real k"
780 by (subst (asm) Max_le_iff) (auto simp: field_simps)
781 then have "- real k \<le> x\<bullet>i" by simp }
782 then show "\<exists>n::nat. \<forall>i\<in>Basis. - real n \<le> x \<bullet> i"
783 by (auto intro!: exI[of _ k])
785 show "{..a} \<in> ?SIGMA" unfolding *
786 by (intro sets.countable_UN)
787 (auto intro!: sigma_sets_top)
790 lemma borel_sigma_sets_Ioc: "borel = sigma UNIV (range (\<lambda>(a, b). {a <.. b::real}))"
791 proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
793 have "{..i} = (\<Union>j::nat. {-j <.. i})"
794 by (auto simp: minus_less_iff reals_Archimedean2)
795 also have "\<dots> \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))"
796 by (intro sets.countable_nat_UN) auto
797 finally show "{..i} \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))" .
800 lemma eucl_lessThan: "{x::real. x <e a} = lessThan a"
801 by (simp add: eucl_less_def lessThan_def)
803 lemma borel_eq_atLeastLessThan:
804 "borel = sigma UNIV (range (\<lambda>(a, b). {a ..< b :: real}))" (is "_ = ?SIGMA")
805 proof (rule borel_eq_sigmaI5[OF borel_eq_lessThan])
806 have move_uminus: "\<And>x y::real. -x \<le> y \<longleftrightarrow> -y \<le> x" by auto
808 have "{..<x} = (\<Union>i::nat. {-real i ..< x})"
809 by (auto simp: move_uminus real_arch_simple)
810 then show "{y. y <e x} \<in> ?SIGMA"
811 by (auto intro: sigma_sets.intros(2-) simp: eucl_lessThan)
814 lemma borel_eq_closed: "borel = sigma UNIV (Collect closed)"
816 proof (intro sigma_eqI sigma_sets_eqI, safe)
817 fix x :: "'a set" assume "open x"
818 hence "x = UNIV - (UNIV - x)" by auto
819 also have "\<dots> \<in> sigma_sets UNIV (Collect closed)"
820 by (force intro: sigma_sets.Compl simp: `open x`)
821 finally show "x \<in> sigma_sets UNIV (Collect closed)" by simp
823 fix x :: "'a set" assume "closed x"
824 hence "x = UNIV - (UNIV - x)" by auto
825 also have "\<dots> \<in> sigma_sets UNIV (Collect open)"
826 by (force intro: sigma_sets.Compl simp: `closed x`)
827 finally show "x \<in> sigma_sets UNIV (Collect open)" by simp
830 lemma borel_measurable_halfspacesI:
831 fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
832 assumes F: "borel = sigma UNIV (F ` (UNIV \<times> Basis))"
833 and S_eq: "\<And>a i. S a i = f -` F (a,i) \<inter> space M"
834 shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a::real. S a i \<in> sets M)"
836 fix a :: real and i :: 'b assume i: "i \<in> Basis" and f: "f \<in> borel_measurable M"
837 then show "S a i \<in> sets M" unfolding assms
838 by (auto intro!: measurable_sets simp: assms(1))
840 assume a: "\<forall>i\<in>Basis. \<forall>a. S a i \<in> sets M"
841 then show "f \<in> borel_measurable M"
842 by (auto intro!: measurable_measure_of simp: S_eq F)
845 lemma borel_measurable_iff_halfspace_le:
846 fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
847 shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i \<le> a} \<in> sets M)"
848 by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_le]) auto
850 lemma borel_measurable_iff_halfspace_less:
851 fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
852 shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i < a} \<in> sets M)"
853 by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_less]) auto
855 lemma borel_measurable_iff_halfspace_ge:
856 fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
857 shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a \<le> f w \<bullet> i} \<in> sets M)"
858 by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_ge]) auto
860 lemma borel_measurable_iff_halfspace_greater:
861 fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
862 shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a < f w \<bullet> i} \<in> sets M)"
863 by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_greater]) auto
865 lemma borel_measurable_iff_le:
866 "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w \<le> a} \<in> sets M)"
867 using borel_measurable_iff_halfspace_le[where 'c=real] by simp
869 lemma borel_measurable_iff_less:
870 "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w < a} \<in> sets M)"
871 using borel_measurable_iff_halfspace_less[where 'c=real] by simp
873 lemma borel_measurable_iff_ge:
874 "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a \<le> f w} \<in> sets M)"
875 using borel_measurable_iff_halfspace_ge[where 'c=real]
878 lemma borel_measurable_iff_greater:
879 "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a < f w} \<in> sets M)"
880 using borel_measurable_iff_halfspace_greater[where 'c=real] by simp
882 lemma borel_measurable_euclidean_space:
883 fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
884 shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M)"
886 assume f: "\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M"
887 then show "f \<in> borel_measurable M"
888 by (subst borel_measurable_iff_halfspace_le) auto
891 subsection "Borel measurable operators"
893 lemma borel_measurable_norm[measurable]: "norm \<in> borel_measurable borel"
894 by (intro borel_measurable_continuous_on1 continuous_intros)
896 lemma borel_measurable_sgn [measurable]: "(sgn::'a::real_normed_vector \<Rightarrow> 'a) \<in> borel_measurable borel"
897 by (rule borel_measurable_continuous_countable_exceptions[where X="{0}"])
898 (auto intro!: continuous_on_sgn continuous_on_id)
900 lemma borel_measurable_uminus[measurable (raw)]:
901 fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
902 assumes g: "g \<in> borel_measurable M"
903 shows "(\<lambda>x. - g x) \<in> borel_measurable M"
904 by (rule borel_measurable_continuous_on[OF _ g]) (intro continuous_intros)
906 lemma borel_measurable_add[measurable (raw)]:
907 fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
908 assumes f: "f \<in> borel_measurable M"
909 assumes g: "g \<in> borel_measurable M"
910 shows "(\<lambda>x. f x + g x) \<in> borel_measurable M"
911 using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
913 lemma borel_measurable_setsum[measurable (raw)]:
914 fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
915 assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
916 shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
919 thus ?thesis using assms by induct auto
922 lemma borel_measurable_diff[measurable (raw)]:
923 fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
924 assumes f: "f \<in> borel_measurable M"
925 assumes g: "g \<in> borel_measurable M"
926 shows "(\<lambda>x. f x - g x) \<in> borel_measurable M"
927 using borel_measurable_add [of f M "- g"] assms by (simp add: fun_Compl_def)
929 lemma borel_measurable_times[measurable (raw)]:
930 fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_algebra}"
931 assumes f: "f \<in> borel_measurable M"
932 assumes g: "g \<in> borel_measurable M"
933 shows "(\<lambda>x. f x * g x) \<in> borel_measurable M"
934 using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
936 lemma borel_measurable_setprod[measurable (raw)]:
937 fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, real_normed_field}"
938 assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
939 shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
942 thus ?thesis using assms by induct auto
945 lemma borel_measurable_dist[measurable (raw)]:
946 fixes g f :: "'a \<Rightarrow> 'b::{second_countable_topology, metric_space}"
947 assumes f: "f \<in> borel_measurable M"
948 assumes g: "g \<in> borel_measurable M"
949 shows "(\<lambda>x. dist (f x) (g x)) \<in> borel_measurable M"
950 using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
952 lemma borel_measurable_scaleR[measurable (raw)]:
953 fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
954 assumes f: "f \<in> borel_measurable M"
955 assumes g: "g \<in> borel_measurable M"
956 shows "(\<lambda>x. f x *\<^sub>R g x) \<in> borel_measurable M"
957 using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
959 lemma affine_borel_measurable_vector:
960 fixes f :: "'a \<Rightarrow> 'x::real_normed_vector"
961 assumes "f \<in> borel_measurable M"
962 shows "(\<lambda>x. a + b *\<^sub>R f x) \<in> borel_measurable M"
963 proof (rule borel_measurableI)
964 fix S :: "'x set" assume "open S"
965 show "(\<lambda>x. a + b *\<^sub>R f x) -` S \<inter> space M \<in> sets M"
967 assume "b \<noteq> 0"
968 with `open S` have "open ((\<lambda>x. (- a + x) /\<^sub>R b) ` S)" (is "open ?S")
969 using open_affinity [of S "inverse b" "- a /\<^sub>R b"]
970 by (auto simp: algebra_simps)
971 hence "?S \<in> sets borel" by auto
973 from `b \<noteq> 0` have "(\<lambda>x. a + b *\<^sub>R f x) -` S = f -` ?S"
974 apply auto by (rule_tac x="a + b *\<^sub>R f x" in image_eqI, simp_all)
975 ultimately show ?thesis using assms unfolding in_borel_measurable_borel
980 lemma borel_measurable_const_scaleR[measurable (raw)]:
981 "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. b *\<^sub>R f x ::'a::real_normed_vector) \<in> borel_measurable M"
982 using affine_borel_measurable_vector[of f M 0 b] by simp
984 lemma borel_measurable_const_add[measurable (raw)]:
985 "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. a + f x ::'a::real_normed_vector) \<in> borel_measurable M"
986 using affine_borel_measurable_vector[of f M a 1] by simp
988 lemma borel_measurable_inverse[measurable (raw)]:
989 fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
990 assumes f: "f \<in> borel_measurable M"
991 shows "(\<lambda>x. inverse (f x)) \<in> borel_measurable M"
992 apply (rule measurable_compose[OF f])
993 apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
994 apply (auto intro!: continuous_on_inverse continuous_on_id)
997 lemma borel_measurable_divide[measurable (raw)]:
998 "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
999 (\<lambda>x. f x / g x::'b::{second_countable_topology, real_normed_div_algebra}) \<in> borel_measurable M"
1000 by (simp add: divide_inverse)
1002 lemma borel_measurable_max[measurable (raw)]:
1003 "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. max (g x) (f x) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
1004 by (simp add: max_def)
1006 lemma borel_measurable_min[measurable (raw)]:
1007 "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. min (g x) (f x) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
1008 by (simp add: min_def)
1010 lemma borel_measurable_Min[measurable (raw)]:
1011 "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Min ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
1012 proof (induct I rule: finite_induct)
1013 case (insert i I) then show ?case
1014 by (cases "I = {}") auto
1017 lemma borel_measurable_Max[measurable (raw)]:
1018 "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Max ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, dense_linorder, linorder_topology}) \<in> borel_measurable M"
1019 proof (induct I rule: finite_induct)
1020 case (insert i I) then show ?case
1021 by (cases "I = {}") auto
1024 lemma borel_measurable_abs[measurable (raw)]:
1025 "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. \<bar>f x :: real\<bar>) \<in> borel_measurable M"
1026 unfolding abs_real_def by simp
1028 lemma borel_measurable_nth[measurable (raw)]:
1029 "(\<lambda>x::real^'n. x $ i) \<in> borel_measurable borel"
1030 by (simp add: cart_eq_inner_axis)
1032 lemma convex_measurable:
1033 fixes A :: "'a :: euclidean_space set"
1034 shows "X \<in> borel_measurable M \<Longrightarrow> X ` space M \<subseteq> A \<Longrightarrow> open A \<Longrightarrow> convex_on A q \<Longrightarrow>
1035 (\<lambda>x. q (X x)) \<in> borel_measurable M"
1036 by (rule measurable_compose[where f=X and N="restrict_space borel A"])
1037 (auto intro!: borel_measurable_continuous_on_restrict convex_on_continuous measurable_restrict_space2)
1039 lemma borel_measurable_ln[measurable (raw)]:
1040 assumes f: "f \<in> borel_measurable M"
1041 shows "(\<lambda>x. ln (f x :: real)) \<in> borel_measurable M"
1042 apply (rule measurable_compose[OF f])
1043 apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
1044 apply (auto intro!: continuous_on_ln continuous_on_id)
1047 lemma borel_measurable_log[measurable (raw)]:
1048 "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. log (g x) (f x)) \<in> borel_measurable M"
1049 unfolding log_def by auto
1051 lemma borel_measurable_exp[measurable]:
1052 "(exp::'a::{real_normed_field,banach}\<Rightarrow>'a) \<in> borel_measurable borel"
1053 by (intro borel_measurable_continuous_on1 continuous_at_imp_continuous_on ballI isCont_exp)
1055 lemma measurable_real_floor[measurable]:
1056 "(floor :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
1058 have "\<And>a x. \<lfloor>x\<rfloor> = a \<longleftrightarrow> (real a \<le> x \<and> x < real (a + 1))"
1059 by (auto intro: floor_eq2)
1061 by (auto simp: vimage_def measurable_count_space_eq2_countable)
1064 lemma measurable_real_ceiling[measurable]:
1065 "(ceiling :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
1066 unfolding ceiling_def[abs_def] by simp
1068 lemma borel_measurable_real_floor: "(\<lambda>x::real. real \<lfloor>x\<rfloor>) \<in> borel_measurable borel"
1071 lemma borel_measurable_root [measurable]: "root n \<in> borel_measurable borel"
1072 by (intro borel_measurable_continuous_on1 continuous_intros)
1074 lemma borel_measurable_sqrt [measurable]: "sqrt \<in> borel_measurable borel"
1075 by (intro borel_measurable_continuous_on1 continuous_intros)
1077 lemma borel_measurable_power [measurable (raw)]:
1078 fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
1079 assumes f: "f \<in> borel_measurable M"
1080 shows "(\<lambda>x. (f x) ^ n) \<in> borel_measurable M"
1081 by (intro borel_measurable_continuous_on [OF _ f] continuous_intros)
1083 lemma borel_measurable_Re [measurable]: "Re \<in> borel_measurable borel"
1084 by (intro borel_measurable_continuous_on1 continuous_intros)
1086 lemma borel_measurable_Im [measurable]: "Im \<in> borel_measurable borel"
1087 by (intro borel_measurable_continuous_on1 continuous_intros)
1089 lemma borel_measurable_of_real [measurable]: "(of_real :: _ \<Rightarrow> (_::real_normed_algebra)) \<in> borel_measurable borel"
1090 by (intro borel_measurable_continuous_on1 continuous_intros)
1092 lemma borel_measurable_sin [measurable]: "(sin :: _ \<Rightarrow> (_::{real_normed_field,banach})) \<in> borel_measurable borel"
1093 by (intro borel_measurable_continuous_on1 continuous_intros)
1095 lemma borel_measurable_cos [measurable]: "(cos :: _ \<Rightarrow> (_::{real_normed_field,banach})) \<in> borel_measurable borel"
1096 by (intro borel_measurable_continuous_on1 continuous_intros)
1098 lemma borel_measurable_arctan [measurable]: "arctan \<in> borel_measurable borel"
1099 by (intro borel_measurable_continuous_on1 continuous_intros)
1101 lemma borel_measurable_complex_iff:
1102 "f \<in> borel_measurable M \<longleftrightarrow>
1103 (\<lambda>x. Re (f x)) \<in> borel_measurable M \<and> (\<lambda>x. Im (f x)) \<in> borel_measurable M"
1105 apply (subst fun_complex_eq)
1106 apply (intro borel_measurable_add)
1110 subsection "Borel space on the extended reals"
1112 lemma borel_measurable_ereal[measurable (raw)]:
1113 assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
1114 using continuous_on_ereal f by (rule borel_measurable_continuous_on) (rule continuous_on_id)
1116 lemma borel_measurable_real_of_ereal[measurable (raw)]:
1117 fixes f :: "'a \<Rightarrow> ereal"
1118 assumes f: "f \<in> borel_measurable M"
1119 shows "(\<lambda>x. real (f x)) \<in> borel_measurable M"
1120 apply (rule measurable_compose[OF f])
1121 apply (rule borel_measurable_continuous_countable_exceptions[of "{\<infinity>, -\<infinity> }"])
1122 apply (auto intro: continuous_on_real simp: Compl_eq_Diff_UNIV)
1125 lemma borel_measurable_ereal_cases:
1126 fixes f :: "'a \<Rightarrow> ereal"
1127 assumes f: "f \<in> borel_measurable M"
1128 assumes H: "(\<lambda>x. H (ereal (real (f x)))) \<in> borel_measurable M"
1129 shows "(\<lambda>x. H (f x)) \<in> borel_measurable M"
1131 let ?F = "\<lambda>x. if f x = \<infinity> then H \<infinity> else if f x = - \<infinity> then H (-\<infinity>) else H (ereal (real (f x)))"
1132 { fix x have "H (f x) = ?F x" by (cases "f x") auto }
1133 with f H show ?thesis by simp
1137 fixes f :: "'a \<Rightarrow> ereal" assumes f[measurable]: "f \<in> borel_measurable M"
1138 shows borel_measurable_ereal_abs[measurable(raw)]: "(\<lambda>x. \<bar>f x\<bar>) \<in> borel_measurable M"
1139 and borel_measurable_ereal_inverse[measurable(raw)]: "(\<lambda>x. inverse (f x) :: ereal) \<in> borel_measurable M"
1140 and borel_measurable_uminus_ereal[measurable(raw)]: "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M"
1141 by (auto simp del: abs_real_of_ereal simp: borel_measurable_ereal_cases[OF f] measurable_If)
1143 lemma borel_measurable_uminus_eq_ereal[simp]:
1144 "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M" (is "?l = ?r")
1146 assume ?l from borel_measurable_uminus_ereal[OF this] show ?r by simp
1149 lemma set_Collect_ereal2:
1150 fixes f g :: "'a \<Rightarrow> ereal"
1151 assumes f: "f \<in> borel_measurable M"
1152 assumes g: "g \<in> borel_measurable M"
1153 assumes H: "{x \<in> space M. H (ereal (real (f x))) (ereal (real (g x)))} \<in> sets M"
1154 "{x \<in> space borel. H (-\<infinity>) (ereal x)} \<in> sets borel"
1155 "{x \<in> space borel. H (\<infinity>) (ereal x)} \<in> sets borel"
1156 "{x \<in> space borel. H (ereal x) (-\<infinity>)} \<in> sets borel"
1157 "{x \<in> space borel. H (ereal x) (\<infinity>)} \<in> sets borel"
1158 shows "{x \<in> space M. H (f x) (g x)} \<in> sets M"
1160 let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = -\<infinity> then H y (-\<infinity>) else H y (ereal (real (g x)))"
1161 let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = -\<infinity> then ?G (-\<infinity>) x else ?G (ereal (real (f x))) x"
1162 { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
1164 from assms show ?thesis
1165 by (subst *) (simp del: space_borel split del: split_if)
1168 lemma borel_measurable_ereal_iff:
1169 shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M"
1171 assume "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
1172 from borel_measurable_real_of_ereal[OF this]
1173 show "f \<in> borel_measurable M" by auto
1176 lemma borel_measurable_erealD[measurable_dest]:
1177 "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<Longrightarrow> g \<in> measurable N M \<Longrightarrow> (\<lambda>x. f (g x)) \<in> borel_measurable N"
1178 unfolding borel_measurable_ereal_iff by simp
1180 lemma borel_measurable_ereal_iff_real:
1181 fixes f :: "'a \<Rightarrow> ereal"
1182 shows "f \<in> borel_measurable M \<longleftrightarrow>
1183 ((\<lambda>x. real (f x)) \<in> borel_measurable M \<and> f -` {\<infinity>} \<inter> space M \<in> sets M \<and> f -` {-\<infinity>} \<inter> space M \<in> sets M)"
1185 assume *: "(\<lambda>x. real (f x)) \<in> borel_measurable M" "f -` {\<infinity>} \<inter> space M \<in> sets M" "f -` {-\<infinity>} \<inter> space M \<in> sets M"
1186 have "f -` {\<infinity>} \<inter> space M = {x\<in>space M. f x = \<infinity>}" "f -` {-\<infinity>} \<inter> space M = {x\<in>space M. f x = -\<infinity>}" by auto
1187 with * have **: "{x\<in>space M. f x = \<infinity>} \<in> sets M" "{x\<in>space M. f x = -\<infinity>} \<in> sets M" by simp_all
1188 let ?f = "\<lambda>x. if f x = \<infinity> then \<infinity> else if f x = -\<infinity> then -\<infinity> else ereal (real (f x))"
1189 have "?f \<in> borel_measurable M" using * ** by (intro measurable_If) auto
1190 also have "?f = f" by (auto simp: fun_eq_iff ereal_real)
1191 finally show "f \<in> borel_measurable M" .
1194 lemma borel_measurable_ereal_iff_Iio:
1195 "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..< a} \<inter> space M \<in> sets M)"
1196 by (auto simp: borel_Iio measurable_iff_measure_of)
1198 lemma borel_measurable_ereal_iff_Ioi:
1199 "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a <..} \<inter> space M \<in> sets M)"
1200 by (auto simp: borel_Ioi measurable_iff_measure_of)
1202 lemma vimage_sets_compl_iff:
1203 "f -` A \<inter> space M \<in> sets M \<longleftrightarrow> f -` (- A) \<inter> space M \<in> sets M"
1205 { fix A assume "f -` A \<inter> space M \<in> sets M"
1206 moreover have "f -` (- A) \<inter> space M = space M - f -` A \<inter> space M" by auto
1207 ultimately have "f -` (- A) \<inter> space M \<in> sets M" by auto }
1208 from this[of A] this[of "-A"] show ?thesis
1209 by (metis double_complement)
1212 lemma borel_measurable_iff_Iic_ereal:
1213 "(f::'a\<Rightarrow>ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..a} \<inter> space M \<in> sets M)"
1214 unfolding borel_measurable_ereal_iff_Ioi vimage_sets_compl_iff[where A="{a <..}" for a] by simp
1216 lemma borel_measurable_iff_Ici_ereal:
1217 "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a..} \<inter> space M \<in> sets M)"
1218 unfolding borel_measurable_ereal_iff_Iio vimage_sets_compl_iff[where A="{..< a}" for a] by simp
1220 lemma borel_measurable_ereal2:
1221 fixes f g :: "'a \<Rightarrow> ereal"
1222 assumes f: "f \<in> borel_measurable M"
1223 assumes g: "g \<in> borel_measurable M"
1224 assumes H: "(\<lambda>x. H (ereal (real (f x))) (ereal (real (g x)))) \<in> borel_measurable M"
1225 "(\<lambda>x. H (-\<infinity>) (ereal (real (g x)))) \<in> borel_measurable M"
1226 "(\<lambda>x. H (\<infinity>) (ereal (real (g x)))) \<in> borel_measurable M"
1227 "(\<lambda>x. H (ereal (real (f x))) (-\<infinity>)) \<in> borel_measurable M"
1228 "(\<lambda>x. H (ereal (real (f x))) (\<infinity>)) \<in> borel_measurable M"
1229 shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
1231 let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = - \<infinity> then H y (-\<infinity>) else H y (ereal (real (g x)))"
1232 let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = - \<infinity> then ?G (-\<infinity>) x else ?G (ereal (real (f x))) x"
1233 { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
1235 from assms show ?thesis unfolding * by simp
1239 fixes f :: "'a \<Rightarrow> ereal" assumes f: "f \<in> borel_measurable M"
1240 shows borel_measurable_ereal_eq_const: "{x\<in>space M. f x = c} \<in> sets M"
1241 and borel_measurable_ereal_neq_const: "{x\<in>space M. f x \<noteq> c} \<in> sets M"
1244 lemma [measurable(raw)]:
1245 fixes f :: "'a \<Rightarrow> ereal"
1246 assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
1247 shows borel_measurable_ereal_add: "(\<lambda>x. f x + g x) \<in> borel_measurable M"
1248 and borel_measurable_ereal_times: "(\<lambda>x. f x * g x) \<in> borel_measurable M"
1249 and borel_measurable_ereal_min: "(\<lambda>x. min (g x) (f x)) \<in> borel_measurable M"
1250 and borel_measurable_ereal_max: "(\<lambda>x. max (g x) (f x)) \<in> borel_measurable M"
1251 by (simp_all add: borel_measurable_ereal2 min_def max_def)
1253 lemma [measurable(raw)]:
1254 fixes f g :: "'a \<Rightarrow> ereal"
1255 assumes "f \<in> borel_measurable M"
1256 assumes "g \<in> borel_measurable M"
1257 shows borel_measurable_ereal_diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M"
1258 and borel_measurable_ereal_divide: "(\<lambda>x. f x / g x) \<in> borel_measurable M"
1259 using assms by (simp_all add: minus_ereal_def divide_ereal_def)
1261 lemma borel_measurable_ereal_setsum[measurable (raw)]:
1262 fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
1263 assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
1264 shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
1265 using assms by (induction S rule: infinite_finite_induct) auto
1267 lemma borel_measurable_ereal_setprod[measurable (raw)]:
1268 fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
1269 assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
1270 shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
1271 using assms by (induction S rule: infinite_finite_induct) auto
1273 lemma [measurable (raw)]:
1274 fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
1275 assumes "\<And>i. f i \<in> borel_measurable M"
1276 shows borel_measurable_liminf: "(\<lambda>x. liminf (\<lambda>i. f i x)) \<in> borel_measurable M"
1277 and borel_measurable_limsup: "(\<lambda>x. limsup (\<lambda>i. f i x)) \<in> borel_measurable M"
1278 unfolding liminf_SUP_INF limsup_INF_SUP using assms by auto
1280 lemma sets_Collect_eventually_sequentially[measurable]:
1281 "(\<And>i. {x\<in>space M. P x i} \<in> sets M) \<Longrightarrow> {x\<in>space M. eventually (P x) sequentially} \<in> sets M"
1282 unfolding eventually_sequentially by simp
1284 lemma sets_Collect_ereal_convergent[measurable]:
1285 fixes f :: "nat \<Rightarrow> 'a => ereal"
1286 assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
1287 shows "{x\<in>space M. convergent (\<lambda>i. f i x)} \<in> sets M"
1288 unfolding convergent_ereal by auto
1290 lemma borel_measurable_extreal_lim[measurable (raw)]:
1291 fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
1292 assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
1293 shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
1295 have "\<And>x. lim (\<lambda>i. f i x) = (if convergent (\<lambda>i. f i x) then limsup (\<lambda>i. f i x) else (THE i. False))"
1296 by (simp add: lim_def convergent_def convergent_limsup_cl)
1301 lemma borel_measurable_ereal_LIMSEQ:
1302 fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
1303 assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) ----> u' x"
1304 and u: "\<And>i. u i \<in> borel_measurable M"
1305 shows "u' \<in> borel_measurable M"
1307 have "\<And>x. x \<in> space M \<Longrightarrow> u' x = liminf (\<lambda>n. u n x)"
1308 using u' by (simp add: lim_imp_Liminf[symmetric])
1309 with u show ?thesis by (simp cong: measurable_cong)
1312 lemma borel_measurable_extreal_suminf[measurable (raw)]:
1313 fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
1314 assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
1315 shows "(\<lambda>x. (\<Sum>i. f i x)) \<in> borel_measurable M"
1316 unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
1318 subsection {* LIMSEQ is borel measurable *}
1320 lemma borel_measurable_LIMSEQ:
1321 fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> real"
1322 assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) ----> u' x"
1323 and u: "\<And>i. u i \<in> borel_measurable M"
1324 shows "u' \<in> borel_measurable M"
1326 have "\<And>x. x \<in> space M \<Longrightarrow> liminf (\<lambda>n. ereal (u n x)) = ereal (u' x)"
1327 using u' by (simp add: lim_imp_Liminf)
1328 moreover from u have "(\<lambda>x. liminf (\<lambda>n. ereal (u n x))) \<in> borel_measurable M"
1330 ultimately show ?thesis by (simp cong: measurable_cong add: borel_measurable_ereal_iff)
1333 lemma borel_measurable_LIMSEQ_metric:
1334 fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: metric_space"
1335 assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
1336 assumes lim: "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. f i x) ----> g x"
1337 shows "g \<in> borel_measurable M"
1338 unfolding borel_eq_closed
1339 proof (safe intro!: measurable_measure_of)
1340 fix A :: "'b set" assume "closed A"
1342 have [measurable]: "(\<lambda>x. infdist (g x) A) \<in> borel_measurable M"
1343 proof (rule borel_measurable_LIMSEQ)
1344 show "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. infdist (f i x) A) ----> infdist (g x) A"
1345 by (intro tendsto_infdist lim)
1346 show "\<And>i. (\<lambda>x. infdist (f i x) A) \<in> borel_measurable M"
1347 by (intro borel_measurable_continuous_on[where f="\<lambda>x. infdist x A"]
1348 continuous_at_imp_continuous_on ballI continuous_infdist continuous_ident) auto
1351 show "g -` A \<inter> space M \<in> sets M"
1353 assume "A \<noteq> {}"
1354 then have "\<And>x. infdist x A = 0 \<longleftrightarrow> x \<in> A"
1355 using `closed A` by (simp add: in_closed_iff_infdist_zero)
1356 then have "g -` A \<inter> space M = {x\<in>space M. infdist (g x) A = 0}"
1358 also have "\<dots> \<in> sets M"
1360 finally show ?thesis .
1364 lemma sets_Collect_Cauchy[measurable]:
1365 fixes f :: "nat \<Rightarrow> 'a => 'b::{metric_space, second_countable_topology}"
1366 assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
1367 shows "{x\<in>space M. Cauchy (\<lambda>i. f i x)} \<in> sets M"
1368 unfolding metric_Cauchy_iff2 using f by auto
1370 lemma borel_measurable_lim[measurable (raw)]:
1371 fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
1372 assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
1373 shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
1375 def u' \<equiv> "\<lambda>x. lim (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)"
1376 then have *: "\<And>x. lim (\<lambda>i. f i x) = (if Cauchy (\<lambda>i. f i x) then u' x else (THE x. False))"
1377 by (auto simp: lim_def convergent_eq_cauchy[symmetric])
1378 have "u' \<in> borel_measurable M"
1379 proof (rule borel_measurable_LIMSEQ_metric)
1381 have "convergent (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)"
1382 by (cases "Cauchy (\<lambda>i. f i x)")
1383 (auto simp add: convergent_eq_cauchy[symmetric] convergent_def)
1384 then show "(\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0) ----> u' x"
1386 by (rule convergent_LIMSEQ_iff[THEN iffD1])
1389 unfolding * by measurable
1392 lemma borel_measurable_suminf[measurable (raw)]:
1393 fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
1394 assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
1395 shows "(\<lambda>x. suminf (\<lambda>i. f i x)) \<in> borel_measurable M"
1396 unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
1398 lemma borel_measurable_sup[measurable (raw)]:
1399 "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
1400 (\<lambda>x. sup (f x) (g x)::ereal) \<in> borel_measurable M"
1403 (* Proof by Jeremy Avigad and Luke Serafin *)
1405 fixes f :: "'b::metric_space \<Rightarrow> 'a::metric_space"
1406 shows "{x. isCont f x} \<in> sets borel"
1408 let ?I = "\<lambda>j. inverse(real (Suc j))"
1411 have "isCont f x = (\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i)"
1412 unfolding continuous_at_eps_delta
1414 fix i assume "\<forall>e>0. \<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
1415 moreover have "0 < ?I i / 2"
1417 ultimately obtain d where d: "0 < d" "\<And>y. dist x y < d \<Longrightarrow> dist (f y) (f x) < ?I i / 2"
1418 by (metis dist_commute)
1419 then obtain j where j: "?I j < d"
1420 by (metis reals_Archimedean)
1422 show "\<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
1423 proof (safe intro!: exI[where x=j])
1424 fix y z assume *: "dist x y < ?I j" "dist x z < ?I j"
1425 have "dist (f y) (f z) \<le> dist (f y) (f x) + dist (f z) (f x)"
1426 by (rule dist_triangle2)
1427 also have "\<dots> < ?I i / 2 + ?I i / 2"
1428 by (intro add_strict_mono d less_trans[OF _ j] *)
1429 also have "\<dots> \<le> ?I i"
1430 by (simp add: field_simps real_of_nat_Suc)
1431 finally show "dist (f y) (f z) \<le> ?I i"
1435 fix e::real assume "0 < e"
1436 then obtain n where n: "?I n < e"
1437 by (metis reals_Archimedean)
1438 assume "\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
1439 from this[THEN spec, of "Suc n"]
1440 obtain j where j: "\<And>y z. dist x y < ?I j \<Longrightarrow> dist x z < ?I j \<Longrightarrow> dist (f y) (f z) \<le> ?I (Suc n)"
1443 show "\<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
1444 proof (safe intro!: exI[of _ "?I j"])
1445 fix y assume "dist y x < ?I j"
1446 then have "dist (f y) (f x) \<le> ?I (Suc n)"
1447 by (intro j) (auto simp: dist_commute)
1448 also have "?I (Suc n) < ?I n"
1451 finally show "dist (f y) (f x) < e" .
1456 have **: "\<And>e y. open {x. dist x y < e}"
1457 using open_ball by (simp_all add: ball_def dist_commute)
1459 have "{x\<in>space borel. isCont f x} \<in> sets borel"
1461 apply (intro sets.sets_Collect_countable_All sets.sets_Collect_countable_Ex)
1462 apply (simp add: Collect_all_eq)
1463 apply (intro borel_closed closed_INT ballI closed_Collect_imp open_Collect_conj **)
1471 eucl_less (infix "<e" 50)